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Abstract

Despite the rapid advance of unsupervised anomaly detection, existing methods1

require to train separate models for different objects. In this work, we present2

UniAD that accomplishes anomaly detection for multiple classes with a unified3

framework. Under such a challenging setting, popular reconstruction networks4

may fall into an “identical shortcut”, where both normal and anomalous samples5

can be well recovered, and hence fail to spot outliers. To tackle this obstacle, we6

make three improvements. First, we revisit the formulations of fully-connected7

layer, convolutional layer, as well as attention layer, and confirm the important role8

of query embedding (i.e., within attention layer) in preventing the network from9

learning the shortcut. We therefore come up with a layer-wise query decoder to10

help model the multi-class distribution. Second, we employ a neighbor masked11

attention module to further avoid the information leak from the input feature to12

the reconstructed output feature. Third, we propose a feature jittering strategy13

that urges the model to recover the correct message even with noisy inputs. We14

evaluate our algorithm on MVTec-AD and CIFAR-10 datasets, where we surpass15

the state-of-the-art alternatives by a sufficiently large margin. For example, when16

learning a unified model for 15 categories in MVTec-AD, we surpass the second17

competitor on the tasks of both anomaly detection (from 88.1% to 96.5%) and18

anomaly localization (from 89.5% to 96.8%). Code will be made publicly available.19

1 Introduction20

Anomaly detection has found an increasingly wide utilization in manufacturing defect detection [4],21

medical image analysis [16], and video surveillance [45]. Considering the highly diverse anomaly22

types, a common solution is to model the distribution of normal samples and then identify anomalous23

ones via finding outliers. It is therefore crucial to learn a compact boundary for normal data, as shown24

in Fig. 1a. For this purpose, existing methods [6, 10, 24, 26, 47, 50] propose to train separate models25

for different classes of objects, like in Fig. 1c. However, such a one-class-one-model scheme could26

be memory-consuming especially along with the number of classes increasing, and also uncongenial27

to the scenarios where the normal samples manifest themselves in a large intra-class diversity (i.e.,28

one object consists of various types).29

In this work, we target a more practical task, which is to detect anomalies from different object30

classes with a unified framework. The task setting is illustrated in Fig. 1d, where the training data31

covers normal samples from a range of categories, and the learned model is asked to accomplish32

anomaly detection for all these categories without any fine-tuning. It is noteworthy that the categorical33

information (i.e., class label) is inaccessible at both the training and the inference stages, considerably34

easing the difficulty of data preparation. Nonetheless, solving such a task is fairly challenging. Recall35

that the rationale behind unsupervised anomaly detection is to model the distribution of normal data36

and find a compact decision boundary as in Fig. 1a. When it comes to the multi-class case, we expect37

the model to capture the distribution of all classes simultaneously such that they can share the same38
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Figure 1: Task setting of unified anomaly detection. (a) Existing methods learn separate decision
boundaries for different object classes, while (b) our approach models the multi-class data distribution
such that one boundary is enough to spot outliers regarding all categories. As a result, we escape
from the conventional one-class-one-model paradigm in (c), and manage to accomplish anomaly
detection for various classes with a unified framework in (d).

boundary as in Fig. 1b. But if we focus on a particular category, say the green one in Fig. 1b, all39

the samples from other categories should be considered as anomalies no matter whether they are40

normal (i.e., blue circles) or anomalous (i.e., blue triangles) themselves. From this perspective, how41

to accurately model the multi-class distribution becomes vital.42

A widely used approach to learning the normal data distribution draws support from image (or feature)43

reconstruction [2, 5, 25, 38, 49], which assumes that a well-trained model always produces normal44

samples regardless of the defects within the inputs. In this way, there will be large reconstruction45

errors for anomalous samples, making them distinguishable from the normal ones. However, we46

find that popular reconstruction networks suggest unsatisfying performance on the challenging task47

studied in this work. They typically fall into an “identity shortcut”, which appears as returning a48

direct copy of the input disregarding its content.1 As a result, even anomalous samples can be well49

recovered with the learned model and hence become hard to detect.50

To address this issue, we carefully tailor a feature reconstruction framework that prevents the model51

from learning the shortcut. First, we revisit the formulations of fully-connected layer, convolutional52

layer, as well as attention layer used in neural networks, and observe that both fully-connected53

layer and convolutional layer face the risk of learning a trivial solution. This drawback is further54

amplified under the multi-class setting in that the normal data distribution becomes far more complex.55

Instead, the attention layer is sheltered from such a risk, benefiting from a learnable query embedding56

(see Sec. 3.1). Accordingly, we propose a layer-wise query decoder to intensify the use of query57

embedding. Second, we argue that the full attention (i.e., every feature point relates to each other)58

also contributes to the shortcut issue, because it offers the chance of directly copying the input to59

the output. To avoid the information leak, we employ a neighbor masked attention module, where a60

feature point relates to neither itself nor its neighbors. Third, inspired by Bengio et al. [3], we propose61

a feature jittering strategy, which requires the model to recover the source message even with noisy62

inputs. All these designs help the model escape from the “identity shortcut”, as shown in Fig. 2b.63

Extensive experiments on MVTec-AD [4] and CIFAR-10 [22] demonstrate the sufficient superiority64

of our approach, which we call UniAD, over existing alternatives under the unified task setting. For65

instance, when learning a single model for 15 categories in MVTec-AD, we achieve state-of-the-art66

performance on the tasks of both anomaly detection and anomaly localization, boosting the AUROC67

from 88.1% to 96.5% and from 89.5% to 96.8%, respectively.68

2 Related work69

Anomaly detection. 1) Classical approaches extend classical machine learning methods for one-class70

classification, such as one-class support vector machine (OC-SVM) [37] and support vector data71

description (SVDD) [34, 40]. Patch-level embedding [47], geometric transformation [17], and elastic72

weight consolidation [32] are incorporated for improvement. 2) Pseudo-anomaly converts anomaly73

detection to supervised learning, including classification [24, 31, 44], image denoising [50], and hyper-74

1A detailed analysis can be found in Sec. 3.1 and Fig. 2.
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sphere segmentation [26]. However, these methods partly rely on how well proxy anomalies match75

real anomalies that are not known [12]. 3) Modeling then comparison assumes that the pre-trained76

network is capable of extracting discriminative features for anomaly detection [10, 33]. PaDiM [10]77

and MDND [33] extract pre-trained features to model normal distribution, then utilize a distance78

metric to measure the anomalies. Nevertheless, these methods need to memorize and model all normal79

features, thus are computationally expensive. 4) Knowledge distillation proposes that the student80

distilled by a teacher on normal samples could only extract normal features [6, 12, 36, 43, 44]. Recent81

works mainly focus on model ensemble [6], feature pyramid [36, 43], and reverse distillation [12].82

Reconstruction-based anomaly detection. These methods rely on the hypothesis that reconstruction83

models trained on normal samples only succeed in normal regions, but fail in anomalous regions [5,84

25, 35]. Early attempts include Auto-Encoder (AE) [5, 8], Variational Auto-Encoder (VAE) [21, 25],85

and Generative Adversarial Net (GAN) [2, 29, 35, 49]. However, these methods face the problem that86

the model could learn tricks that the anomalies are also restored well. Accordingly, researchers adopt87

different strategies to tackle this issue, such as adding instructional information (i.e., structural [51]88

or semantic [38, 45]), memory mechanism [18, 19, 28], iteration mechanism [11], image masking89

strategy [46], and pseudo-anomaly [8, 31]. Recently, DRAEM [50] first recovers the pseudo-anomaly90

disturbed normal images for representation, then utilizes a discriminative net to distinguish the91

anomalies, achieving excellent performance. However, DRAEM [50] ceases to be effective under92

the unified case. Moreover, there is still an important aspect that has not been well studied, i.e.,93

what architecture is the best reconstruction model? In this paper, we first compare and analyze three94

popular architectures including MLP, CNN, and transformer. Then, accordingly, we base on the95

transformer and further design three improvements, which compose our UniAD.96

Transformer in anomaly detection. Transformer [41] with attention mechanism, first proposed in97

natural language processing, has been successfully used in computer vision [7, 15]. Some attempts98

try to utilize transformer for anomaly detection. InTra [30] adopts transformer to recover the image99

by recovering all masked patches one by one. VT-ADL [27] and AnoVit [48] both apply transformer100

encoder to reconstruct images. However, these methods directly utilize vanilla transformer, and do101

not figure out why transformer brings improvement. In contrast, we confirm the efficacy of the query102

embedding to prevent the shortcut, and accordingly design a layer-wise query decoder. Also, to avoid103

the information leak of the full attention, we employ a neighbor masked attention module.104

3 Method105

3.1 Revisiting feature reconstruction for anomaly detection106

In Fig. 2, following the feature reconstruction paradigm [38], we build an MLP, a CNN, and a107

transformer (with query embedding) to reconstruct the features extracted by a pre-trained backbone.108

The reconstruction errors represent the anomaly possibility. The architectures of the three networks109

are given in Supplementary Material. The metric is evaluated every 10 epochs. Note that the periodic110

evaluation is impractical since anomalies are not available during training. As shown in Fig. 2a, after111

a period of training, the performances of the three networks decrease severely with the losses going112

extremely small. We attribute this to the problem of “identical shortcut”, where both normal and113

anomalous regions can be well recovered, thus failing to spot anomalies. This speculation is verified114

by the visualization results in Fig. 2b (more results in Supplementary Material). However, compared115

with MLP and CNN, the transformer suffers from a much smaller performance drop, indicating a116

slighter shortcut problem. This encourages us to analyze as follows.117

We denote the features in a normal image as x+ ∈ RK×C , where K is the feature number, C is118

the channel dimension. The batch dimension is omitted for simplicity. Similarly, the features in an119

anomalous image are denoted as x− ∈ RK×C . The reconstruction loss is chosen as the MSE loss.120

We provide a rough analysis using a simple 1-layer network as the reconstruction net, which is trained121

with x+ and tested to detect anomalous regions in x−.122

Fully-connected layer in MLP. Denote the weights and bias in this layer as w ∈ RC×C , b ∈ RC ,123

respectively, this layer can be represented as,124

y = x+w + b ∈ RK×C . (1)

With the MSE loss pushing y to x+, the model may take shortcut to regress w → I (identity matrix),125

b → 0. Ultimately, this model could also reconstruct x− well, failing in anomaly detection.126
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Figure 2: Comparison among MLP, CNN, transformer, and our UniAD on MVTec-AD [4]. (a)
Training loss (blue) as well as the testing AUROC on anomaly detection (green) and localization (red).
During the training of MLP, CNN, and transformer, the reconstruction error keeps going smaller on
normal samples, but the performance on anomalies suffers from a severe drop after reaching the peak.
This is caused by the model learning an “identical shortcut”, which tends to directly copy the input as
the output regardless of whether it is normal or anomalous. (b) Visual explanation of the shortcut
issue, where the anomalous samples can be well recovered and hence become hard to detect from
normal ones. In contrast, UniAD overcomes such a problem and manages to reconstruct anomalies as
normal samples. It is noteworthy that all models are learned for feature reconstruction and a separate
decoder is employed to render images from features. This decoder is only used for visualization.

Convolutional layer in CNN. A convolutional layer with 1×1 kernel is equivalent to a fully-127

connected layer. Besides, An n× n (n > 1) kernel has more parameters and larger capacity, and can128

complete whatever 1×1 kernel can. Thus, this layer also has the chance to learn a shortcut.129

Transformer with query embedding. In such a model, there is an attention layer with a learnable130

query embedding, q ∈ RK×C . When using this layer as the reconstruction model, it is denoted as,131

y = softmax(q(x+)T /
√
C)x+ ∈ RK×C . (2)

To push y to x+, the attention map, softmax(q(x+)T /
√
C), should approximate I (identity matrix),132

so q must be highly related to x+. Considering that q in the trained model is relevant to normal133

samples, the model could not reconstruct x− well. The ablation study in Sec. 4.5 shows that without134

the query embedding, the performance of transformer drops dramatically by 13.4% and 18.1% in135

pixel ROAUC and image ROAUC, respectively. Thus the query embedding is of vital significance to136

model the normal distribution.137

However, transformer still suffers from the shortcut problem, which inspires our three improvements.138

1) According to that the query embedding can prevent reconstructing anomalies, we design a Layer-139

wise Query Decoder (LQD) by adding the query embedding in each decoder layer rather than only140

the first layer in vanilla transformer. 2) We suspect that the full attention increases the possibility141

of the shortcut. Since one token could see itself and its neighbor regions, it is easy to reconstruct142

by simply copying. Thus we mask the neighbor tokens when calculating the attention map, called143

Neighbor Masked Attention (NMA). 3) We employ a Feature Jittering (FJ) strategy to disturb the144

input features, leading the model to learn normal distribution from denoising. Benefiting from these145

designs, our UniAD achieves satisfying performance, as illustrated in Fig. 2.146

3.2 Improving feature reconstruction for unified anomaly detection147

Overview. As shown in Fig. 3, our UniAD is composed of a Neighbor Masked Encoder (NME)148

and a Layer-wise Query Decoder (LQD). Firstly, the feature tokens extracted by a fixed pre-trained149

backbone are further integrated by NME to derive the encoder embeddings. Then, in each layer150

of LQD, a learnable query embedding is successively fused with the encoder embeddings and the151

outputs of the previous layer (self-fusion for the first layer). The feature fusion is completed by152

the Neighbor Masked Attention (NMA). The final outputs of LQD are viewed as the reconstructed153

features. Also, we propose a Feature Jittering (FJ) strategy to add perturbations to the input features,154

leading the model to learn normal distribution from the denoising task. Finally, the results of anomaly155

localization and detection are obtained through the reconstruction differences.156
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Figure 3: Framework of UniAD, consisting of a Neighbor Masked Encoder (NME) and a Layer-wise
Query Decoder (LQD). Each layer in LQD employs a learnable query embedding to help model the
complex training data distribution. The full attention in transformer is replaced by neighbor masked
attention to avoid the information leak from the input to the output. The feature jittering strategy
encourages the model to recover the correct message with noisy inputs. All the three improvements
assist the model against learning the “identical shortcut” (see Sec. 3.1 and Fig. 2 for details).

Neighbor masked attention. We suspect
that the full attention in vanilla trans-
former [41] contributes to the “identical
shortcut”. In full attention, one token is
permitted to see itself, so it will be easy to
reconstruct by simply copying. Moreover,
considering that the feature tokens are
extracted by a CNN backbone, the neigh-
bor tokens must share lots of similarities.
Therefore, we propose to mask the neighbor
tokens when calculating the attention map,
called Neighbor Masked Attention (NMA).
Note that the neighbor region is defined in
the 2D space, as shown in Fig. 4.
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Figure 4: Illustration of neighbor masked attention,
where pixels relate to neither themselves nor neighbors.

Neighbor masked encoder. The encoder follows the standard architecture in vanilla transformer.171

Each layer consists of an attention module and a Feed-Forward Network (FFN). However, the full172

attention is replaced by our proposed NMA to prevent the information leak.173

Layer-wise query decoder. It is analyzed in Sec. 3.1 that the query embedding could help prevent174

reconstructing anomalies well. However, there is only one query embedding in the vanilla transformer.175

Therefore, we design a Layer-wise Query Decoder (LQD) to intensify the use of query embedding,176

as shown in Fig. 3. Specifically, in each layer of LQD, a learnable query embedding is first fused177

with the encoder embeddings, then integrated with the outputs of the previous layer (self-integration178

for the first layer). The feature fusion is implemented by NMA. Following the vanilla transformer, a179

2-layer FFN is applied to handle these fused tokens, and the residual connection is utilized to facilitate180

the training. The final outputs of LQD serve as the reconstructed features.181

Feature jittering. Inspired by Denoising Auto-Encoder (DAE) [3, 42], we add perturbations to feature182

tokens, guiding the model to learn knowledge of normal samples by the denoising task. Specifically,183

for a feature token, ftok ∈ RC , we sample the disturbance D from a Gaussian distribution,184

D ∼ N(µ = 0, σ2 = (α
||ftok||2

C
)2), (3)

where α is the jittering scale to control the noisy degree. Also, the sampled disturbance is added to185

ftok with a fixed jittering probability, p.186
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3.3 Implementation details187

Feature extraction. We adopt a fixed EfficientNet-b4 [39] pre-trained on ImageNet [13] as the188

feature extractor. The features from stage-1 to stage-4 are selected. Here the stage means the189

combination of blocks that have the same size of feature maps. Then these features are resized to the190

same size, and concatenated along channel dimension to form a feature map, forg ∈ RCorg×H×W .191

Feature reconstruction. The feature map, forg , is first tokenized to H ×W feature tokens, followed192

by a linear projection to reduce Corg to a smaller channel, C. Then these tokens are processed by193

NME and LQD. The learnable position embeddings [14, 15] are added in attention modules to inform194

the spatial information. Afterward, another linear projection is used to recover the channel from C to195

Corg. After reshape, the reconstructed feature map, frec ∈ RCorg×H×W , is finally obtained.196

Objective function. Our model is trained with the MSE loss as,197

L =
1

H ×W
||forg − frec||22. (4)

Inference for anomaly localization. The result of anomaly localization is an anomaly score map,198

which assigns an anomaly score for each pixel. Specifically, the anomaly score map, s, is calculated199

as the L2 norm of the reconstruction differences as,200

s = ||forg − frec||2 ∈ RH×W . (5)

Then s is up-sampled to the image size with bi-linear interpolation to obtain the localization results.201

Inference for anomaly detection. Anomaly detection aims to detect whether an image contains202

anomalous regions. We transform the anomaly score map, s, to the anomaly score of the image by203

taking the maximum value of the averagely pooled s.204

4 Experiment205

4.1 Datasets and metrics206

MVTec-AD [4] is a comprehensive, multi-object, multi-defect industrial anomaly detection dataset207

with 15 classes. For each anomalous sample in the test set, the ground-truth includes both image208

label and anomaly segmentation. In the existing literature, only the separate case is researched. In209

this paper, we introduce the unified case, where only one model is used to handle all categories.210

CIFAR-10 [22] is a classical image classification dataset with 10 categories. Existing methods [6, 23,211

36] evaluate CIFAR-10 mainly in the one-versus-many setting, where one class is viewed as normal212

samples, and others serve as anomalies. Semantic AD [1, 9] proposes a many-versus-one setting,213

treating one class as anomalous and the remaining classes as normal. Different from both, we propose214

a unified case (many-versus-many setting), which is detailed in Sec. 4.4.215

Metrics. Following prior works [4, 6, 50], the Area Under the Receiver Operating Curve (AUROC)216

is used as the evaluation metric for anomaly detection.217

4.2 Anomaly detection on MVTec-AD218

Setup. Anomaly detection aims to detect whether an image contains anomalous regions. The219

performance is evaluated on MVTec-AD [4]. The image size is selected as 224×224, and the size for220

resizing feature maps is set as 14× 14. The feature maps from stage-1 to stage-4 of EfficientNet-b4221

[39] are resized and concatenated together to form a 272-channel feature map. The reduced channel222

dimension is set as 256. AdamW optimizer [20] with weight decay 1× 10−4 is used. Our model is223

trained for 1000 epochs on 8 GPUs (NVIDIA Tesla V100 16GB) with batch size 64. The learning224

rate is 1× 10−4 initially, and dropped by 0.1 after 800 epochs. The neighbor size, jittering scale, and225

jittering probability are set as 7×7, 20, and 1, respectively. The evaluation is run with 5 random seeds.226

In both the separate case and the unified case, the reconstruction models are trained from the scratch.227

Baselines. Our approach is compared with baselines including: US [6], PSVDD [47], PaDiM [10],228

CutPaste [24], MKD [36], and DRAEM [50]. Under the separate case, the baselines’ metric is229

reported in their papers except the metric of US borrowed from [50]. Under the unified case, US,230

PSVDD, PaDiM, CutPaste, MKD, and DRAEM are run with the publicly available implementations.231
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Table 1: Anomaly detection results with AUROC metric on MVTec-AD [4]. All methods are
evaluated under the unified / separate case. In the unified case, the learned model is applied to detect
anomalies for all categories without fine-tuning.

Category US [6] PSVDD [47] PaDiM [10] CutPaste [24] MKD [36] DRAEM [50] Ours

O
bject

Bottle 84.0 / 99.0 85.5 / 98.6 97.9 / 99.9 67.9 / 98.2 98.7 / 99.4 97.5 / 99.2 99.7 ± 0.04 / 100
Cable 60.0 / 86.2 64.4 / 90.3 70.9 / 92.7 69.2 / 81.2 78.2 / 89.2 57.8 / 91.8 95.2 ± 0.84 / 97.6

Capsule 57.6 / 86.1 61.3 / 76.7 73.4 / 91.3 63.0 / 98.2 68.3 / 80.5 65.3 / 98.5 86.9 ± 0.73 / 85.3
Hazelnut 95.8 / 93.1 83.9 / 92.0 85.5 / 92.0 80.9 / 98.3 97.1 / 98.4 93.7 / 100 99.8 ± 0.10 / 99.9
Metal Nut 62.7 / 82.0 80.9 / 94.0 88.0 / 98.7 60.0 / 99.9 64.9 / 73.6 72.8 / 98.7 99.2 ± 0.09 / 99.0

Pill 56.1 / 87.9 89.4 / 86.1 68.8 / 93.3 71.4 / 94.9 79.7 / 82.7 82.2 / 98.9 93.7 ± 0.65 / 88.3
Screw 66.9 / 54.9 80.9 / 81.3 56.9 / 85.8 85.2 / 88.7 75.6 / 83.3 92.0 / 93.9 87.5 ± 0.57 / 91.9

Toothbrush 57.8 / 95.3 99.4 / 100 95.3 / 96.1 63.9 / 99.4 75.3 / 92.2 90.6 / 100 94.2 ± 0.20 / 95.0
Transistor 61.0 / 81.8 77.5 / 91.5 86.6 / 97.4 57.9 / 96.1 73.4 / 85.6 74.8 / 93.1 99.8 ± 0.09 / 100

Zipper 78.6 / 91.9 77.8 / 97.9 79.7 / 90.3 93.5 / 99.9 87.4 / 93.2 98.8 / 100 95.8 ± 0.51 / 96.7

Texture

Carpet 86.6 / 91.6 63.3 / 92.9 93.8 / 99.8 93.6 / 93.9 69.8 / 79.3 98.0 / 97.0 99.8 ± 0.02 / 99.9
Grid 69.2 / 81.0 66.0 / 94.6 73.9 / 96.7 93.2 / 100 83.8 / 78.0 99.3 / 99.9 98.2 ± 0.26 / 98.5

Leather 97.2 / 88.2 60.8 / 90.9 99.9 / 100 93.4 / 100 93.6 / 95.1 98.7 / 100 100 ± 0.00 / 100
Tile 93.7 / 99.1 88.3 / 97.8 93.3 / 98.1 88.6 / 94.6 89.5 / 91.6 99.8 / 99.6 99.3 ± 0.14 / 99.0

Wood 90.6 / 97.7 72.1 / 96.5 98.4 / 99.2 80.4 / 99.1 93.4 / 94.3 99.8 / 99.1 98.6 ± 0.08 / 97.9

Mean 74.5 / 87.7 76.8 / 92.1 84.2 / 95.5 77.5 / 96.1 81.9 / 87.8 88.1 / 98.0 96.5 ± 0.08 / 96.6

Table 2: Anomaly localization results with AUROC metric on MVTec-AD [4]. All methods are
evaluated under the unified / separate case. In the unified case, the learned model is applied to detect
anomalies for all categories without fine-tuning.

Category US [6] PSVDD [47] PaDiM [10] FCDD [26] MKD [36] DRAEM [50] Ours

O
bject

Bottle 67.9 / 97.8 86.7 / 98.1 96.1 / 98.2 56.0 / 97 91.8 / 96.3 87.6 / 99.1 98.1 ± 0.04 / 98.1
Cable 78.3 / 91.9 62.2 / 96.8 81.0 / 96.7 64.1 / 90 89.3 / 82.4 71.3 / 94.7 97.3 ± 0.10 / 96.8

Capsule 85.5 / 96.8 83.1 / 95.8 96.9 / 98.6 67.6 / 93 88.3 / 95.9 50.5 / 94.3 98.5 ± 0.01 / 97.9
Hazelnut 93.7 / 98.2 97.4 / 97.5 96.3 / 98.1 79.3 / 95 91.2 / 94.6 96.9 / 99.7 98.1 ± 0.10 / 98.8
Metal Nut 76.6 / 97.2 96.0 / 98.0 84.8 / 97.3 57.5 / 94 64.2 / 86.4 62.2 / 99.5 94.8 ± 0.09 / 95.7

Pill 80.3 / 96.5 96.5 / 95.1 87.7 / 95.7 65.9 / 81 69.7 / 89.6 94.4 / 97.6 95.0 ± 0.16 / 95.1
Screw 90.8 / 97.4 74.3 / 95.7 94.1 / 98.4 67.2 / 86 92.1 / 96.0 95.5 / 97.6 98.3 ± 0.08 / 97.4

Toothbrush 86.9 / 97.9 98.0 / 98.1 95.6 / 98.8 60.8 / 94 88.9 / 96.1 97.7 / 98.1 98.4 ± 0.03 / 97.8
Transistor 68.3 / 73.7 78.5 / 97.0 92.3 / 97.6 54.2 / 88 71.7 / 76.5 64.5 / 90.9 97.9 ± 0.19 / 98.7

Zipper 84.2 / 95.6 95.1 / 95.1 94.8 / 98.4 63.0 / 92 86.1 / 93.9 98.3 / 98.8 96.8 ± 0.24 / 96.0

Texture

Carpet 88.7 / 93.5 78.6 / 92.6 97.6 / 99.0 68.6 / 96 95.5 / 95.6 98.6 / 95.5 98.5 ± 0.01 / 98.0
Grid 64.5 / 89.9 70.8 / 96.2 71.0 / 97.1 65.8 / 91 82.3 / 91.8 98.7 / 99.7 96.5 ± 0.04 / 94.6

Leather 95.4 / 97.8 93.5 / 97.4 84.8 / 99.0 66.3 / 98 96.7 / 98.1 97.3 / 98.6 98.8 ± 0.03 / 98.3
Tile 82.7 / 92.5 92.1 / 91.4 80.5 / 94.1 59.3 / 91 85.3 / 82.8 98.0 / 99.2 91.8 ± 0.10 / 91.8

Wood 83.3 / 92.1 80.7 / 90.8 89.1 / 94.1 53.3 / 88 80.5 / 84.8 96.0 / 96.4 93.2 ± 0.08 / 93.4

Mean 81.8 / 93.9 85.6 / 95.7 89.5 / 97.4 63.3 / 92 84.9 / 90.7 87.2 / 97.3 96.8 ± 0.02 / 96.6

Quantitative results of anomaly detection on MVTec-AD [4] are shown in Tab. 1. Though232

all baselines achieve excellent performances under the separate case, their performances drop233

dramatically under the unified case. The previous SOTA, DRAEM, a reconstruction-based method234

trained by pseudo-anomaly, suffers from a drop of near 10%. For another strong baseline, CutPaste,235

a pseudo-anomaly approach, the drop is as large as 18.6%. However, our UniAD has almost no236

performance drop from the separate case (96.6%) to the unified case (96.5%). Moreover, we beat the237

best competitor, DRAEM, by a dramatically large margin (8.4%), demonstrating our superiority.238

4.3 Anomaly localization on MVTec-AD239

Setup and baselines. Anomaly localization aims to localize anomalous regions in an anomalous240

image. MVTec-AD [4] is chosen as the benchmark dataset. The setup is the same as that in Sec. 4.2.241

Besides the competitors in Sec. 4.2, FCDD [26] is included, whose metric under the separate case is242

reported in its paper. Under the unified case, we run FCDD with the implementation: FCDD.243

Quantitative results of anomaly localization on MVTec-AD [4] are reported in Tab. 2. Similar244

to Sec. 4.2, switching from the separate case to the unified case, the performance of all competitors245
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Normal Anomaly Recon GT Pred Normal Anomaly Recon GT Pred

(a) (b)

(c) (d)

Figure 5: Qualitative results for anomaly localization on MVTec-AD [4]. From left to right: normal
sample as the reference, anomaly, our reconstruction, ground-truth, and our predicted anomaly map.
The approach to visualizing reconstruction is the same as the one used in Fig. 2.
Table 3: Anomaly detection results with AUROC metric on CIFAR-10 [22] under the unified case.
Here, {01234} means samples from class 0, 1, 2, 3, 4 are borrowed as the normal ones.

Normal Indices US [6] FCDD [26] FCDD+OE [26] PANDA [32] MKD [36] Ours

{01234} 51.3 55.0 71.8 66.6 64.2 80.1 ± 0.08
{56789} 51.3 50.3 73.7 73.2 69.3 73.8 ± 0.08
{02468} 63.9 59.2 85.3 77.1 76.4 88.8 ± 0.20
{13579} 56.8 58.5 85.0 72.9 78.7 85.6 ± 0.10

Mean 55.9 55.8 78.9 72.4 72.1 82.1 ± 0.08

drops significantly. For example, the performance of US, an important distillation-based baseline,246

decreases by 12.1%. FCDD, a pseudo-anomaly approach, suffers from a dramatic drop of 28.7%,247

reflecting the pseudo-anomaly is not suitable for the unified case. However, our UniAD even gains a248

slight improvement from the separate case (96.6%) to the unified case (96.8%), proving the suitability249

of our UniAD for the unified case. Moreover, we significantly surpass the strongest baseline, PaDiM,250

by 7.3%. This significant improvement reflects the effectiveness of our model.251

Qualitative results for anomaly localization on MVTec-AD [4] are illustrated in Fig. 5. For both252

global (Fig. 5a) and local (Fig. 5b) structural anomalies, both scattered texture perturbations (Fig. 5c)253

and multiple texture scratches (Fig. 5d), our method could successfully reconstruct anomalies to their254

corresponding normal samples, then accurately localize anomalous regions through reconstruction255

differences. More qualitative results are given in Supplementary Material.256

4.4 Anomaly detection on CIFAR-10257

Setup. To further verify the effectiveness of our UniAD, we extend CIFAR-10 [22] to the unified258

case, which consists of four combinations. For each combination, five categories together serve259

as normal samples, while other categories are viewed as anomalies. The class indices of the four260

combinations are {01234}, {56789}, {02468}, {13579}. Here, {01234} means the normal samples261

include images from class 0, 1, 2, 3, 4, and similar for others. Note that the class index is obtained by262

sorting the class names of 10 classes. The setup of the model is detailed in Supplementary Material.263

Baselines. US [6], FCDD [26], FCDD+OE [26], PANDA [32], and MKD [36] serve as competitors.264

US, FCDD, FCDD+OE, PANDA, and MKD are run with the publicly available implementations.265

Quantitative results of anomaly detection on CIFAR-10 [22] are shown in Tab. 3. When five266

classes together serve as normal samples, two recent baselines, US and FCDD, almost lose their267

ability to detect anomalies. When utilizing 10000 images sampled from CIFAR-100 [22] as auxiliary268

Outlier Exposure (OE), FCDD+OE improves the performance by a large margin. We still stably269

outperform FCDD+OE by 3.2% without the help of OE, indicating the efficacy of our UniAD.270

4.5 Ablation studies271

To verify the effectiveness of the proposed modules and the selection of hyperparameters, we272

implement extensive ablation studies on MVTec-AD [4] under the unified case.273

Layer-wise query. Tab. 4a verifies our assertion that the query embedding is of vital significance.274

1) Without query embedding, meaning the encoder embeddings are directly input to the decoder,275

the performance is the worst. 2) Adding only one query embedding to the first decoder layer (i.e.,276

vanilla transformer [41]) promotes the performance dramatically by 13.4% and 18.1% in anomaly277
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Table 4: Ablation studies with AUROC metric on MVTec-AD [4]. Default settings are in blue.
(a) Layer-wise query, NMA, & FJ

w/o q. 1 q. Layer-wise q. NMA FJ Loc. Det.

✓ - - - - 79.4 69.5
- ✓ - - - 92.8 87.6
- - ✓ - - 96.5 95.0
- ✓ - ✓ - 96.3 96.1
- ✓ - - ✓ 95.8 95.0
- - ✓ ✓ ✓ 96.8 96.5

(b) Layer Number of Encoder & Decoder

Vanilla [41] Ours
#Enc, #Dec Loc. Det. Loc. Det.

4, 0 79.2 69.8 96.0 94.9
0, 4 88.3 80.5 96.3 96.1
2, 2 90.6 84.7 96.0 95.1
4, 4 92.8 87.6 96.8 96.5
6, 6 91.9 86.1 96.7 96.5

(c) Neighbor Size in NMA

Size Loc. Det.

1×1 96.3 94.6
5×5 96.8 96.4
7×7 96.8 96.5
9×9 96.7 96.3

(d) Where to Add NMA
Place Loc. Det.

Enc 96.3 95.8
Enc+Dec1 96.8 96.4
Enc+Dec2 96.7 96.5

All 96.8 96.5

(e) Jitter Scale α in FJ
α Loc. Det.

5 96.7 96.1
10 96.7 96.4
20 96.8 96.5
30 96.6 95.7

(f) Jitter Prob. p in FJ
p Loc. Det.

0.25 96.5 95.6
0.50 96.7 95.8
0.75 96.7 96.3

1 96.8 96.5

localization and detection, respectively. 3) With layer-wise query embedding in each decoder layer,278

pixel-level and image-level AUROC is further improved by 3.7% and 7.4%, respectively.279

Layer number. We conduct experiments to investigate the influence of layer number, as shown280

in Tab. 4b. 1) No matter with which combination, our model outperforms vanilla transformer by a281

large margin, reflecting the effectiveness of our design. 2) The best performance is achieved with a282

moderate layer number: 4Enc+4Dec. A larger layer number like 6Enc+6Dec does not bring further283

promotion, which may be because more layers are harder to train.284

Neighbor masked attention. 1) The effectiveness of NMA is proven in Tab. 4a. Under the case285

of one query embedding, adding NMA brings promotion by 3.5% for localization and 8.5% for286

detection. 2) The neighbor size of NMA is selected in Tab. 4c. 1×1 neighbor size is the worst,287

because 1×1 is too small to prevent the information leak, thus the recovery could be completed by288

copying neighbor regions. A larger neighbor size (≥ 5×5) is obviously much better, and the best289

one is selected as 7×7. 3) We also study the place to add NMA in Tab. 4d. Only adding NMA in the290

encoder (Enc) is not enough. The performance could be stably improved when further adding NMA291

in the first or second attention in the decoder (Enc+Dec1, Enc+Dec2) or both (All). This reflects that292

the full attention of the decoder also contributes to the information leak.293

Feature jittering. 1) Tab. 4a confirms the efficacy of FJ. With one query embedding as the baseline,294

introducing FJ could bring an increase of 3.0% for localization and 7.4% for detection, respectively.295

2) According to Tab. 4e, the jittering scale, α, is chosen as 20. A larger α (i.e., 30) disturbs the feature296

too much, degrading the results. 3) In Tab. 4f, the jittering probability, p, is studied. In essence, the297

task would be a denoising task with feature jittering, and be a reconstruction task without feature298

jittering. The results show that the full denoising task (i.e., p = 1) is the best.299

5 Conclusion300

In this work, we propose UniAD that unifies anomaly detection regarding multiple classes. For such a301

challenging task, we assist the model against learning an “identical shortcut” with three improvements.302

First, we confirm the effectiveness of the learnable query embedding and carefully tailor a layer-wise303

query decoder to help model the complex distribution of multi-class data. Second, we come up with a304

neighbor masked attention module to avoid the information leak from the input to the output. Third,305

we propose feature jittering that helps the model less sensitive to the input perturbations. Under the306

unified task setting, our method achieves state-of-the-art performance on MVTec-AD and CIFAR-10307

datasets, significantly outperforming existing alternatives.308

Discussion. In this work, different kinds of objects are handled without being distinguished. We have309

not used the category labels that may help the model better fit multi-class data. How to incorporate310

the unified model with category labels should be further studied. In practical uses, normal samples are311

not as consistent as those in MVTec-AD, often manifest themselves in some diversity. Our UniAD312

could handle all 15 categories in MVTec-AD, hence would be more suitable for real scenes. However,313

anomaly detection may be used for video surveillance, which may infringe personal privacy.314
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