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Abstract

The vast majority of work in self-supervised learning have focused on assessing1

recovered features by a chosen set of downstream tasks. While there are several2

commonly used benchmark datasets, this lens of feature learning requires assump-3

tions on the downstream tasks which are not inherent to the data distribution itself.4

In this paper, we present an alternative lens, one of parameter identifiability: assum-5

ing data comes from a parametric probabilistic model, we train a self-supervised6

learning predictor with a suitable parametric form, and ask whether the parameters7

of the optimal predictor can be used to extract the parameters of the ground truth8

generative model.9

Specifically, we focus on latent-variable models capturing sequential structures,10

namely Hidden Markov Models with both discrete and conditionally Gaussian11

observations. We focus on masked prediction as the self-supervised learning task12

and study the optimal masked predictor. We show that parameter identifiability is13

governed by the task difficulty, which is determined by the choice of data model14

and the amount of tokens to predict. Technique-wise, we uncover close connections15

with the uniqueness of tensor rank decompositions, a widely used tool in studying16

identifiability through the lens of the method of moments.17

1 Introduction18

Self-supervised learning (SSL) is a relatively new approach to unsupervised learning, where the19

learning algorithm learns to predict auxiliary labels generated automatically from the data without20

human annotators. The hope is that with a properly designed prediction task, a successfully learned21

predictor would capture some knowledge about the underlying data. While SSL has been enjoying a22

rapid growth on the empirical front, theoretical understanding of why and when SSL works is still23

nascent. In no small part, this is because formalizing the desired guarantees seems challenging. For24

instance, the focus of SSL has largely been on learning good features, which in practice has been25

quantified by downstream performance on various benchmark datasets [Wang et al., 2018, 2019,26

Deng et al., 2009, Zhai et al., 2019, Tamkin et al., 2021]. To provide theoretical underpinning to this,27

one needs to make extra assumptions on the relationship between the self-supervised prediction task28

and the downstream tasks [Arora et al., 2019, Saunshi et al., 2020, HaoChen et al., 2021, Lee et al.,29

2021a, Wang et al., 2021, Wei et al., 2021, Wen and Li, 2021].30

While associating SSL with downstream supervised tasks is a useful perspective and has led to several31

very interesting theoretical results, we take a step back and revisit a more general goal of SSL, which32

is to learn some informative functionals of the data distribution. Naturally, the key question here is33

what functionals should be considered informative. While downstream performance is a notable valid34

choice, in this work, we choose an alternative criterion that is meaningful even without referencing35

any downstream tasks.36
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The alternative lens we are interested in is whether the functionals of the data distribution extracted37

by the SSL predictors can be simply stitched together to obtain the data distribution itself, given38

additional side-information about the family from which the data distribution is drawn. While this39

might seem like a tall order, masked prediction based SSL algorithms (which is essentially what40

pseudo-likelihood corresponds to) have classically been used for learning parametric graphical models41

such as Ising models [Ravikumar et al., 2010, Bresler, 2015, Vuffray et al., 2016]. But can this be42

done for broader classes of parametric models?43

In this paper, we take a preliminary step towards this and ask the question of parameter identifiability:44

assuming the data comes from a ground truth parametric probabilistic model, can common self-45

supervised tasks uniquely identify the parameters of the ground truth model? More precisely, are the46

parameters of the model uniquely determined by the optimal predictor for the SSL task (Definition 1)?47

An appeal of this identifiability perspective is that when a SSL task is sufficient for parameter48

identifiability, the model parameters can then be recovered straightforwardly from the parameters49

from the optimal SSL predictor. Parameter identification also has the desirable property of being50

independent of any downstream task.51

A prior, it is unclear whether we can achieve such model parameter identifiability via self-supervised52

tasks, since it requires recovering the full (parametric) generative model which is arguably more53

difficult than learning generic latent representations. This work provides a positive answer for broad54

classes of HMMs: we show that the commonly-used masked prediction task [Pathak et al., 2016,55

Devlin et al., 2018, He et al., 2021, Lee et al., 2021a], wherein a model is trained to predict a56

masked-out part of a sample given the rest of the sample, can identify the parameters of a HMM.57

As noted earlier, while such masked prediction for parameter learning has been applied in classical58

settings such as Ising models [Ravikumar et al., 2010, Bresler, 2015, Vuffray et al., 2016], the HMM59

setup in this work is more challenging due to the presence of latent variables. HMMs are also more60

suitable for modeling practical sequential data, and have been commonly adopted in theoretical61

analyses as a clean proxy for languages [Wei et al., 2021, Xie et al., 2021].62

Concretely, the two HMM models we consider in this work are 1) the classic HMM with discrete latent63

and discrete observables, and 2) a HMM variant with discrete latents and continuous observables that64

are conditionally Gaussian given the latent, which we abbreviate as G-HMMs. We show that:65

• Parameter identifiability is governed by the difficulty of the masked prediction task. The task66

difficulty is related to the amount of information provided by the combination of the model and the67

prediction task—where the difficulty can be increased by using a more complicated model, or by68

predicting more tokens. For instance, predicting the conditional mean of one token given another69

does not yield identifiability for a discrete HMM (Theorem 2), but does so when data comes from70

a G-HMM (Theorem 3). Moreover, the identifiability in the latter case quite strongly leverages71

structural properties of the posterior of the latent variables (Section 3.1).72

• Tools for characterizing the uniqueness of tensor decompositions (e.g., Kruskal’s Theorem [Kruskal,73

1977, Allman et al., 2009]) can be leveraged to prove identifiability: For both HMM (Theorem 5)74

and G-HMM (Theorem 6), if we have predictors of the tensor product of tokens (e.g., E[x2⊗x3|x1]),75

we can use the predictor output to construct a 3-tensor whose rank-1 components are uniquely76

determined and reveal the parameters of the model.77

The rest of the paper is structured as follows. Section 2 provides relevant definitions, preliminaries and78

assumptions. Section 3 states the main results of this work. Main proofs, including the identifiability79

proof via tensor decomposition, are provided in Section 4, with the rest deferred to the appendix.80

We then discuss related works in Section 5. Finally, we emphasize that this work is a first-cut study81

on this lens of parameter recovery for analyzing SSL tasks based on masked prediction, and our82

encouraging results suggest interesting open directions in this thread of analyzing self-supervised83

learning via parameter recovery, which are discussed briefly in the conclusion.84

2 Setup85

This work focuses on two classes of latent-variable sequence models. The first are fully discrete86

hidden Markov models (HMMs), and the second are HMMs whose observables marginally follow87

a mixtures of Gaussians with identity covariance. We denote the observations and hidden states88

respectively by {xt}t≥1 and {ht}t≥1 for both classes. The hidden states h1 → h2 → · · · form89
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a Markov chain, and conditional on ht, the observable xt is independent of all other variables.90

Throughout, we refer to {xt}t≥1 as tokens, following the nomenclature from language models.91

2.1 Models92

Discrete Hidden Markov Model We first describe the parameterization of the standard HMMs93

with discrete latents and observations. Let X := {1, . . . , d} = [d] denote the observation space, and94

letH := [k] be the state space.1 The parameters of interest are the transition matrix T ∈ Rk×k and95

the emission matrix O ∈ Rd×k, defined in the standard way as96

P (ht+1 = i | ht = j) = Tij , P (xt = i | ht = j) = Oij .

Conditionally-Gaussian HMM (G-HMM) We next describe the parameterization of97

conditionally-Gaussian HMMs (G-HMMs). The state space H := [k] is the same as in the pre-98

vious case, while the observation space is now continuous with X := Rd. The parameters of interest99

are T ∈ Rk×k, the transition matrix, and {µi}i∈[k] ⊂ Rd, the means of the k identity-covariance100

Gaussians. Precisely,101

P (ht+1 = i | ht = j) = Tij , P (xt = x | ht = i) = (2π)−
d
2 exp

(
− ‖x− µi‖2/2

)
.

We use M := [µ1, . . . , µk] ∈ Rd×k to denote the matrix whose columns are the Gaussian means.102

2.2 Masked prediction tasks103

We are interested in the (regression) task of predicting one or more “masked out” tokens as a function104

of another observed token, with the goal of minimizing expected squared loss under a distribution105

given by an HMM or G-HMM (equation 1). In the case of the discrete HMMs, we will specifically106

be predicting the one-hot encoding vectors of the observations. Thus, both for HMM and G-HMM,107

predicting a single token will correspond to predicting a vector. For notational convenience, we108

will simply associate the discrete states or observations via their one-hot vectors {e1, e2, . . . } in the109

appropriate space and interchangeably write h = i or h = ei, and similarly for x. For the task of110

predicting the tensor product of (one-hot encoding vectors of) tokens ⊗τ∈T xτ from another token111

xt (where T is some index set and t /∈ T ), the optimal predictor with respect to the squared loss112

calculates the conditional expectation:113

f(xt) = arg min
f̃

E{xτ}τ∈T ‖vec(⊗τ∈T xτ )− vec(f̃(xt))‖22 = E[⊗τ∈T xτ | xt] ∈ (Rd)⊗|T |, (1)

where “vec" returns the vectorized form of a tensor.114

We use the shorthand “⊗τ∈T xτ |xt” to refer to this prediction task. For instance, consider the case of115

predicting x2 given x1 under the HMM with parameters (O, T ). The optimal predictor, denoted by116

f2|1, can be written in terms of (O, T ) as 2117

f2|1(x) = E[x2 | x1 = x] =
∑
i∈[k]

E[x2 | h2 = i]P (h2 = i | x1 = x)

=
∑
i∈[k]

∑
j∈[k]

E[x2 | h2 = i]P (h2 = i | h1 = j)P (h1 = j | x)︸ ︷︷ ︸
:=[φ(x)]j

=
∑
i∈[k]

∑
j∈[k]

OiTij
Ox,j∑
l∈[k]Ox,l︸ ︷︷ ︸
:=[φ(x)]j

.

Here φ : Rd → Rk denotes the posterior distribution of a hidden state ht given the corresponding118

observation xt, i.e., φ(xt) = E[ht | xt]. 3119

Our goal is to study the parameter identifiability from the prediction tasks, when the predictors have120

the correct parametric form. Formally, we define identifiability from a prediction task as follows:121

1Our results will assume d ≥ k; see Section 2.3.
2The computation here relies on Assumption 1, given in Section 2.3.

3For discrete HMMs, φ(xt) = O>xt
‖O>xt‖1

. For GHMMs, [φ(xt)]i =
exp
(
−
‖xt−µi‖

2
2

2

)
∑
j∈[k] exp

(
−
‖xt−µj‖22

2

) , ∀i ∈ [k]. φ

does not need to be indexed by t due to the stationarity assumption in Section 2.3.
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Definition 1 (Identifiability from a prediction task, HMM). A prediction task suffices for identifiability122

if, for any two HMMs with parameters (O, T ) and (Õ, T̃ ), equality of their optimal predictors for123

this task implies that there is a permutation matrix Π such that O = ÕΠ and T = Π>T̃Π.124

In other words, the mapping from (the natural equivalence classes of) HMM distributions to optimal125

predictors for a task is injective, up to a permutation of the hidden state labels. By identifiability126

from a collection of prediction tasks, we refer to the injectiveness of the mapping from HMM127

distributions to the collections of optimal predictors for the tasks. Identifiability for G-HMMs is128

defined analogously with O, Õ changed to M,M̃ .129

2.3 Assumptions130

We now state the assumptions used in our results. The first assumption is that the transition matrices131

of the HMMs are doubly stochastic.132

Assumption 1 (Doubly stochastic transitions). The transition matrix T is doubly stochastic, and the133

marginal distribution of the initial hidden state h1 is stationary with respect to T .134

This assumption guarantees that the stationary distribution of the latent distribution is uniform for any135

t, and the transition matrix for the reversed chain is simply T>. Moreover, this assumption reduces136

the parameter space and hence will make the non-identifiability results stronger.137

We require the following conditions on the parameters for the discrete HMM:138

Assumption 2 (Non-redundancy, discrete HMM). Every row of O is non-zero.139

Assumption 2 can be interpreted as requiring each token to have a non-zero probability of being140

observed, which is a mild assumption. We also require the following non-degeneracy condition:141

Assumption 3 (Non-degeneracy, discrete HMM). rank(T ) = rank(O) = k ≤ d.142

Note that Assumption 3 only requires the parameters to be non-degenerate, rather than have singular143

values bounded away from 0. The reason is that this work will focus on population level quantities144

and make no claims on finite sample behaviors or robustness.145

For G-HMM, we similarly require the parameters to be non-degenerate:146

Assumption 4 (Non-degeneracy, G-HMM). rank(T ) = rank(M) = k ≤ d.147

Moreover, we assume that the norms of the means are known and equal:148

Assumption 5 (Equal norms of the means). For each i ∈ [k], µi is a unit vector.4149

Assumptions 1-4 are fairly standard [see, e.g., Anandkumar et al., 2012]; in particular, Assumption 3,150

4 are required to enable efficient learning, since learning degenerate HMMs can be computationally151

hard [Mossel and Roch, 2005]. Assumption 5 may be an artifact of our proofs, and it would be152

interesting to relax in future work.153

Our notion of identifiability from a prediction task (or a collection of prediction tasks) will restrict154

attention to HMMs satisfying Assumptions 1, 2, 3 and G-HMMs satisfying Assumptions 1, 4, 5.155

2.4 Uniqueness of tensor rank decompositions156

Some of our identifiability results rely on the uniqueness of tensor rank-1 decompositions [Hitchcock,157

1927]. An order-t tensor (or t-tensor) is an t-way multidimensional array; a matrix is a 2-tensor.158

The tensor rank of a tensor W is the minimum number R such that W can be written as a sum of R159

rank-1 tensors. That is, if a t-tensor W has rank-R, it means that W =
∑
i∈[r]⊗j∈[t]U

(j)
i for some160

matrices U (j) ∈ Rnj×r, where U (j)
i denotes the ith column of matrix U (j).161

In this work, we only need to work with 3-tensors of the form W =
∑
i∈[R]Ai ⊗Bi ⊗ Ci for some162

matrices A ∈ Rn1×R, B ∈ Rn2×R, C ∈ Rn3×R, as 3-tensors will suffice for identifiability in all of163

our settings of interest.5 A classic work by Kruskal [1977] gives a sufficient condition under which164

A,B,C can be recovered up to column-wise permutation and scaling. The condition is stated in165

4Assumption 5 can be changed to ‖µi‖2 = c for all i ∈ [k], for any other fixed number c > 0.
5To apply our results on higher order tensors, one can consider an order-3 slice of the higher order tensor.
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terms of the Kruskal rank, which is the maximum number r such that every r columns of the matrix166

are linearly independent. Let kA denote the Kruskal rank of matrix A, then:167

Proposition 1 (Kruskal’s theorem, Kruskal [1977]). The components A,B,C of a 3-tensor W :=168 ∑
i∈[R]Ai ⊗ Bi ⊗ Ci are identifiable up to a shared column-wise permutation and column-wise169

scaling if kA + kB + kC ≥ 2R+ 2.170

We note that this work focuses on identifiability results rather than providing an algorithm or sample171

complexity bounds, though the proofs can be adapted into algorithms [see, e.g., Harshman, 1970]172

under slightly more restrictive conditions (which will be satisfied by all of our identifiability results).173

174

3 Identifiability from masked prediction tasks175

We now present the main (non-)identifiability results, and show that the combination of the data176

generative models and the prediction task directly impacts the sufficiency of identifiability.177

3.1 Pairwise prediction178

We begin with the simplest prediction task: namely predicting one token from another. We refer to179

such tasks as pairwise prediction tasks. For HMMs, this task fails to provide parameter identifiability:180

Theorem 2 (Nonidentifiability of HMM from predicting xt|x1). For any t ∈ Z, t ≥ 2, there exists a181

pair of HMM distributions with parameters (O, T ) and (Õ, T̃ ), each satisfying Assumptions 1, 2 and182

3, such that the optimal predictors for the task xt|x1 are the same under each distribution, but there183

is no permutation matrix Π ∈ Rk×k such that Õ = OΠ and T̃ = Π>TΠ are both satisfied.184

Theorem 2 follows from the fact that the optimal predictor has the form of a product of (stochastic)185

matrices, and generally, one cannot uniquely recover matrices from their product sans additional186

conditions [Donoho and Elad, 2003, Candes et al., 2006, Spielman et al., 2012, Arora et al., 2014,187

Georgiev et al., 2005, Aharon et al., 2006, Cohen and Gillis, 2019]. Specifically, by equation 1, the188

optimal predictor is f(x1) = E[xt|x1] = OT t−1φ(x1) (where φ(x1) := E[h1|xt] is the posterior).189

When t = 2, we can find a non-permutation matrix R such that Õ = OR, T̃ = R>TR give the same190

predictor as O, T . For t > 2, even if Õ = O, we show that the matrix power T t−1 is not identifiable:191

Claim 1 (Nonidentifiability of matrix powers). For any t ∈ Z, t ≥ 2, there exist stochastic matrices192

T, T̃ satisfying Assumption 1, 3, such that T 6= T̃ and T t = T̃ t.193

On the other hand, pairwise prediction actually does suffice for identifiability for G-HMM:194

Theorem 3 (Identifiability of G-HMM from predicting x2|x1). Under Assumption 1, 4, and 5, if the195

optimal predictors for the task x2|x1 under the G-HMM distributions with parameters (M,T ) and196

(M̃, T̃ ) are the same, then (M,T ) = (M̃, T̃ ) up to a permutation of the hidden state labels.197

Comparing Theorem 2 and 3 shows that the specific parametric form of the generative model matters.198

Note that HMM and G-HMM have a similar form when conditioning on the latent variable; that is,199

with t = 2, the predictor conditioned on the hidden variable h2 is P (x2|h2 = i) = OTi for HMM,200

and P (x2|h2 = i) = MTi for G-HMM. The salient difference between these two setups lies in the201

posterior function: while the posterior function for HMM is linear in the observable, the posterior202

function for G-HMM is more complicated and “reveals” more information about the parameter.203

To formalize the above intuition, first recall that the GHMM posterior has entries [φ(xt)]i =204

exp
(
− ‖xt−µi‖

2
2

2

)
∑
j∈[k] exp

(
−
‖xt−µj‖22

2

) , ∀i ∈ [k]. We will show that for G-HMM, even matching the posterior205

function nearly suffices to identify M : if M, M̃ parameterize two posterior functions φ, φ̃ where206

φ = φ̃, then up to a permutation, M̃ must be equal to either M or a unique (and somewhat special)207

transformation of M . The next step is to further exclude the (special) transformation, which is208

achieved using the constraint that T, T̃ are stochastic matrices. The first step of the proof sketch is209

captured by following lemma:210
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Lemma 1. For d ≥ k ≥ 2, under Assumption 4, 5, φ = φ̃ implies M̃ = M or M̃ = HM , where H211

is a Householder transformation of the form H := Id − 2v̂v̂> ∈ Rd×d, with v̂ := (M†)>1√
1>M†(M†)>1

.212

To provide some geometric intuition about how H acts on M , note that v̂ is a unit vector in the213

column space of M and perpendicular to the affine hull of A := {µi : i ∈ [k]}, which means v̂>µi is214

the same for all i ∈ [k]. As a result, M̃ = [µ̃1, ..., µ̃k] = [Hµ1, ...,Hµk] = M − 2(v̂>µ1)[v̂, ..., v̂]215

is a translation of M along the direction of v̂, such that the translated points {µ̃i}i∈[k] lie on the216

opposite side of the origin. It is non-trivial to argue that HM is the only solution (other than M217

itself) that preserves φ, and we defer the proof to Appendix A.1.2. It is, however, easy to see that218

HM indeed results in a matching posterior, whose sufficient conditions are 1) M̃ is a translation of219

M , and 2) ‖µ̃i‖2 − ‖µi‖2 is the same for all i ∈ [k]. M̃ := HM indeed satisfies both conditions.220

Proof sketch for Theorem 3: We first show that if M,T and M̃, T̃ produce the same predictor, then221

their posterior function must be equal up to a permutation (Lemma 2). We can then apply Lemma222

1 to recover M up to a permutation and a Householder transformation H . Then, we show that if223

M̃ = HM , then the corresponding T̃ must have negative entries and thus would not be a valid224

stochastic matrix. Hence it must be that M̃,M are equal up to permutation.225

Finally, by way of remarks, another way to think of the difference between the two setups is that226

for HMM, P (x2|x1) is a mixture of categorical distributions, which itself is also a categorical227

distribution. This also implies that the nonidentifiability from pairwise prediction in the HMM case228

cannot be resolved by changing the squared loss to another proper loss function. On the other hand,229

for G-HMM, the conditional distribution P (x2|x1) is a mixture of Gaussians, which is well known230

to be identifiable. In fact, if we were given access to the entire conditional distribution P (x2|x1)231

(instead of just the conditional mean), it is even easier to prove identifiability for G-HMM. Though232

this is already implied from identifiability from the conditional means, we provided a (much simpler)233

proof in Appendix A.3 assuming access to the full conditional distribution.234

3.2 Beyond pairwise prediction235

The conclusion from Theorem 2 is that a single pairwise prediction task does not suffice for identifia-236

bility on HMMs. The next question is then: can we modify the task to obtain identifiability? A natural237

idea is to force the model to “predict more”, and one straightforward way to do so is to combine238

multiple pairwise prediction tasks. It turns out that this does not resolve the nonidentifiability issue,239

as we can show that the parameters are not identifiable even when considering all possible pairwise240

tasks involved 3 (adjacent) tokens:241

Theorem 4 (Nonidentifiability of HMM from all pairwise predictions on 3 tokens). There exists a242

pair of HMM distributions with parameters (O, T ) and (Õ, T̃ ), each satisfying Assumptions 1, 2243

and 3, and also Õ 6= O, such that, for each of the tasks x2|x1, x1|x2, x3|x1, and x1|x3, the optimal244

predictors are the same under each distribution.6245

We briefly remark that the reason for only considering adjacent time steps is that when the tokens246

are at least two time steps apart, matching predictors only matches powers of the transition matrices,247

which in general does not ensure the transition matrices themselves are matched as shown in Claim 1.248

For the intuition of the nonidentifiability result in Theorem 4, recall that the limitation of pairwise249

predictions on HMMs comes from non-uniqueness of matrix factorization. While adding additional250

pairwise prediction tasks introduces more equations on the product of matrices, these equations are251

highly dependent, and the proof works by providing counterexamples that can simultaneously satisfy252

all these equations.253

The above intuition leads to another way of forcing the model to “predict more”, that is, to increase254

the number of predicted toens. The hope is that doing so results in equations on tensors—as opposed255

to matrices— for which there is a lot of classical machinery delineating tensors for which the rank-1256

decomposition is unique, as discussed in Section 2.4. This intuition proves to be true and we show257

that increase the number from 1 to 2 already suffices for identifiability:258

6These 4 pairwise tasks cover all possible pairwise tasks on 3 adjacent tokens. In particular, there is no need
to consider x2|x3 or x3|x2, since they are the same as x1|x2 and x2|x1.
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Theorem 5 (Identifiability from masked prediction on three tokens, HMM). Let (t1, t2, t3) be any259

permutation of (1, 2, 3), and consider the prediction task xt2 ⊗ xt3 |xt1 . Under Assumption 1, 2, 3,260

if the optimal predictors under the HMM distributions with parameters (O, T ) and (Õ, T̃ ) are the261

same, then (O, T ) = (Õ, T̃ ) up to a permutation of the hidden state labels.262

Compared to prior results on identifiability from third order moments [Allman et al., 2009, Anand-263

kumar et al., 2012, 2014], the difficulty in our setup is that we only have access to the conditional264

2-tensors (i.e. matrices) given by the predictors. The proof idea is to construct a third-order tensor by265

linearly combining the conditional 2-tensors for each possible value of the token being conditioned266

on, such that Kruskal’s theorem applies and gives identifiability. Note, importantly, that the weights267

for the linear combination cannot depend on the marginal probabilities of the token being conditioned268

on, since we do not have access to these marginals, and it is unclear whether we could extract unique269

marginals given the conditional probabilities we are predicting. Thus, the above theorem cannot be270

simply derived from results showing parameter identifiability from the 3rd order moments.271

It can be show that this tensor decomposition argument can also be applied to G-HMM, with the help272

of Lemma 1. We leave the details to Theorem 6 in Appendix A.273

4 Proofs274

We now discuss proofs for some of the main results. Section 4.1 proves the identifiability of HMM275

parameters from the task of predicting two tokens (Theorem 5) using ideas from tensor decomposition,276

and Section 4.2 shows the identifiability proof of pairwise prediction on G-HMM. The rest of the277

proofs are deferred to the appendix.278

4.1 Proof of Theorem 5: identifiability of predicting two tokens for HMM279

There are three cases for the two-token prediction task, i.e. 1) x2 ⊗ x3|x1, 2) x1 ⊗ x3|x2, and 3)280

x1 ⊗ x2|x3. We will prove for the first two cases, as the third case is proved the same way as the281

first case by symmetry. In all cases, the idea is to use the predictor to construct a 3-tensor whose282

components are each of rank-k, so that applying Kruskal’s theorem gives identifiability.283

Case 1, x2 ⊗ x3|x1: O, T and Õ, T̃ producing the same predictor means f2⊗3|1(x1) := E[x2 ⊗284

x3|x1] = Ẽ[x2 ⊗ x3|x1] := f̃2⊗3|1(x1), where E, Ẽ are parameterized by the corresponding parame-285

ters. Let X := {ei : i ∈ [d]}, and consider the following 3-tensor:286

W :=
∑
x1∈X

x1 ⊗ E[x2 ⊗ x3|x1] =
∑
x1∈X

x1 ⊗ Eh2|x1
[E[x2 ⊗ x3|x1]|h2]

=
∑
i∈[k]

∑
x1∈X

P (h2 = i|x1)x1 ⊗ E[x2|h2 = i]⊗ E[x3|h2 = i]

=
∑
i∈[k]

( ∑
x1∈X

(Tφ(x1))>e
(k)
i x1︸ ︷︷ ︸

:=ai

)
⊗Oi ⊗ (OT )i,

(2)

where Oi denotes the ith column of O, and similarly for (OT )i. Note that W can also be written as287

W =
∑
x1∈X

x1 ⊗ Ẽ[x2 ⊗ x3|x1] =
∑
i∈[k]

( ∑
x1∈X

(T̃ φ̃(x1))>e
(k)
i x1

)
⊗ Õi ⊗ (ÕT̃ )i. (3)

We want to apply Kruskal’s theorem for identifiability. In particular, we will show that each component288

in equation 2 forms a matrix of Kruskal rank k the second and third components clearly satisfy this289

condition by Assumption 3. For the first component, recall that φ(x) = O>x
‖O>x‖1 and write ai as290

ai =
∑
j∈[d]

(
Tφ(e

(d)
j )
)>
e
(k)
i · e

(d)
j = diag

(
[

1

‖(e(d)j )>O‖1
]j∈[d]

)
OT>e

(k)
i . (4)
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Putting ai into a matrix form, we get A := [a1, ..., ak] = diag
(
[1/‖(e(d)j )>O‖1]j∈[d]

)
OT>, 7 which291

is of rank k by Assumption 3. Hence componentsW are all of Kruskal rank k, and columns ofOT,O292

are identified up to column-wise permutation and scaling by Kruskal’s theorem. The indeterminacy293

in scaling is further removed noting that columns of O, T need to sum up to 1. Lastly, T is recovered294

as T = O†OT .295

Case 2, x1⊗x3|x2: The optimal predictor for the task of predicting x1, x3 given x2 takes the form296

E[x1 ⊗ x3|x2] = (OT>)diag(φ(x2))(OT )>. (5)
Similarly as the previous case, we would like to construct a 3-tensor whose components can be297

uniquely determined by Kruskal’s theorem. Let X be the same as before, and consider the 3-tensor298

W :=
∑
x2∈X

x2 ⊗ E[x1 ⊗ x3|x2] =
∑
x2∈X

x2 ⊗ Eh2|x2
(E[x1|h2]⊗ E[x3|h2])

=
∑
i∈[k]

∑
x2∈X

(φ(x2))>e
(k)
i x2︸ ︷︷ ︸

:=ai

⊗E[x1|h2]⊗ E[x3|h2] =
∑
i∈[k]

ai ⊗ (OT>)i ⊗ (OT )i, (6)

where the first component can be simplified to299

ai =
∑
j∈[d]

(e
(d)
j )>O

‖(e(d)j )>O‖1
e
(k)
i · e

(d)
j =

(
diag

(
[‖O>j ‖1]j∈[d]

))−1
Oe

(k)
i := D−1Oe

(k)
i . (7)

The matrixA := [a1, ..., ak] = D−1O is of rank k, hence we can identify (up to permutation) columns300

of each component of W by Kruskal’s theorem. This means if O, T and Õ, T̃ produce the same301

predictor, then we have OT = ÕT̃ , OT> = ÕT̃>, and that O, Õ are matched up to a scaling of rows302

(i.e. D−1). Next, to determineD, note that T, T̃ are doubly stochastic by Assumption 1, which means303

the all-one vector 1 ∈ Rk satisfies T1 = T̃1 = 1. Hence ÕT̃1 = OT1 = O1 = [‖O>j ‖1]j∈[d]. We304

can then compute D as D = diag(OT1), and recover O as O = DA. Finally, T is also recovered305

since ÕT̃ = OT̃ = OT ⇒ T̃ T−1 = Ik ⇒ T̃ = T .306

4.2 Proof of Theorem 3: identifiability of predicting x2 given x1 for G-HMM307

For G-HMM, the predictor for x2 given x1 is parameterized as f2|1(x1) = E[x2|x1] = MTφ(x1).308

If M,T and M̃, T̃ produce the same predictor, then309

f2|1(x) = MTφ(x) = M̃T̃ φ̃(x) = f̃2|1(x), ∀x ∈ Rd. (8)

Let R := (M̃T̃ )†(MT ) ∈ Rk×k, then φ̃(x) = Rφ(x). The following lemma (proof deferred to310

Appendix A.1) says that φ, φ̃ must then be equal up to a permutation of coordinates:311

Lemma 2. If there exists a non-singular matrix R ∈ Rk×k such that φ(x) = Rφ̃(x), ∀x ∈ Rd, then312

R must be a permutation matrix.313

Combined with Lemma 1, we have M̃ is equal to (up to a permutation) either M or HM , where H314

is the Householder reflection given in Lemma 1.315

The remaining step is to show that HM can be ruled out by requiring T̃ to be a stochastic matrix.316

Note that matching both the predictor and the posterior function means we also have M̃T̃ = MT ,317

or T̃ = (M̃†M)T . Recall that H := Id − 2v̂v̂> for v̂ = (M†)>1√
1>M†(M†)>1

. When M̃ = HM̃ , the318

column sum of M̃†M is319

1>M̃†M = 1>M†H−1M = 1>M†(I − 2v̂v̂>)M = 1>(I − 2M†v̂v̂>M)

=1> − 2 · 1>M
†(M†)>11>M†M

1>M†(M†)>1
= 1> − 2 · 1

>M†(M†)>1

1>M†(M†)>1
1> = 1> − 2 · 1> = −1>.

(9)

This means the column sum of T̃ is 1>T̃ = 1>(M̃†M)T = −1>T = −1>, which violates the320

constraint that T̃ should be a stochastic matrix with positive entries and column sum 1. Hence it must321

be that M = M̃ and hence also T = T̃ (up to permutation), proving the theorem statement.322

7We use [αi]i∈[d] to denote a d-dimensional vector whose ith entry is αi.
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5 Related works323

Self-supervised learning On the empirical side, self-supervised methods have gained a great324

amount of popularity across many domains, including language understanding [Mikolov et al., 2013,325

Vaswani et al., 2017, Devlin et al., 2018], visual understanding [Doersch et al., 2015, Pathak et al.,326

2016], and distribution learning [Gutmann and Hyvärinen, 2010, Gao et al., 2020]. Classic ideas such327

as contrastive learning [Hadsell et al., 2006, Gutmann and Hyvärinen, 2010, Dosovitskiy et al., 2014]328

and masked prediction [Mikolov et al., 2013] remain powerful in their modern realizations [Hénaff329

et al., 2019, Chen et al., 2020b, Devlin et al., 2018, Radford et al., 2019, Chen et al., 2020a, He et al.,330

2021], pushing the state of the art performance and even surpassing supervised pretraining in various331

aspects [Lee et al., 2021b, Liu et al., 2021].332

On the theoretical front, there have been analyses on both masked predictions [Lee et al., 2021a]333

and contrastive methods [Arora et al., 2019, Tosh et al., 2020a,b, Wang and Isola, 2020, HaoChen334

et al., 2021, Wen and Li, 2021], with a focus on characterizing the quality of the learned features335

for downstream tasks [Saunshi et al., 2020, Wei et al., 2021]. These approaches usually rely on336

quite strong assumptions to tie the self-supervised learning objective to the downstream tasks of337

interest. In contrast, our work takes the view of parameter identifiability, for which there is no need338

for downstream assumptions but instead the specific parametric form is key. Note also that while the339

parameter recovery lens is a new contribution of our work, Wen and Li [2021] argue (as a side-product340

of their analysis) that some aspects of a generative model are recovered in their setup. Their data341

model, however, is substantially different from ours and has very different identifiability properties342

(owing to its basis in sparse coding).343

Latent variable models and tensor methods Latent variable models have been widely studied in344

the literature. One important area of research is independent component analysis (ICA), where the345

data are assumed to be given as a transformation (mixing) of unknown independent sources which346

ICA methods aim to identify. In nonlinear ICA data models, both the sources and the mixing function347

are generally not identifiable. Hyvarinen and Morioka [2016, 2017] however, under some additional348

assumptions (on the dependency structure of the different time steps, among other things), provide349

some identifiability results on the sources. Unlike our setup, the mixing function in these models is350

deterministic and also not the object of recovery.351

More related to this work is the line of work on learning latent variable models with tensor methods.352

Specific to learning HMMs, Mossel and Roch [2005] and Anandkumar et al. [2012, 2014] provide353

algorithms based on third-order moments. A major difference between these prior works on tensor354

methods and ours is that previous results operate on joint moments, while the results in this work are355

based on conditional moments given by the optimal predictors for the masked tokens.356

6 Conclusion357

In this work, we take a model parameter identifiability view of self-supervised learning, which offers358

a complementary perspective to the current focus of feature learning for downstream performance.359

By analyzing the masked prediction task in the setup of HMMs and its conditionally-Gaussian variant360

G-HMM, we showed that parameter recovery is determined by the task difficulty, which can be tuned361

by both changing the parametric form of the data generative model, and by changing the masked362

prediction task.363

We emphasize that this is a first-cut effort in the research program of analyzing SSL through the lens364

of model identifiability; we aim to build on this foundation to extend our analyses from HMMs to365

more complicated latent sequence and latent variable models. We also note that we have focused366

here on population analyses, and model identifiability. It would be of interest to build off this to367

develop and analyze the corresponding finite-sample learning algorithms for parametric generative368

models given SSL tasks, with sample complexity results, both in the realizable case, as well as in369

the agnostic case where we have model mis-specification. Given the use of conditional MLEs and370

regressions in SSL, and the natural robustness of these to model mis-specifications, we conjecture371

that these approaches will be much more robust when compared to say spectral methods.372

Overall, we hope this work on an alternative lens to analyze SSL inspires further research.373
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