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Abstract

Discovery of causal relationships from observational data, especially from mixed data that consist
of both continuous and discrete variables, is a fundamental yet challenging problem. Traditional
methods focus on polishing the data type processing policy, which may lose data information.
Compared with such methods, the constraint-based and score-based methods for mixed data derive
certain conditional independence tests or score functions from the data’s characteristics. However,
they may return the Markov equivalence class due to the lack of identifiability guarantees, which
may limit their applicability or hinder their interpretability of causal graphs. Thus, in this paper,
based on the structural causal models of continuous and discrete variables, we provide sufficient
identifiability conditions in bivariate as well as multivariate cases. We show that if the data follow
our proposed restricted Linear Mixed causal model (LiM), such a model is identifiable. In addition,
we proposed a two-step hybrid method to discover the causal structure for mixed data. Experiments
on both synthetic and real-world data empirically demonstrate the identifiability and efficacy of our
proposed LiM model.

Keywords: causal discovery, structural causal models, mixed data, identifiability

1. Introduction

Identifying the causal structure from purely observational data, termed as causal discovery, has
been rapidly developed for the past decades with growing interest and has been widely applied
in many domains (Pearl, 2000; Spirtes et al., 1993; Shimizu, 2014; Zhang and Hyvérinen, 2016).
The traditional approaches to causal discovery roughly fall into two categories, namely constraint-
based methods, e.g., PC (Spirtes and Glymour, 1991) and Fast Causal Inference (FCI) (Spirtes
et al., 1995), and score-based ones, e.g., Greedy Equivalence Search (GES) (Chickering, 2002).
Since they may output Markov equivalence class, i.e., a set of causal structures entailing the same
conditional independence, they do not offer complete causal information. To distinguish different
causal structures in the Markov equivalence class, several scholars derive additional assumptions
on the data distribution and propose causal methods based on Structural Causal Models (SCM).
These methods including Linear Non-Gaussian Acyclic Models (LINGAM) (Shimizu et al., 2006),
Additive Nonlinear Models (ANM) (Hoyer et al., 2009), and Post Nonlinear (PNL) (Zhang and
Hyvirinen, 2009), achieve the unique identifiability of the causal structure. Most existing causal
discovery methods focus on cases when the involved variables are either continuous or discrete
only.

However, in many real-world scenarios such as economics (Wei et al., 2018), bioinformat-
ics (Sedgewick et al., 2019), etc., the collected data often are a mixture of both continuous and
discrete variables. When encountering such mixed data, one may ignore the discrete variables and
apply the methods for continuous variables to estimate the partial causal network; or utilize a dis-
cretization policy to discretize the continuous variables, so that they can use those methods for
discrete causal networks (Monti and Cooper, 1998; Chen et al., 2017). Both methods attempt to
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convert mixed data types into the same type, which are naive and are easy to lose data information,
inducing non-negligible estimation errors. Apart from these methods, by and large, causal discov-
ery algorithms for mixed data can be categorized into two classes: constraint-based and score-based
ones. Constraint-based algorithms are those variants of PC (Pearl, 2000; Spirtes and Glymour,
1991), including Cui et al. (2016); Sedgewick et al. (2019); Tsagris et al. (2018), which can not
guarantee identifiability and are sensitive to samples.

Unlike the PC variants, score-based algorithms for mixed data do not use (un)conditional in-
dependence tests, but instead, optimize a likelihood score derived from mixed data’s characteris-
tics with the commonly-used greedy equivalence search framework. Such efforts include Li and
Shimizu (2018); Huang et al. (2018); Andrews et al. (2019); Wei et al. (2018), etc. In particular,
the first three efforts employ different score functions, i.e., with LINGAM and the logistic regres-
sion model, regression model in RKHS, and degenerate distributions, respectively, whereas they do
not provide the model’s identifiability results and may return Markov equivalence class. Wei et al.
(2018) developed a mixed causal model and proved its identifiability in the bivariate cases. How-
ever, the bivariate identifiability is not qualified enough to handle multivariate cases whereas the
multivariate data ordinarily exist in many applications.

Thus, in this paper, we propose a structural causal model that consists of both continuous and
discrete variables following Li and Shimizu (2018), and give its sufficient identifiability conditions
in bivariate as well as multivariate cases. Compared with the mixed model developed by Wei et al.
(2018), we allow more non-Gaussian distributions to be followed by the noises of continuous vari-
ables in the proof of the identifiability. Further, we derive a two-step hybrid method to uniquely
estimate the causal structure without discretization. In the first phase, we develop a log-likelihood
score function to characterize the joint distribution for mixed data. It is optimized accompanied
with the acyclicity and sparsity constraints in a continuous optimization manner. The output causal
structure here may fall into the solutions up to the ground truth’s skeleton. To mitigate this issue,
in the second phase, we search structures over the skeleton spaces and find the graph with the best
score. Experiments on synthetic and real-world data demonstrate our proposed method’s efficacy,
compared with other methods.

Our contributions mainly are detailed in two-fold:

(1) For the mixed causal models that contain both continuous and discrete data, we prove the
identifiability conditions in bivariate as well as multivariate cases. with which we enrich the
identifiability space for causal discovery with mixed data.

(i) We propose a score-based optimization method to infer the causal structure between mixed
data. It is robust to the sample sizes and the ratio by the number of discrete variables to that
of continuous variables.

2. Model Definition

We consider linear mixed causal models. Speaking concretely, suppose we are given p observed
random variables, including discrete and continuous ones, i.e., X = {z1, ..., xp}. Since a categori-
cal variable with T class can be regarded as (1" — 1) binary variables, we assume that each discrete
variable is binary (Wei et al., 2018). And further, we make the following assumptions, which is the
same as in the SCM’s definition of Li and Shimizu (2018):

Al. Observed variables z; (¢ = 1, ..., p) form a Directed Acyclic Graph (DAG).
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A2. The value assigned to each continuous variable z; is a linear function of its parent variables

denoted by x,,(;) plus a non-Gaussian error term e;, that is,
T =e€ + ¢+ Z bijz;, e;~ Non— Gaussian(-), €))
Jj€pa(i)

where the error terms e; are continuous random variables with non-Gaussian densities, and
the error variables e; are independent of each other. The coefficients b;; and intercepts c; are
constants.

A3. For each discrete variable z;, its value equals to 1 if the linear function of its parent variables
Tpa(i) Plus a Logistic error term e; is larger than 0, otherwise, its value equals to 0. That is,
1, eit+ci+ ) icpae) bijzj >0 L.
T; = L ) Z]Epa(’) I , € ~ Logistic(0,1), )
0, otherwise

where the error terms e; are identical to those in Eq.(1), but follow the Logistic distribution.

Definition 1 (Linear Mixed causal model, LiM) If a causal model for mixed data satisfies the as-
sumptions Al-A3, then this SCM is called a Linear Mixed causal model, abbreviated as LiM.

1, bx+e+c>0

0, otherwise

Let F = {fo, falfe(z,e) = bz + e + ¢, fa(z,e) = } be a set of two

functions which work on continuous and discrete variables, respectively. P = {P,, P;} denotes the
set of probabilistic distributions for continuous and discrete variables. Using these notations, our
model can be rewritten as:

T = fi(Tpa,,€i), e~ Ple;), (3)
where f; € F,and P(e;) € P.

3. Identifiability Conditions of the LiM

Here we provide a sufficient identifiability condition for the LiM model, using similar ideas of Wei
et al. (2018) and Peters et al. (2014).

3.1. Bivariate cases

The LiM model of Section 2 is equivalent to the model of Wei et al. (2018) if the intercepts c; are
taken to be zeros and the error terms e; follow the Laplace distributions L(0, c;). Laplace distribu-
tions are commonly used in non-Gaussian models including independent component analysis and
are known to be robust against the misspecification of the distributions if the right distribution is
super-Gaussian (Hyvérinen et al., 2001). Wei et al. (2018) provided a sufficient identifiability con-
dition for two-variable cases of their model, i.e., the two variables do not have the same marginal
distributions if they are binary, all the probabilities and densities are positive, and the error variables
are of non-zero variance. We can show the identifiability of our model in a similar manner to Wei
et al. (2018). The difference lies in the fact that we allow more non-Gaussian distributions to be
followed by the continuous error terms, rather than only the Laplace distributions.
Now we characterize the condition about the non-Gaussian distributions.



Condition 1 The limit of non-Gaussian density ratio ), defined as A := limg,_ 4 %, satis-

fies:
A=C, “)

where C' is a non-zero finite constant. In other words, it follows that X\ is neither equal to zero nor

infinity (A # 0, 00).
Corollary 1 If ) satisfies the Condition 1, then one of the following statements must hold.

. . . . P.(x
S1. The density ratio equals to a non-zero finite constant C, i.e., ﬁ =C.

S2. The density ratio equals to the product of a function of x and a non-zero finite constant Cy,
while the limit of such a function as x goes to infinity is another non-zero finite constant C'y.

That is, Pf(c;fb) = Cpy - g(x) and limy_, 1 g(x) = C1, where C = Cy x C1, resulting in

A =Ty o gy = Co - limy a0 g(a) = C.

Proof We employ the contradiction method, i.e., if statements S1 and S2 both violated, we prove

that either A = 0 or A = oo holds. If statements S1 and S2 both violated, we derive the following

four cases: i) 7, (‘;C(f)b) = 0; ii) Pc(cagf)b) = oo; iii) Picﬁ)b) = g(z) - Cy and lim,_, 1 o, g(x) = 05 iv)

Pi“éf)b) = g(x)-Cyand lim,_, 1 o, g(z) = co. For the case i), we have A = lim; 1 % = 0.
For the case ii), we have A = lim,_, 4 oo Pc(cﬁ)b) = o0o. For the case iii), we get A = lim,_,4 o Picz(f)b)
lim, 1o g(x) - Cy = 0. For the case iv), we have A = lim, 1 PZCT% =lim, 400 g(x) - Co =
o0. To be concluded, the corollary is proved. |

Besides, it’s noteworthy that basic non-Gaussian distributions satisfy the Condition 1, as illus-
trated in the Corollary 1. For instance, the Laplace distribution, Uniform distribution and Expo-
nential distribution follow the statement S1; while the Gamma distribution follows the statement S2
with lim,_, 1+~ g(z) = 1. With Condition 1 in the LiM model, we obtain our identifiability result
in the bivariate case.

Theorem 2 Let the data X = {x;,x;} be generated by the LiM model in Egs.(1)-(2) with Condi-
tion 1. Under the conditions that x; and x; do not share the same marginal distributions if they are
both discrete, and all the probabilities are positive, the model is identifiable.

Proof We prove the identifiability for the bivariate case from three aspects: i) both variables are
continuous; ii) both variables are discrete; 1ii) one is continuous and the other is discrete.

1), if the two variables are continuous, the model of Section 2 is a LINGAM model (Shimizu
et al., 2006). Therefore, the model is identifiable.

ii), suppose that two variables {z;, z;} are binary. Assume that all the probabilities are positive
and their marginal distributions are different. Then, we compare the following two models. The

condition probability P(z; | z;) of the first model z; — x; is written as:
Plri=1lm) = — g ©
Ty = .’IJ]) - 1+ e_(ci"!‘bijIj) )
P(.CCZ‘ZO‘:L’]‘) = 1—P(:ci:1\:rj). (6)
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The condition probability P(x; | x;) of the second model x; — x; is written as:

1
P(JU]‘ =1 ’ xz) = —1 n e—(Ci+bjiﬂ?i)7 (7)

Then, as in the proof of Theorem 6 of Wei et al. (2018), assume that the two models give the same
joint distribution of observed variables x; and z;. Denote P(x; = 1) by k; and P(z; = 1) by k;.
Then,

I D N
1 4+ e—(citbijz;) 1 4 e—(citbijz;)

. 1 1
— %1 _ ) Ti(1 — -
=k (1= k) J(l + e*(Cjerjixi)) (1 1 + e—(ejtbjizi)

k(1 — k)t ( )i 9)

) (10)

This induces k; = k; for cases with z; = 0 and z; = 0, which contradicts with the assumption that
the marginal distributions of x; and z; are different.
ii1), suppose that one is continuous and the other is binary. Without loss of generality, assume
that x; is continuous and x; is binary. Then, we compare the following two models. The first model
x; — x; s written as:
;= {1’ SR '+ bjizi > 0 ., e; ~ Logistic(0,1), (11)
0, otherwise

where z; = e; ~ Non — Gaussian(-). The second model x; — x; is written as:
x; = ej + ¢ + bjjxj,e; ~ Non — Gaussian(-), (12)
where 2; = e; ~ Logistic(0,1). Then, as in the proof of Theorem 7 of Wei et al. (2018), assume

that the two models give the same distribution of observed variables.
For the first model, the conditional probability of z; = 1 given x; is given by

1
P(l‘j =1 | .CL’Z) = —1 n o—(citbyizn) (13)
Then,

lim Pz, =1|z) — lm — 14
xll—r>noo <mj - ‘ xl) - zll—r>noo 1+ e—(citbjiz;) 14

_ L (bji >0)
a { 0 (bji <0) "’ ()
li Ple;=1|z;) = li —1 16
x1—1>r£loo (xj o ‘ .%'Z) - xl—lgzloo 1+ e—(citbjiwi) (16)

_ J O (b;>0)
- {1y @
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For the second model, the conditional probability of x; = 1 given z; is given by

Ple: =1,z
Pz =1|z) = W (18)

P(z; |z; =1)P(z; =1)

— 19)
Pz | xj =1)P(z; = 1)+ P(z; | z; = 0)P(z; = 0)
P(l’j = 1)
= P Pleie,=0) — (20)
(zj=1)+ W%:DP(% =0)
Due to the Condition 1, we obtain the limit of the density ratio as
P(x; =0 Plx: — ¢
lim M = lim M (21)
x;—+00 P(fL‘l | Tj = 1) x;—>F00 P(l’Z —C; — ei)

~ A (22)
(23)

where A = C' # 0 and A\ # oo. Thus, the limits lim,, 4. P(z; = 1 | z;) under the second
model are greater than 0 and smaller than 1 due to the assumption P(z; = 1) > 0. This means that
the limits lim,, ,+- P(x; = 1 | x;) under the second model are different from those of the first
model, which contradicts the assumption that the two models give the same distribution of observed
variables.

Thus, the model is bivariate identifiable if the two variables do not have the same marginal
distributions in case that they are binary, all the probabilities and densities are positive, and the error
variables are of non-zero variance. |

The same would apply when Eq.(1) is replaced by a nonlinear model like ANM (Hoyer et al.,
2009).

x; =e; + fi(x;), x; € pa(i), (24)

where f;(0) and f;(1) are assumed to be finite.

Definition 3 (Bivariate Identifiable Set) Let F = {f., fa|fc(x,e) = bz + e + ¢, fa(x,e) =
1, bx+e+c>0
0, otherwise

respectively. P = {P,, Py} denotes the set of probabilistic distributions for continuous and dis-

crete variables. Consider a mixed causal model with two variables x; and x;j, i.e., v; = ej and

x; = fi(zj,e;) withz; L e;. We call a set B C F x P x P as a bivariate identifiability set if

the triple (f;, P(x;), P(e;)) where f € F, and P(xj), P(e;) € P hold, follows our LiM model’s

assumptions.

} be a set of two functions which work on continuous and discrete variables,

Using the definition of the bivariate identifiable set B, if the triple ( f;, P(x;), P(e;)) follows our
LiM model, we have (f;, P(x;), P(e;)) € B, which means that the bivariate mixed causal model is
identifiable.
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3.2. From bivariate cases to multivariate cases

Hoyer et al. (2009) proposed a structural causal model named as additive noise model for causal dis-
covery and considered the identifiability condition for two variables, i.e., its bivariate identifiability
condition. Peters et al. (2014) showed the model also is identifiable for more than two variables. In
the proof of Theorem 28 of Peters et al. (2014), under the assumption of causal minimality and that
of positive densities, they showed that if two different causal graphs are assumed to give the same
distributions of observed variables, it results in contradiction to the bivariate identifiability. Remark
30 of Peters et al. (2014) says that

Whenever we have a restriction like Condition 19 that ensures identifiability in the
bivariate case (Theorem 20), the multivariate version (Theorem 28) remains valid. The
proof we provide in the appendix stays exactly the same.

In fact, most parts of their proof other than the bivariate identifiability condition use only the general
properties of non-parametric structural causal models with no hidden common causes and no cycles,
and do not depend on the assumptions of additive noise models. Therefore, our LiM model also is
identifiable for more than two variable cases using the idea of Peters et al. (2014) since our model
is of bivariate identifiability under some conditions as shown above in Subsection 3.1.

Here, we first define the restricted mixed causal models to constrain conditional distributions
and thereafter give identifiability analysis, in a similar manner to Peters et al. (2014).

Definition 4 (Restricted LiM model) Consider a LiM model with p variables. We call this SCM a
restricted LiM model if for alli € {1, ...,p}, j € pa(i), and all sets S C {1, ...,p} with pa(i)\{j} C
S C nd(i)\{7,7}, there exists an x§ with Ps(xz§) > 0, s.t.

(fi(lfpa(i)\{j},\-/)v P(zjlrs = xg), P(ei)) (25)

%3

satisfies the assumptions and the Condition I of the LiM’s model in Section 2, i.e.,

(fi(Zpai) ), P(zj|lrs = x§), P(e;)) € B, (26)

b
*j

where the underbrace with x; represents x;’s component with f;, and f; € F. Further, we require
that the noise variables to have non-vanishing densities.

Theorem 5 Let the data X = {x1,...,xp} be generated by a restricted LiM model. Under the
conditions that any two discrete variables do not share the same marginal distributions, all the
probabilities are positive, and P(X) satisfies the Markov and faithful conditions, the model is
identifiable.

Proof The theorem is proved by contradiction. We assume that our restricted mixed causal model
is not identifiable, i.e., there exist two restricted mixed causal models G; and G, which induce
the identical joint distribution P(X). In such a case, we will show that G; = G5 to induce the
identifiability.

Consider two variables x; and x; in X where for the sets Q := pa(i)9\{j}, R := pa(j)92\{i},
and S := Q U R, they satisfy i) z; — x; in G; and x; — x; in G; and ii) S C nd(i)9*\{j}



and S C nd(5)92\{i}. Such two variables do exist (Peters et al., 2014). Firstly, due to ii) we get
e; L (zj,xs)ande; L (z;,7s). Leta§ = {xq, z,}. For the graph Gy, we get ( fi(zq, ), P(zj|zs =
x§), P(e;)) € B, which satisfies the assumptions of our bivariate mixed causal model. It induces

T = fi(a:q,:):;), xq L x’;, 27

where z} 1= z;|zg = g+ and f; € F. For the graph Go, we get (fj(2y, -), P(zilzs = x5), P(ej)) €

B, which satisfies the assumptions of our bivariate LiM model. It induces
zj = fi(zr,2;), L zj, (28)

where x} := x;|lrs = xg+ and f; € F. The above analysis contradicts the bivariate identifiability
result in Theorem 2, hence we have G| = Gs. [ |

4. Optimization Method

To uncover the causal structure for mixed data that consist of both continuous and discrete variables,
we propose an integrated hybrid score-based learning method. The objective function is based on
the negative log-likelihood of the data. By instantiating the negative log-likelihood with the joint
probability distribution of the mixed data, we get

L(B) = —log(P(X)) (29)
n p
= —log[[[T] Pt | Tpa(iye) ™ Pe(@is | Tpagiye)' ] (30)
t 7
n p

= = zilog[Pa(wis | 2pagiye)] + (1= z) log[Pe(wis | 2pagiye)), 31
t 7
n p

= - Z Z zi{w;tloglo(B)] + (1 — zi¢) log[l — o(B)]} + (32)
(1 — z)log pi (i — Z bikTrt), (33)

kepa(i)

where B is the adjacency matrix, and x;; is the tth sample of the 7*" variable z;. n is the sam-

ple size. P; and P, denote the probability distribution of discrete and continuous variables, re-
spectively. z; is an indicator variable, where z; = 1 if z; is discrete while z; = 0 otherwise.

_ 1 o . . i ! '
o(B) = I Cro TR while p; is the density function of the non-Gaussian error terms e;

of continuous variables. In our method, we specified p; to be the density function of Laplace distri-
butions. But, we can use other density functions as well. Thereafter, we seek to solve the following
continuous optimization problem:

min L(B) + A|B||
B (34
subject to h(B) =0,

where h(B) is an acyclicity constraint which ensures that B is a DAG (Zheng et al., 2018), A is
a regularization parameter, and || - ||; is an [ sparsity regularization. Following the optimization
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Algorithm 1 LiM Algorithm
Require: Data X; indicator vector Z; threshold €; tolerance parameter w.
Ensure: Connection strengths matrix B*.
Phase I: Global search
1: Optimize Eq.(34) to obtain B using QPM with the tolerance parameter w,
Rule out edges whose connection strengths are below e: B = B o O(Bij < e€).
Phase 1I: Local search
Initiate a temporary minimum log-likelihood as L, (B*) = L(B).
while B € Ske(B) and h(B) < w do
Compute the negative log-likelihood £(B) for B.
if L(B) < Ltp(B*) then
Limp(B*) = L(B).
end if
end while
10: return B* with the minimal log-likelihood Ly, (B*).

»

R A

procedure in (Zeng et al., 2021), we leverage the Quadratic Penalty Method (QPM) to estimate B,
converting Eq.(34) into an unconstrained function

minS(B), (35)

where S = £(B) + A|[B||1 + 5h(B)? is the quadratic penalty function, and p is a regularization
parameter. Then we utilize the L-BFGS-B (Byrd et al., 1995) to solve Eq.(35). Due to the machine
precision, it is well-known that the estimated b;; is hard to receive absolute zeros if such pairs have
no edges (Zheng et al., 2018). Hence we give a small fixed threshold e to rule out those whose
estimated effects are lower than e.

However, such an optimization method may easily fall into its skeleton solutions due to the
sub-optimality. To mitigate this issue, after obtaining the estimated adjacency matrix B, we tackle
further the following combinatorial optimization problem:

B* = arg min L(B), (36)
BeSke(B),h(B)<w

where Ske(ﬁ) represents a set where the containing DAGs entail the same skeleton as B and w is a
tolerance parameter. Compared with the traditional approaches that search over the discrete space
of DAGs with the full graph, we perform our structure search over the narrowed space of DAGs
within the estimated skeleton, which possesses an advantage in computational efficiency. The full
algorithm is outlined in Algorithm 1.

As demonstrated in Algorithm 1, our LiM approach firstly performs global updates, estimating
the connection strengths matrix B in one step with continuous optimization techniques. Then, it
performs a local update to search over the skeleton space, estimating one candidate DAG with one
changing edge at each iteration in a combinatorial optimization manner. To conclude, the LiM
approach is a two-step hybrid method, which takes advantages of both global and local search to
avoid falling into sub-optimal solutions and to be more computationally efficient.



S. Experiments

In this section, we performed simulation experiments and employed our method to real-world ap-
plication data to learn the causal graph with mixed data, evaluating the efficacy of our proposed
method.

5.1. Synthetic data

To generate the data in simulations, we firstly established a randomly unweighted Directed Acyclic
Graph (DAG) according to the ER models, where the number of edges was randomly selected.
Given the DAG, we assigned uniformly the edge weights from [—2, —1] | J[1, 2] to get an adjacency
matrix B. Without loss of generality, the number of discrete variables was selected randomly from
[1, (p — 1)], and thereafter we randomly assigned the discrete and continuous variables. Finally, the
data were generated according to our LiM model in Eqgs.(1)-(2).

We compared our method with a constraint-based method, a variant of PC algorithm (PC) (Spirtes
and Glymour, 1991) as a representative. It discretized all continuous variables into discrete ones,
following Li and Shimizu (2018). Besides, since PC may return a DAG pattern (PDAG) instead
of a unique DAG, we took its instance for evaluation. We compared with score-based methods,
including the scores of Notears with the Logistic (logistic) or Laplace (laplace) distributions. We
also compared with a commonly-used functional-based method, the LINGAM method (LINGAM).
To emphasize the necessity of our local search phase, we took our LiM method without the second
phase as a comparison as well (mixed).

In these experiments, we evaluated the performance of all methods in terms of precision (Pre.),
recall (Re.) and F1 score (F1), where the F1 is defined as F1 = %ﬁ. For those continuous
optimization methods, we chose the threshold e = 0.1, the tolerance w = 1le — 8, and the regular-
ization parameter A = 0.1, while for those which exploit conditional independence tests, we fixed
the significance level to be 0.01. For other parameters, we adopted their default settings.

We performed the simulations using i) different sample sizes, i.e., n = 50, 100, 500, 1000,
2000, 5000, with bivariate and 5 mixed variables in turn. In addition, we generated the data with
ii) different numbers of discrete variables ranging from 1 to (p — 1) where each graph has 5000
samples, to test the robustness of our proposed LiM method. For each setting, we experimented
with 50 realizations and reported the average results.

Sensitivity to different sample sizes. Figure 1 gives the Re., Pre. and F1 of the recovered
causal graph with 2 or 5 mixed variables, compared with PC, logistic, laplace, LINGAM, and mixed
methods. The x-axis shows the sample sizes, while the y-axis is the Re., Pre, or F1. Overall, our LiM
method gives the best accuracy in both settings, which verified the identifiability results, especially
in bivariate cases. More specifically, the LiM, and PC methods’ accuracies increase remarkably
along with the sample sizes. Though our LiM method is sensitive to sample sizes for multi-variate
causal networks, LiM does perform better than other comparisons in the scheme of small sample
size n = 50. On the contrary, PC’s unsatisfactory performance is basically due to the usage of
conditional independence tests. Score-based methods are more robust to the sample sizes compared
with the constraint-based ones. However, since their score functions may not fit the mixed data
or they may be trapped in sub-optimal problems, their performances are not comparable despite
stability.

Sensitivity to different discrete variables. Figure 2 reports the Re., Pre. and F1 of the recov-
ered causal graph with different numbers of discrete variables pg =1, 2, 3, where there are a total of

10
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Figure 1: Recalls (Re.), Precisions (Pre.), and F1 scores (F1.) of recovered causal graphs for bi-
variate and 5 mixed variables with different sample sizes. Higher F1, Re., and Pre. mean
higher accuracies.

o
o

I
IS
F1 scores

precisions

—e— ours —e- mixed
—- logistic %~ LINGAM
<A laplace —+- PC

0.0 0.0 0.0
3

=)
N
)
N
<)
N

2 2 1 2
number of discrete variables number of discrete variables number of discrete variables

(a) Re. with 4 vars. (b) Pre. with 4 vars. (c) F1 with 4 vars.

Figure 2: Recalls (Re.), Precisions (Pre.), and F1 scores (F1.) of recovered causal graphs with
different numbers of discrete variables, where the sample size is 5000.

4 observed variables. The x-axis shows the number of discrete variables, while the y-axis is the Re.,
Pre, or F1. As shown, we can see that overall, our method performed better than other methods,

indicating the capability of handling mixed data.

5.2. Real-world data

Boston housing data set. We then applied our LiM method to a real-world Boston housing data set,
which was collected at the UCI Repository (Dua and Graff, 2017). Such a data set contains 506
data points and we chose 11 variables for the experiments, where the chosen continuous variables
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Figure 3: Result of the LiM method applied to the Boston housing data set.

are identical to Zhang et al. (2011) and the only binary variable is included. They are CRI (continu-
ous, per capita crime rate by town), INDUS (proportion of non-retail business acres per town), CHA
(binary, if tract bounds river or not), NOX (continuous, nitric oxides concentration), RM (continu-
ous, average number of rooms per dwelling), AGE (continuous, proportion of owner-occupied units
built prior to 1940), DIS (continuous, weighted distances to five Boston employment centres), TAX
(continuous, full-value property-tax rate per 10,000 dollars), B (continuous, the proportion of blacks
by town), LST (continuous, lower status of the population), and MED (continuous, median value of
owner-occupied homes). We used the same settings as in the simulation experiments, i.e., we set the
ruled-out threshold € = 0.1 and tolerance parameter w = le — 8. To provide reliable performance,
due to the different scales of the large number of variables, we standardized the continuous variables
before employing our method. The resulting causal graph is demonstrated in Figure 3. Though it
is arguable that RM may not an effect variable, we still found some interesting conclusions which
were accordance with our common understandings. For example, MED is influenced by LST, which
are determined by some house-related indicators, i.e., IND, AGE and TAX; there is no direct link be-
tween NOX and MED but they are dependent through intermediate causal relationships (Margaritis,
2005); it is reasonable that TAX, which reflects the government’s housing policy, influences IND,
LST, and CRI. The results illustrated the effectiveness of our proposed LiM method in inferring
causal graphs from mixed data.

6. Conclusions

In this paper, we provided complete identifiability conditions for causal discovery with linear mixed
data that consist of continuous and discrete variables, both in bivariate and multivariate cases. Fur-
ther, we proposed a two-step hybrid approach to uniquely identify the causal structure. Experiments
on synthetic as well as real-world data demonstrate that our LiM method outperformed the compar-
isons. A line of our future research is to generalize the identifiability to cases where there are
nonlinear relationships or confounders in the underlying causal graphs.
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