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Abstract

Video question answering (VideoQA) is a complex task that requires diverse multi-1

modal data for training. Manual annotation of question and answers for videos,2

however, is tedious and prohibits scalability. To tackle this problem, recent methods3

consider zero-shot settings with no manual annotation of visual question-answer.4

In particular, a promising approach adapts frozen autoregressive language models5

pretrained on Web-scale text-only data to multi-modal inputs. In contrast, we6

here build on frozen bidirectional language models (BiLM) and show that such7

an approach provides a stronger and cheaper alternative for zero-shot VideoQA.8

In particular, (i) we combine visual inputs with the frozen BiLM using light9

trainable modules, (ii) we train such modules using Web-scraped multi-modal10

data, and finally (iii) we perform zero-shot VideoQA inference through masked11

language modeling, where the masked text is the answer to a given question. Our12

proposed approach, FrozenBiLM, outperforms the state of the art in zero-shot13

VideoQA by a significant margin on a variety of datasets, including LSMDC-FiB,14

iVQA, MSRVTT-QA, MSVD-QA, ActivityNet-QA, TGIF-FrameQA, How2QA15

and TVQA. It also demonstrates competitive performance in the few-shot and16

fully-supervised setting. Our code and models will be made publicly available.17
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Figure 1: Our model FrozenBiLM builds on a pretrained and frozen bidirectional language model
(BiLM), and is trained from Web-scraped video-caption pairs. FrozenBiLM excels in the zero-shot
video question answering task without using any explicit visual question-answer supervision.

1 Introduction18

Video question answering (VideoQA) is a challenging task that requires fine-grained multi-modal19

understanding. State-of-the-art approaches to VideoQA [40, 102, 104] rely on large video datasets20

manually annotated with question-answer pairs. Yet, collecting such annotations is time consuming,21

expensive and therefore not scalable. This has motivated the development of zero-shot VideoQA22

approaches [96, 97, 105], that use no visual question-answer annotation for training, see Figure 1.23

Recently, a promising line of work builds on frozen large autoregressive language models [17, 65,24

88, 99, 106] for zero-shot visual question answering. This has been motivated by the findings25
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from GPT-3 [6] which exhibited strong zero-shot text-only question answering abilities from large26

autoregressive language models. Such models [6, 69, 79, 89] can predict an arbitrarily long sequence27

of text, one token at each step from left to right. However, they usually require billion parameters to28

work well, making them computationally expensive to train, and challenging to deploy in practice.29

In contrast, recent work in natural language [62, 73, 74, 84] demonstrates strong zero-shot perfor-30

mance for lighter bidirectional language models (BiLM). Such models [15, 23, 32, 39, 58, 72] can31

predict a few masked tokens in an input sequence given left and right context in a single forward pass.32

These works cast downstream tasks in cloze form1 [87], similar to the masked language modeling task33

(MLM) [15] solved by these models at pretraining. This motivates us to tackle diverse zero-shot multi-34

modal tasks (open-ended VideoQA [94], multiple-choice VideoQA [43] and fill-in-the-blank [63]) by35

formulating them in cloze form and leveraging the text-only knowledge of pretrained BiLM models.36

To adapt a pretrained BiLM to multi-modal inputs, we combine it with a frozen pretrained visual37

backbone and a set of lightweight additional modules including adapters [26]. We train these modules38

on Web-scraped video-text data using a simple visually-conditioned MLM loss. We preserve the39

uni-modal knowledge of a BiLM by freezing its weights. To our knowledge, our approach is the first40

to explore the zero-shot visual-linguistic capabilities of frozen non-autoregressive language models.41

We show that our approach largely improves the state of the art on various zero-shot VideoQA42

benchmarks. Furthermore, we demonstrate that frozen bidirectional language models perform better43

while being cheaper to train than frozen autoregressive language models [88]. Moreover, our ablation44

studies show (i) the ability of our model to effectively perform zero-shot multi-modal reasoning45

using both visual cues and speech transcripts, (ii) the importance of adapters combined with frozen46

pretrained language models, (iii) the impact of multi-modal data scale, (iv) the impact of the language47

model size and of bidirectional modeling. Our approach also performs competitively in the fully-48

supervised setting. Indeed, we show the benefits of freezing the weights of a BiLM when using49

VideoQA training data, while updating considerably less parameters compared to alternative methods.50

Finally, we introduce a new few-shot VideoQA task in which we finetune our pretrained model on a51

small fraction of the downstream training dataset, and show promising results in this setting.52

In summary, our contributions are three-fold:53

(i) We present FrozenBiLM, a framework that handles multi-modal inputs using frozen bidirec-54

tional language models and enables zero-shot VideoQA through masked language modeling.55

(ii) We provide an extensive ablation study and demonstrate the superior performance of our56

framework in the zero-shot setting when compared to previous autoregressive models.57

(iii) Our approach improves the state of the art in zero-shot VideoQA by a significant margin.58

FrozenBiLM also demonstrates competitive performance in the fully-supervised setting and59

shows strong results in the few-shot VideoQA setting which we introduce.60

Our code is provided in the Supplementary Material, and will be made publicly available.61

2 Related Work62

Zero-shot VideoQA. A vast majority of VideoQA approaches rely on relatively small, manually63

annotated VideoQA datasets [1, 7, 8, 11–13, 18, 21, 22, 27, 30, 31, 33–36, 40, 41, 44, 55, 57, 66,64

67, 71, 75, 76, 80, 86, 93, 95, 98, 100, 107, 111]. Recently, a few work [96, 105] have explored65

zero-shot approaches for VideoQA, where models are only trained on automatically mined video66

clips with short text descriptions. In contrast to VideoQA annotations, such video-text pairs are67

readily-available at scale on the Web [4, 64, 104]. In detail, Yang et al. [96] automatically generate68

VideoQA training data using language models [69] pretrained on a manually annotated text-only69

question-answer corpus [70]. Reserve [105] uses GPT-3 [6] to rephrase questions into sentences70

completed by a multi-modal model. In contrast to these prior works [96, 105], our method does not71

require any kind of explicitly annotated language dataset or the use of data generation pipelines for72

zero-shot VideoQA. Note that BLIP [50] studies a related setting where a model trained on manually73

annotated image-question-answer triplets is transferred to VideoQA, which is a less challenging task.74

Visual language models. As language models require large amounts of training data to perform75

well [25], recent works have studied transferring pretrained language models [6, 91] to image-text76

tasks. VisualGPT [9] and VC-GPT [61] showed the benefit of initializing the weights of an image77

1“Cloze test" is an exercise test where certain portions of text are occluded or masked and need to be filled-in.
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captioning model with a pretrained autoregressive language-only model. Recent work pushed this78

idea further by freezing the weights of a pretrained autoregressive language model for tackling79

vision and language tasks [17, 65, 88, 99]. Our approach also leverages a frozen pretrained language80

model. Similarly as MAGMA [17], we also use adapter layers [26]. However, we differ from these81

approaches as we propose to instead use lighter bidirectional masked language models, instead82

of autoregressive ones, and rely on a masked language modeling objective (MLM) instead of an83

autoregressive one. Moreover our model is specifically designed for videos, for which high-quality84

visual question answering annotation is even more scarce, instead of images. We also explore the85

use of the speech modality, and tackle tasks which are challenging for autoregressive language86

models such as video-conditioned fill-in-the-blank [63]. Finally we show in Section 4.3 the superior87

performance of frozen bidirectional language models in comparison with autoregressive ones [88].88

Masked Language Modeling in vision and language. The MLM objective was initially introduced89

in natural language [15, 39, 58] to pretrain bidirectional transformers and learn generic representations.90

This approach achieved state-of-the-art results in many language tasks after finetuning on downstream91

datasets. Its success inspired numerous works to adapt it to train multi-modal transformer models92

on paired visual-linguistic data [10, 19, 20, 24, 28, 37, 45, 48, 53, 51, 56, 49, 47, 59, 60, 77, 78,93

82, 83, 85, 90, 92, 101, 104, 109, 110]. However, these works typically use it to learn generic94

visual-linguistic representations by updating the transformer weights, and then use expensive manual95

supervision to train randomly initialized task-specific answer classifiers for VQA [10, 20, 24, 48, 49,96

53, 56, 59, 77, 78, 82, 85, 92, 101] or VideoQA [19, 45, 47, 90, 104]. In contrast, we tackle zero-shot97

VideoQA, i.e. without using any manual annotation. Moreover, we do not update the transformer98

weights during cross-modal training, but instead exhibit the benefits of freezing these weights after99

text-only pretraining, for both zero-shot and fully-supervised VideoQA (see Sections 4.2 and 4.5).100

3 Method101

This section presents our approach to tackle zero-shot video question answering. Here, zero-shot102

means that we do not use any visual question answering annotation and only rely on scalable data from103

the Web. Our approach starts with two strong pretrained components: (i) a text-only bidirectional104

masked language model (BiLM) pretrained on data from the Internet, which has the capability of zero-105

shot question answering but is not capable of visual reasoning, and (ii) a vision encoder pretrained106

to map images to text descriptions, but which does not have the ability to perform visual question107

answering. We aim at connecting these two components while keeping the language component108

frozen to avoid catastrophic forgetting [14], where the large language model would specialize to a109

new task while forgetting its initial capabilities. The end-goal is to design a unified model having110

the best of both worlds: visual understanding capabilities of a powerful visual encoder and question111

answering capabilities of a powerful language model. This requires several technical innovations,112

which are described in the rest of this section. First, we explain in Section 3.1 how we augment a113

frozen pretrained bidirectional masked language model with new layers to enable joint video and114

language reasoning, see Figure 2. Second, we present in Section 3.2 how we train these layers on115

video-text data scraped from the Web [4]. Finally, we describe in Section 3.3 how we enable zero-shot116

predictions for several video-language downstream tasks, including open-ended VideoQA, by casting117

them in a cloze form, similar to the masked language modeling task solved during training.118

3.1 Architecture119

The proposed architecture, illustrated in Figure 2, brings together a powerful frozen pretrained120

bidirectional language model with a strong visual encoder. The difficulty lies in enabling multi-modal121

reasoning while keeping the large language model frozen. To address this challenge, we unify these122

two models via a visual-to-text projection module together with small adapter modules inserted123

within the frozen language model. Next, we describe in more detail the three main components of the124

architecture: (i) the frozen pretrained bidirectional language model, (ii) the pretrained video encoder125

and (iii) the lightweight modules that seamlessly connect the two components.126

Frozen Bidirectional Masked Language Model. Our method starts from a pretrained bidirectional127

language model based on a Transformer encoder [89]. The input text is decomposed into a sequence128

of tokens x = {xi}L1 ∈ [1, V ]L by a tokenizer of a vocabulary size V . The language model, pa-129

rameterized by θ, makes use of an embedding function gθ which independently transforms each130
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Figure 2: Our training architecture consists of a large frozen bidirectional language model (BiLM) and a
frozen pretrained visual encoder (in blue), complemented with additional lightweight trainable modules (in
orange): (1) a visual-to-text projection module P (on the left), which maps the frozen visual features to the
joint visual-text embedding space and (2) a set of small adapter modules A (on the right) in between the frozen
transformer blocks. The pretrained normalization layers in the BiLM (on the right) are also finetuned.

token into a D-dimensional continuous embedding t = {ti}L1 := {gθ(xi)}L1 ∈ RL×D, a Trans-131

former encoder fθ which computes interactions between all input tokens and outputs contextualized132

representations t′ = {t′i}L1 , and a masked language modeling (MLM) classifier head mθ which133

independently maps the D-dimensional continuous embedding for each token t′i to a vector of logits134

parameterizing a categorical distribution over the vocabulary V . This distribution is referred to by135

log pθ(x) := {mθ(t
′
i)}L1 ∈ RL×V . We assume that the language model is pretrained, i.e. θ has been136

optimised with a standard MLM objective [15] on a large dataset of text from the Web. We show in137

Section 4.2 that this text-only pretraining has a crucial importance for zero-shot VideoQA.138

Pretrained Video Encoder. The video is represented by a sequence of frames y = {yi}T1 . Each139

frame is forwarded separately through a visual backbone hϕ, which outputs one feature vector per140

frame u = {ui}T1 := {hϕ(yi)}T1 ∈ RT×Du . In detail, the visual backbone is CLIP ViT-L/14 [16, 68]141

at resolution 224× 224 pixels, pretrained to map images to text descriptions with a contrastive loss142

on 400M Web-scraped image-text pairs. The backbone is kept frozen throughout our experiments.143

Note that a CLIP-baseline for zero-shot VideoQA results in poor performance, see Section 4.4.144

Connecting the Frozen Language and Frozen Vision components. The video features are in-145

corporated into the language model as a prompt [46, 54, 108] v of length T (Figure 2, left). This146

prompt is obtained by linearly mapping the visual features u to the text token embedding space via147

a visual-to-text projection P ∈ RDu×D, i.e. v = {vi}T1 := {P (ui)}T1 . The prompt is then concate-148

nated with the text embeddings before being forwarded to the transformer encoder that models joint149

visual-linguistic interactions. We show in Section 4.2 that incorporating the input video considerably150

improves zero-shot VideoQA results. In addition, to learn powerful multi-modal interactions while151

keeping the transformer encoder weights frozen, we equip the transformer encoder with lightweight152

adapter modules A [26] (Figure 2, right). We use an adapter which transforms the hidden state z with153

a multi-layer perceptron transformation and a residual connection, i.e. A(z) = z +Wupψ(W downz)154

with W down ∈ RD×Dh , Wup ∈ RDh×D, D the hidden dimension of the transformer, Dh the bottle-155

neck dimension, and ψ a ReLU activation function. Dh is typically set to be smaller than D such that156

the adapters are lightweight. In detail, we add an adapter module before the layer normalization, after157

each self-attention layer and each feed-forward layer of the transformer encoder.158

3.2 Cross-modal training159

We wish to train the newly added modules introduced in the previous section (shown in orange in160

Figure 2) for the VideoQA task. This is hard because we assume that no explicit manual annotation161

for the VideoQA task is available, such annotations being expensive and therefore hard to obtain at162

scale. Instead we train our architecture using only readily-available video-caption pairs scraped from163

the Web. Such data is easy to obtain [4, 64, 104], ensuring the scalability of our approach.164
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During training, we keep the weights of the pretrained BiLM and pretrained visual backbone frozen165

as previously explained. We train from scratch the parameters of (i) the visual-to-text projection166

module P and (ii) the adapter modules A. We show in Section 4.2 the importance of freezing the167

BiLM weights combined with training the adapter modules. Note that all normalization layers [3] of168

the pretrained BiLM are also updated to adjust to the new distribution of the training data. We denote169

all the trainable parameters of our model by the subscript µ. In practice, they sum up to about 5% of170

the BiLM parameters, hence the training of our model is computationally efficient.171

We use a visually-conditioned masked language modeling objective (MLM), in which some text172

tokens {xm} are randomly masked and the model has to predict these tokens based on the surrounding173

text tokens and the video input. Formally, we minimize the following loss:174

Lµ(x, y) = − 1

M

∑
m

log pµ(x̃, y)
xm
m , (1)

where x̃ is the corrupted text sequence, y is the sequence of video frames, pµ(x̃, y)xm
m is the probability175

for the (masked) m-th token in x̃ to be xm, and M is the number of masks in the sequence x̃. In176

detail, we follow [15] and corrupt 15% of text tokens, replacing them 80% of the time with a mask177

token, 10% of the time with the same token and 10% of the time with a randomly sampled token.178

3.3 Adapting to downstream tasks179

After training, our model is able to fill gaps in the input text given an input video together with left180

and right textual context as part of the input text. We wish to apply our model out-of-the-box to181

predict an answer given a question about a video. The video can optionally come with textual subtitles182

obtained using automatic speech recognition. To avoid using manual supervision, we formulate the183

downstream tasks in cloze form [73, 87], i.e. such that the model only has to fill-in a mask token in184

the input prompt similarly to the MLM objective optimized during training. The adaptation to the185

downstream tasks brings several challenges, as described next. First, we describe how we formulate186

the input text prompts for several downstream tasks. Then, we explain how we map the mask token187

from the input text prompt to an answer via a frozen answer embedding module. Finally, we present188

how we finetune our architecture in a supervised setting.189

Input prompt engineering. We describe how we design the input text prompts for several down-190

stream video-language tasks. Each downstream task is formulated as a masked language modeling191

problem. This allows us to apply FrozenBiLM out-of-the-box. A [CLS] token and a [SEP] token are192

respectively inserted at the start and the end of each sequence following [15].193

Open-ended VideoQA. Given a question and a video, the task is to find the correct answer in a large194

vocabulary A of about 1K answers. Answers are concise, i.e. the great majority of answers consist of195

one word [29, 94, 96, 103]. We design the following prompt:196

“[CLS] Question: <Question>? Answer: [MASK]. Subtitles: <Subtitles> [SEP]”197

Multiple-choice VideoQA. Given a question and a video, the task is to find the correct answer198

in a small number of candidates C, typically up to 5 choices [43, 51]. We set the vocabulary to199

A = [Yes,No] and compute a confidence score for each candidate by using the following prompt:200

“[CLS] Question: <Question>? Is it ’<Answer Candidate>’? [MASK]. Subtitles:201

<Subtitles> [SEP]”202

We choose the best option by selecting the candidate with the highest Yes logit value.203

Video-conditioned fill-in-the-blank task. Given a video and a sentence with a blank space, the task is204

to fill in the blank with the correct word from a vocabulary A of about 1K answers. We replace the205

blank in the sentence with a mask token, and design the following prompt:206

“[CLS] <Sentence with a [MASK] token>. Subtitles: <Subtitles> [SEP]”207

Note that all prompts are prepended with the video prompt (see Section 3.1) before being forwarded208

to the transformer encoder.209

Answer embedding module. For each downstream task, we wish to map the mask token in the210

input text prompt to an actual answer prediction in the set of possible answers A, as described above.211

For this we use the frozen MLM classifier head mθ. However, mθ ∈ RV×D covers V different tokens212

where V >> N and N ≈ 1, 000 is the size of A. Therefore, we introduce a task-specific answer213

classification head l which linearly maps a contextualized mask representation t′i to a vector of logits214

parameterizing a categorical distribution over the vocabulary A, i.e. l ∈ RN×D. We set the weights215
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of this answer module l with the corresponding weights of the pretrained MLM classifier mθ for216

one-token answers. In the case of multi-tokens answers, we average the weights of their different217

tokens. We, hence, enable zero-shot inference at test time.218

Fully-supervised training. In order to also evaluate our approach on fully-supervised benchmarks,219

we explore finetuning our model on datasets that provide manual annotations for the target task. For220

this, we train the same parameters as explained in Section 3.2, i.e. the transformer weights and the221

answer embedding module are frozen. For open-ended VideoQA and video-conditioned fill-in-the-222

blank, we use a cross-entropy loss on the task-specific vocabulary A. For multiple-choice VideoQA,223

we use a binary cross-entropy loss applied to each answer candidate. We show in Section 4.5 the224

benefit of freezing the language model weights during fully-supervised training.225

4 Experiments226

This section demonstrates the benefits of our FrozenBiLM framework and compares our method to227

the state of the art. We first outline our experimental setup in Section 4.1. We then present ablation228

studies in Section 4.2. Next we compare our bidirectional framework to its autoregressive variant in229

Section 4.3. The comparison to the state of the art in zero-shot VideoQA and qualitative results are230

presented in Section 4.4. Finally, we finetune our model on the VideoQA task in Section 4.5, where231

we show few-shot and fully-supervised results.232

4.1 Experimental setup233

Frozen bidirectional language model. We use a tokenizer based on SentencePiece [38] with234

V = 128, 000, and a bidirectional language model with 900M parameters, DeBERTa-V2-XLarge [23],235

trained with the MLM objective on a corpus of 160G text data. We also show how our approach236

generalizes to other MLM-pretrained bidirectional language models such as BERT [15] in Section 4.2.237

Datasets. For training we use the publicly available WebVid10M dataset [4], which consists of238

10 million of video-text pairs scraped from the Shutterstock website where video captions are239

obtained from readily-available alt-text descriptions. We evaluate results on eight downstream240

datasets covering a wide range of textual and video domains (e.g. GIFs, YouTube videos, TV241

shows, movies), and multiple VideoQA paradigms: open-ended VideoQA (iVQA [96], MSRVTT-242

QA [94], MSVD-QA [94], ActivityNet-QA [103] and TGIF-QA FrameQA [29]), multiple-choice243

VideoQA (How2QA [51] and TVQA [43]) and video-conditioned fill-in-the-blank (LSMDC-Fill-244

in-the-blank [63]). Unless stated otherwise, we report top-1 test accuracy using the original splits245

for training, validation and test. For How2QA, we report results on the public validation set for246

comparison with prior work [75, 96, 102]. For TVQA, we report results on the validation set for the247

ablation studies and on the hidden test set for the comparison to the state of the art.248

Implementation Details. The training for 2 epochs on WebVid10M lasts 20 hours on 8 Tesla V100249

GPUs. We give further details in the Supplementary Material, together with our code.250

4.2 Ablation studies251

In this section, we evaluate the zero-shot performance of different variants of our method. By default,252

we use the frozen pretrained DeBERTa-V2-XLarge language model and train the visual-to-text-253

projection layer together with adapters for 2 epochs on WebVid10M. We refer to this default model254

as FrozenBiLM. This model uses three input modalities in terms of video, question, and speech.255

Ablation of the model training. We ablate the effect of initializing parameters of the language256

model, freezing its weights and training adapters in Table 1. We observe that the language model257

pretraining is crucial. Indeed, a model with randomly initialized language weights (row 1) performs258

poorly compared to models initialized with language pretrained weights (rows 2 to 4). Moreover,259

the model which updates the language model weights (row 2) during cross-modal training performs260

considerably worse compared to variants that freeze them (rows 3 and 4). This shows the benefit of261

freezing the language model for zero-shot VideoQA. We also notice the benefit of the adapter layers262

by comparing rows 3 and 4, especially for multiple-choice datasets. Finally, we note that training263

variants with the frozen language model is twice faster compared to updating all parameters, as there264

is a significantly lower number of parameters to be trained.265
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LM Frozen Adapters Fill-in-the-blank Open-ended Multiple-choice
Pretraining LM LSMDC iVQA MSRVTT-QA MSVD-QA ActivityNet-QA TGIF-QA How2QA TVQA

1. ✗ ✗ ✗ 0.5 0.3 0.1 0.0 0.5 0.0 32.4 20.7
2. ✓ ✗ ✗ 37.1 21.0 17.6 31.9 20.7 30.7 45.7 45.6
3. ✓ ✓ ✗ 50.7 27.3 16.8 32.2 24.7 41.0 53.5 53.4
4. ✓ ✓ ✓ 51.5 26.8 16.7 33.8 25.9 41.9 58.4 59.2

Table 1: The effect of initializing and training various parts of our model evaluated on zero-shot VideoQA. All
models are trained on WebVid10M and use multi-modal inputs (video, speech and question) at inference.

Visual Speech Fill-in-the-blank Open-ended Multiple-choice
LSMDC iVQA MSRVTT-QA MSVD-QA ActivityNet-QA TGIF-QA How2QA TVQA

1. ✗ ✗ 47.9 11.0 6.4 11.3 22.6 32.3 29.6 23.2
2. ✗ ✓ 49.8 13.2 6.5 11.7 23.1 32.3 45.9 44.1
3. ✓ ✗ 50.9 26.2 16.9 33.7 25.9 41.9 41.9 29.7
4. ✓ ✓ 51.5 26.8 16.7 33.8 25.9 41.9 58.4 59.2

Table 2: Impact of the visual and speech modalities on zero-shot VideoQA. Rows 1 and 2 report results for
a pretrained language model without any visual input. Rows 3 and 4 give results for a FrozenBiLM model
pretrained on WebVid10M.

Impact of modalities. Table 2 shows the impact of the visual and speech modalities on the zero-shot266

performance of our model. First, we evaluate the text-only performance of our model using neither267

visual input nor speech input in row 1. We can observe that adding speech (row 2) marginally268

improves the results and that the importance of speech highly depends on the dataset. When adding269

vision (rows 3 and 4), the performance increases significantly, e.g. +13.6% accuracy on iVQA and270

+22.1% on MSVD-QA between rows 4 and 2. Finally, the model with vision also benefits from the271

speech, e.g. +16.5% accuracy on How2QA and +29.5% accuracy on TVQA (compare rows 3 and 4).272

Note that in practice, speech is missing for many videos, as we obtain the speech directly from the273

YouTube API and many videos are no longer available. Exceptions are How2QA and TVQA for274

which the authors [43, 52] provide speech for all videos. Consequently, we have speech data for275

only 44.3%, 14.2%, 8.2%, 7.1% and 25.3% of test samples in LSMDC-FiB, iVQA, MSRVTT-QA,276

MSVD-QA and ActivityNet-QA respectively. GIFs in TGIF-QA do not contain speech.277

Training Data MSVD-QA How2QA
1. WebVid1K 13.6 53.0
2. WebVid10K 22.7 54.9
3. WebVid200K 27.8 56.0
4. WebVid2M 30.1 57.4
5. WebVid10M 33.8 58.4

Table 3: Zero-shot results with various
sizes of cross-modal training dataset.

Size of the cross-modal training dataset. Zero-shot results278

of FrozenBiLM after training for a fixed number of iterations279

on different fractions of WebVid10M are shown in Table 3.280

We construct these subsets such that larger subsets include281

the smaller ones. We find that performance increases mono-282

tonically with more multi-modal training data.283

Size of the language model. In Table 4, we ablate the importance of the language model size for the284

zero-shot performance. Note that when comparing different language models, we use no adapters to285

avoid biases related to the choice of the bottleneck dimension hyperparameter [26]. We find that using286

the 900M-parameter DeBERTA-V2-XLarge (row 6) outperforms the 300M-parameter BERT-Large287

(row 5) which also improves over the 100M-parameter BERT-Base (row 4).288

Importance of the suffix. Our text input prompts include a suffix after the mask token which289

consists in a point and an end-of-sentence token for the variant without speech (or a point followed290

by the speech subtitles for the variant with speech). We found that removing this suffix leads to291

a considerable drop of performance (e.g. the test accuracy on MSVD-QA in row 3 Table 2 drops292

from 33.7% to 2.8%). This shows that the bidirectional nature of our framework is a key factor for293

the performance. Intuitively, this suffix forces the model to provide a concise answer. Such a hard294

constraint cannot be given to unidirectional autoregressive models compared next in Section 4.3.295

4.3 Comparison with frozen autoregressive models296

In this section, we compare our bidirectional framework using language models of various sizes297

to the larger, autoregressive GPT-based counterparts recently used for zero-shot image question298

answering [88, 99]. For fair comparison, we adapt autoregressive models to video and language299

inputs similarly as our bidirectional models. In detail, autoregressive variants train a similar visual-to-300

text projection by using a left-to-right language modeling loss [88]. All models in our comparison are301

trained on WebVid10M for the same number of epochs. At inference, autoregressive variants use the302

same template as [88] to which we prepend speech subtitles, greedily decode sequences as [88], and303

use the same answer vocabulary as bidirectional models. Autoregressive variants select the top answer304

that maximizes the log-likelihood when appended to the question prompt. Here also, we use no305

adapters for all models, such that the architecture of autoregressive models closely follows [88]. This306

is to avoid biases related to the tuning of the bottleneck reduction hyperparameter in the adapters [26].307
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Method Language Model # LM params Train time
(GPUH) iVQA MSRVTT-QA MSVD-QA ActivityNet-QA TGIF-QA

Autoregressive
1. GPT-Neo-1.3B 1.3B 200 6.6 4.2 10.1 17.8 14.4
2. GPT-Neo-2.7B 2.7B 360 9.1 7.7 17.8 17.4 20.1
3. GPT-J-6B 6B 820 21.4 9.6 26.7 24.5 37.3

Bidirectional
4. BERT-Base 110M 24 12.4 6.4 11.7 16.7 23.1
5. BERT-Large 340M 60 12.9 7.1 13.0 19.0 21.5
6. DeBERTa-V2-XLarge 890M 160 27.3 16.8 32.2 24.7 41.0

Table 4: Comparison of autoregressive language models (top) and bidirectional language models (bottom) for
zero-shot VideoQA. All variants are trained on WebVid10M for the same number of epochs.

Method Training Data Fill-in-the-blank Open-ended Multiple-choice
LSMDC iVQA MSRVTT-QA MSVD-QA ActivityNet-QA TGIF-QA How2QA TVQA

Random — 0.1 0.1 0.1 0.1 0.1 0.1 25 20
CLIP ViT-L/14 [68] 400M image-texts 1.2 9.2 2.1 7.2 1.2 3.6 47.7 26.1

Just Ask [97] HowToVQA69M +
WebVidVQA3M — 13.3 5.6 13.5 12.3 — 53.1 —

Reserve [105] YT-Temporal-1B 31.0 — 5.8 — — — — —
FrozenBiLM (Ours) WebVid10M 51.5 26.8 16.7 33.8 25.9 41.9 58.4 59.7

Table 5: Comparison with the state of the art for zero-shot VideoQA.

Question: What is the sitting
man doing? 
GT Answer: knit sweater
Just Ask: tie cow
UnFrozenBiLM: swimming
FrozenBiLM (text-only): eating
FrozenBiLM (ours): knit sweater

Question: What item hanging on 
the wall features a tree?
GT Answer: quilt
Just Ask: christmas sock
UnFrozenBiLM: fabric
FrozenBiLM (text-only): tree
FrozenBiLM (ours): quilt

Question: What is the color of the 
cabinet door in the video?
GT Answer: red
Just Ask: black
UnFrozenBiLM: blue
FrozenBiLM (text-only): dresser
FrozenBiLM (ours): red

Question: Where is the woman
sitting on?
GT Answer: camel
Just Ask: horse yard
UnFrozenBiLM: desert
FrozenBiLM (text-only): chair
FrozenBiLM (ours): camel

Question: What is the man 
holding at the start of the video?
GT Answer: guitar, electric guitar
Just Ask: typewriter
UnFrozenBiLM: beer
FrozenBiLM (text-only): scissors
FrozenBiLM (ours): guitar

Figure 3: Zero-Shot VideoQA. Qualitative comparison between Just Ask [97] (row 3 in Table 5), our model
(row 4 in Table 5), its unfrozen variant (row 2 in Table 1) and its text-only variant (row 2 in Table 2). The first
two examples are from iVQA [96] and the last three examples are from ActivityNet-QA [103].

We compare autoregressive and bidirectional language models in terms of accuracy and efficiency308

in Table 4. We observe that our bidirectional framework (rows 4-6) achieves significantly better309

zero-shot performance-efficiency trade-off compared to its autoregressive counterpart (rows 1-3). For310

instance, our framework with BERT-Base [15] (row 4) outperforms the autoregressive variant based311

on GPT-Neo-1.3B [5] (row 1) which uses 12 times more parameters and 8 times more training time.312

Likewise, our framework with DeBERTa-V2-XLarge [23] (row 6) improves over the autoregressive313

variant based on GPT-J-6B [91] (row 3) that has 7 times more parameters and requires 5 times more314

training time, showing the efficiency of our bidirectional framework for zero-shot VideoQA.315

4.4 Comparison to the state of the art for zero-shot VideoQA316

Quantitative comparison. Table 5 presents results of our method in comparison to the state of317

the art in zero-shot VideoQA settings [96], i.e. when using no manually annotated visual data for318

training. Our approach outperforms previous methods by a significant margin on all 8 datasets. In319

particular, FrozenBiLM outperforms Reserve [105], which is trained on one billion YouTube video320

clips jointly with vision, language and sound, Just Ask [97], which uses large-scale automatically321

generated VideoQA data, and a CLIP baseline [68] matching the text concatenating question and322

answer to the middle frame of the video. Finally, we note that BLIP [50] has a different definition323

of zero-shot where a network finetuned on the image-VQA dataset [2] is evaluated directly on324

open-ended VideoQA datasets. Our Supplementary Material presents results where we outperform325

BLIP [50] in their settings and also includes an analysis of results by question type. In summary, our326

evaluation shows the excellent performance of our model in the challenging zero-shot setup.327

Qualitative results. Figure 3 illustrates qualitative results of zero-shot VideoQA for our FrozenBiLM328

model and compares them to Just Ask [97], as well as to variants of our approach that do not freeze the329

language model (UnFrozenBiLM) and use no visual modality (text-only), as evaluated in Section 4.2.330

We observe that the unfrozen variant can predict answers that lack text-only commonsense reasoning,331

e.g. in the third example, it is unlikely that a sitting man is swimming. The text-only variant does have332

strong language understanding, but makes visually-unrelated predictions. In contrast, consistently333

with our quantitative results, our model FrozenBiLM is able to correctly answer various questions,334

showing both a strong textual commonsense reasoning and a complex multi-modal understanding.335
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Method # Trained Fill-in-the-blank Open-ended Multiple-choice
Params LSMDC iVQA MSRVTT-QA MSVD-QA ActivityNet-QA TGIF-QA How2QA TVQA

HCRN [42] 44M — — 35.4 36.8 — 57.9 — 71.4
HERO [51] 119M — — — — — — 74.1 73.6
ClipBERT [45] 114M — — 37.4 — — 60.3 — —
Just Ask [97] 157M — 35.4 41.8 47.5 39.0 — 85.3 —
SiaSamRea [102] — — — 41.6 45.5 39.8 60.2 84.1 —
MERLOT [104] 223M 52.9 — 43.1 — 41.4 69.5 — 78.7
Reserve [105] 644M — — — — — — — 86.1
VIOLET [19] 198M 53.7 — 43.9 47.9 — 68.9 — —
All-in-one [90] 110M — — 46.8 48.3 — 66.3 — —
UnFrozenBiLM (Ours) 890M 58.9 37.7 45.0 53.9 43.2 66.9 87.5 79.6
FrozenBiLM (Ours) 30M 63.5 39.6 47.0 54.8 43.2 68.6 86.7 82.0

Table 6: Comparison with the state of the art, and the variant UnFrozenBiLM which does not freeze the language
model weight, on fully-supervised benchmarks.

Supervision Fill-in-the-blank Open-ended Multiple-choice
LSMDC iVQA MSRVTT-QA MSVD-QA ActivityNet-QA TGIF-QA How2QA TVQA

1. 0% (zero-shot) 51.5 26.8 16.7 33.8 25.9 41.9 58.4 59.7
2. 1% (few-shot) 56.9 31.1 36.0 46.5 33.2 55.1 71.7 72.5
3. 10% (few-shot) 59.9 35.3 41.7 51.0 37.4 61.2 75.8 77.6
4. 100% (fully-supervised) 63.5 39.6 47.0 54.8 43.2 68.6 86.7 82.0

Table 7: Few-shot results, by finetuning FrozenBiLM using a small fraction of the downstream training dataset.

4.5 Freezing the BiLM is also beneficial in supervised settings336

Fully-supervised VideoQA. We next present an evaluation in a supervised setup where we finetune337

FrozenBiLM on a downstream VideoQA task. We emphasize that we also keep our pretrained language338

model weights frozen all throughout finetuning. As shown in Table 6, our approach improves the state339

of the art on LSMDC-FiB, iVQA, MSRVTT-QA, MSVD-QA, ActivityNet-QA and How2QA. In340

particular, FrozenBiLM outperforms strong recent baselines such as All-in-one [90] on 2/3 datasets,341

VIOLET [19] on 3/4 datasets and MERLOT [104] on 4/5 datasets. Our approach has significantly342

less trainable parameters compared to the state of the art [19, 90, 104] as we freeze the weights of the343

pretrained language model. We ablate this major difference in Table 6, and find that our FrozenBiLM344

with the frozen language model performs better and trains twice faster compared to UnFrozenBiLM345

where we update the language model during training. This shows that freezing the transformer346

encoder is not only beneficial for zero-shot but also in fully-supervised settings, therefore suggesting347

that our FrozenBiLM framework also provides a parameter-efficient solution for VideoQA training.348

Few-shot VideoQA. The low number of trainable parameters when training FrozenBiLM makes it349

particularly well-suited in the low data regime. To verify this, we explore a few-shot VideoQA setting350

where we finetune our pretrained model using varying fractions of VideoQA training data. From351

Table 7 we observe significant improvements over zero-shot when using only 1% of training data.352

5 Conclusion353

We have presented FrozenBiLM, a framework that extends frozen bidirectional language models to354

multi-modal inputs by training additional modules on Web-scraped data, and that tackles zero-shot355

VideoQA through masked language modeling. We have provided extensive ablation studies and356

shown the efficiency of our framework compared to its autoregressive variant. FrozenBiLM improves357

the state-of-the-art zero-shot VideoQA on various datasets, performs competitively in fully-supervised358

settings and exhibits strong performance in the few-shot VideoQA setting we newly introduce.359

Limitations. Promising directions not explored in this work include scaling the size of a bidirectional360

language model to several billion parameters, and additional training on large datasets of YouTube361

videos with accompanying speech transcripts and/or audio [105]. Also, our model cannot be applied362

out-of-the-box to complex multi-modal text generation tasks such as video captioning.363

Broader Impact. We have showed the superior compute-efficiency of our bidirectional framework364

compared to autoregressive models for zero-shot VideoQA, and believe it is a step towards reducing365

the environmental impact of such research and its applications [81]. In addition, our models might366

reflect biases present in videos and captions from Shutterstock used to train our frozen model, the text367

data used to train the language model or the images and captions used to train the visual backbone. It368

is important to keep this in mind when deploying, analysing and building upon these models.369
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