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Abstract

The standard tools of causal inference have been developed to answer simple causal1

queries which can be easily formalized as a small number of statistical estimands2

in the context of a particular structural causal model (SCM); however, scientific3

theories often make diffuse predictions about a large number of causal variables.4

This article proposes a framework for parameterizing such complex causal queries5

as the maximum difference in causal effects associated with two sets of causal6

variables of a researcher specified size. We term this estimand the Maximum Causal7

Set Effect (MCSE) and develop an estimator for it that is asymptotically consistent8

and conservative in finite samples under assumptions that are standard in the causal9

inference literature. This estimator is also asymptotically normal and amenable10

to the non-parametric bootstrap, facilitating classical statistical inference about11

this novel estimand. We compare this estimator to more common latent variable12

approaches and find that it can uncover larger causal effects in both real world and13

simulated data.14

1 Introduction15

Recent advances in machine learning technology have made it possible to non-parametrically estimate16

many parameters present in complex structural causal models (SCMs). Specifically, such estimating17

technology has rapidly advanced for three major causal inference settings: the many causes setting,18

the many moderators setting, and the many mediators setting. All three settings represent a situation19

in which a particular causal query can be stated in terms of a large number of combinations of20

different variables. Specifically, a researcher could estimate a different treatment effect associated21

with each of the many different possible combinations of causes [Imbens, 2000, Wang and Blei,22

2019, Li et al., 2019, Wang et al., 2018, Zheng et al., Forthcoming], a different conditional treatment23

effect for each of the many different combinations of moderators [Green and Kern, 2012, Athey and24

Imbens, 2016, Grimmer et al., 2017, Wager and Athey, 2018, Künzel et al., 2019], and a different25

mediated effect for each of the many different combinations of mediators [Zhou and Yamamoto, 2020,26

Daniel et al., 2015]. Such causal queries are complex in the sense that they require summarizing the27

combined influence of a large number of causal variables.28

The main challenge for applied researchers in such settings is that standard causal inference algorithms29

are designed to provide a different estimate associated with each of the many causal variables rather30

than a single number summarizing the combined influence of all the causal variables together.31

Consider, for example, the setting of inferring the causal effect of actors on a film’s box office32

performance. Wang and Blei [2019] provide a framework for estimating the average treatment effect33

associated with every actor on a film’s performance. While certainly useful for making predictions34
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about which actors a director should cast, an economist studying the film industry might prefer a35

single number which summarizes the general importance of actors in general for a film’s box office36

success. As discussed in the next section, such settings are common in scientific research, suggesting37

the need for novel causal estimands to parameterize the predictions of such theories in the context of38

a particular SCM.39

Contribution The contribution of this paper is threefold. First, it introduces the notion of a complex40

causal query and argues that existing causal estimands are of limited utility to applied researchers41

in the face of such queries. Second, it defines a novel estimand – the Maximum Causal Set Effect42

(MCSE) – which can be used to provide an interpretable answer to such complex queries. Finally, the43

paper introduces an estimator for this estimand. The estimator is based on techniques proposed in44

the double Q-learning literature [Hasselt, 2010] and is asymptotically consistent and conservative45

in finite samples under assumptions that are standard in the causal inference literature. It is also46

asymptotically normal and amenable to non-parametric bootstrap techniques, facilitating classical47

statistical inference about the MCSE.48

2 Setting and Previous Work49

2.1 Problem Overview50

Standard approaches to causal inference [Pearl, 2009] typically begin with the researcher specifying51

an SCM and then defining a causal query which can be answered based on the assumed SCM. Under52

certain assumptions about the SCM, it may be possible to estimate the answer to that causal query53

using the conventional tools of statistical inference. The standard tools of causal inference are54

designed with settings in mind where the predictions of a scientific theory take the form of a simple55

causal query. Such queries are stated in terms of some low dimensional causal variable t and some56

outcome Y . For example, a question like how much does a medical procedure reduce the risk of57

disease, represents a simple causal query because it is defined in terms of a single unidimensional58

treatment. Such queries can be easily quantified using conventional statistical estimands because they59

are directly formulated in terms of a small number of theoretically motivated variables.60

This paper instead focuses on situations where a scientific theory makes diffuse predictions about the61

importance of a large number of causal variables, defying the stylization of simple causal queries.62

Such queries are common in scientific research. For example:63

• Genome Wide Association Studies (GWAS) – GWAS attempt to quantify the causal effect64

of a huge number of individual genotypes on the likelihood that some trait is expressed65

[Stephens and Balding, 2009, Visscher et al., 2017]66

• Personality – psychologists are often interested in the effect certain personality traits (such67

as extraversion or neuroticism) might have on life outcomes [Pervin, 2003], but such traits68

are only observed by the researcher as responses to a large number of survey questions.69

• Text – language is complex and multi-faceted and the causal effect of the wording of a70

document on a user’s response requires an assessment of the contribution of many different71

topics or words together [Fong and Grimmer, 2016, Egami et al., 2018, Fong and Grimmer].72

• Complex medical treatments – many medical treatments cannot be reduced to a single73

low dimensional representation. For example, radiation exposure is observed as a high74

dimensional vector [Nabi et al., 2017] and medical researchers might also wish to understand75

the combined importance of many procedures using electronic medical records [Gottesman76

et al., 2013].77

Such causal queries are complex because they require estimating the joint influence of many causal78

variables.79

The SCM undergirding such complex queries can take many forms. Three major examples are:80

(a) the many causes setting where the researcher wishes to understand the joint influence of many81
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Figure 1: Visualization of Causal Graphs With Complex Queries

(a)

t0 t1 t2 . . . tn

y

(b)

t0

t1 t2 . . . tn

y

(c)

t0

t3t2t1 . . . tn

y

Note: Figure visualizes SCMs corresponding to complex causal queries in the case of (a) many
causes, (b) many moderators, and (c) many mediators. (a) visualizes the case where treatment types
t0 . . . tn each influence y described in Wang and Blei [2019]. (b) visualizes the case where the
causal effect of t0 on y is directly modified by t1 . . . tn as described in VanderWeele and Robins
[2007]. (c) visualizes the case where the effect of t0 on y is mediated by t1 . . . tn as described by
Zhou and Yamamoto [2020].

treatments (b) many moderators setting where the researcher wishes to understand how effect of a82

binary treatment varies based on many variables (c) the many mediators setting where the researcher83

wishes to model how a causal effect can be decomposed into many different pieces. These SCM’s are84

visualized in Figure 1 in the form of directed acylical graphs (DAGs). The unifying trait of a complex85

causal query is that it asks about the importance of many arrows present in each DAG.86

Techniques developed in the context of simple causal queries cannot be readily used to answer87

complex ones. While the standard tools of causal inference can be used to estimate causal effects88

corresponding to every combination of causal variables in SCM’s like those visualized in Figure 1,89

they do not provide applied researchers with a single unambiguous estimate with which to summarize90

the joint causal effect of many such variables.91

2.2 Previous Work92

The only existent proposal for addressing the challenge presented by complex causal queries in the93

machine learning literature is to dimension reduce the relevant causal variables and then focus on a94

simple causal query defined in terms of that latent trait [Fong and Grimmer, 2016, Fong and Grimmer,95

Nabi et al., 2017]. This strategy has only been proposed in the many causes setting, but could also96

be extended to the many moderators or many mediators cases as well. Such a strategy is inherently97

reductive and risks understating the magnitude of causal effects because it disregards all variation in98

the treatment types that is not accounted for in the latent trait. Additionally such latent traits are often99

scale invariant and so may lack a scientifically meaningful interpretation.100

2.3 Assumptions and Notation101

We assume that the researcher observes a set of N independent (ti, Yi,xi) triplets where Yi is the102

outcome, and ti is a length K vector indicating the treatment type received by unit i, and xi is a103

length J vector representing a set of background covariates that causal effects should be adjusted for.104

Additionally, let T denote the support of the distribution of ti.105

We also assume that the researcher has knowledge of the population distribution of ti: g(t). In many106

settings, the empirical distribution of ti will be the most logical choice, but other choices may be107

reasonable as well if the population distribution is known to the researcher, as might be the case when108

conducting survey research or if the treatment types were experimentally randomized.109

Finally, we assume that the researcher has specified some SCM and has specified a simple causal110

query, τ(T ′, T ′′), which is defined in terms of two subsets: T ′, T ′′ ⊆ T . In the many causes case,111

τ(T ′, T ′′) might take the form:112
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τ(T ′, T ′′) ≡ E (E (Yi|do(t)) |t ∈ T ′)− E (E (Yi|do(t)) |t ∈ T ′′)

where do(·) represents some causal intervention [Pearl, 2009]. This estimand represents the average113

effect of receiving a set of treatments contained in T ′ rather than T ′′.114

In the many moderators or many mediators case on the other hand let the zeroth element of the115

treatment types vector recieved by unit i, ti,0 ∈ {0, 1}, denote the level of some binary treatment116

received by unit i. Similarly, let the remaining elements of ti be denoted ti,−0 and indicate the level117

received by unit i on the many moderators or mediators. Then a possible choice for τ(T ′, T ′′) might118

be:119

τ(T ′, T ′′) ≡ E (E (Yi|do(ti,0 = 1))− E (Yi|do(ti,0 = 0)) |ti,−0 ∈ T ′)
− E (E (Yi|do(ti,0 = 1))− E (Yi|do(ti,0 = 0)) |ti,−0 ∈ T ′′)

which represents the difference in average treatment effects between units with moderators or120

mediators contained in T ′ rather than T ′′.121

While these two choices of τ(T ′, T ′′) are likely to be useful in a number of situations, the framework122

could easily be generalized to a much wider range of causal quantities of interest. For example,123

τ(T ′, T ′′) could easily be defined in terms of ratios of different average outcomes, outcome quantiles,124

or instrumental variables approaches, etc.125

3 The Maximum Causal Set Effect126

The challenge for applied researchers in the presence of such complex causal queries is that a different127

value of τ(T ′, T ′′) can be defined for every distinct pair of sets T ′, T ′′ ⊆ T , leaving the analyst128

without a single unambiguous causal estimand to summarize their findings. In this section, we define129

a causal quantity of interest which overcomes this challenge by focusing on the contrast between130

two sets T Max
q and T Min

q which maximize τ(T ′, T ′′). To avoid choosing sets T Max
q and T Min

q which131

correspond to unrepresentative edge cases, we require that the sets be of a researcher specified size: q.132

Formally, let the set of subsets of T such that the probability that ti is in T is at least q be defined as:133

Tq ≡ {T ′ ⊆ T : P (ti ∈ T ′) ≥ q} where P (ti ∈ T ′) =
∫
T g(t)1{t ∈ T }dt.134

We then define MCSEq as:135

MCSEq = max
T ′,T ′′∈Tq

τ(T ′, T ′′) = τ
(
T Max
q , T Min

q

)
We refer to T Max

q as the maximum causal set and T Min
q as the minimum causal set. For many136

applications, the MCSE will have an intuitive and scientifically meaningful interpretation. In the137

actors example, it might be used to answer a question like what is the expected difference in box138

office performance between a film cast with one of the 10% best performing casts rather than one139

of the bottom 10% worst performing casts? Similarly, in the genetics example, it might answer the140

question, what is the difference in the efficacy of some drug for patients with one of the top 10% most141

treatment enhancing sets of genes rather than one of the bottom 10% most treatment diminishing sets142

of genes?143

4 Estimation144

This section outlines an algorithm for estimating MCSEq. Sample splitting is a major part of this145

algorithm and this section develops the procedure in the context of a single data split. The efficiency146

of this estimator can also easily be improved by rotating the roles that each subset of the data plays147

and then averaging the results, a procedure known as crossfitting [Chernozhukov et al., 2017], which148

we discuss in Appendix A.149
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4.1 Algorithm Overview150

A basic result in the Q-learning literature is that a single sample estimator for the maximum expected151

value will have an upward bias. Since conservative estimators are easier to interpret and necessary152

for valid hypothesis testing, we follow the lead of Hasselt [2010] in using a split sample estimator for153

this estimation task. This approach is also useful in demonstrating the asymptotic normality of the154

resulting estimator as well.155

Specifically, we begin by assuming that the analyst has randomly split the observations into two156

equally sized sets, SEst and SProb. We further assume that the analyst has specified two models.157

The first uses the elements of the splitting set to make predictions about the probability that any158

T ′, T ′′ ∈ Tq are the true maximum and minimum causal sets and we denote its predictions: P̂ (T ′ =159

T Max
q ∩T ′′ = T Min

q ). The second model makes a prediction about τ(T ′, T ′′) for any two T ′, T ′′′ ⊆ T ,160

and we denote its predictions τ̂(T ′, T ′′). Note P̂ (T ′ = T Max
q ∩ T ′′ = T Min

q ) should make use only161

of outcomes that are included in SProb while τ̂(T ′, T ′′) should only use the outcomes in SEst so162

that, ∀T ′, T ′′ ∈ Tq, P̂ (T ′ = T Max
q ∩ T ′′ = T Min

q ) ⊥⊥ τ̂(T ′, T ′′) conditional on observing the163

sample values of ti and xi for all units. After specifying models for P̂ (T ′ = T Max
q ∩ T ′′ = T Min

q )164

and τ̂(T ′, T ′′), estimation proceeds as a weighted average of the estimates for τ̂(T ′, T ′′) for every165

T ′, T ′′ ∈ Tq:166

M̂CSEq =
∑

T ′,T ′′∈Tq

P̂ (T ′ = T Max
q ∩ T ′′ = T Min

q )τ̂(T ′, T ′′)

4.2 Point Estimation Properties167

A major requirement for the good behavior of this estimator is that P̂ (T ′ = T Max
q ∩ T ′′ = T Min

q )168

obey the basic probability axioms and that it assign zero probability to sets of treatment types which169

are too small to be plausible candidates for T Max
q and T Min

q . These requirements are entirely verifiable170

by the analyst through the careful construction of P̂ (T ′ = T Max
q ∩ T ′′ = T Min

q ) and are formalized171

in the following assumption:172

Assumption 1. P̂ (T ′ = T Max
q ∩ T ′′ = T Min

q ) satisfies the following conditions:173

•
∑
T ′,T ′′∈Tq P̂ (T ′ = T Max

q ∩ T ′′ = T Min
q ) = 1174

• ∀T ′, T ′′ ∈ Tq , 0 ≤ P̂ (T ′ = T Max
q ∩ T ′′ = T Min

q ) ≤ 1175

• P̂ (T ′ = T Max
q ∩ T ′′ = T Min

q ) = 0 for all T ′, T ′′ 6∈ Tq176

Under Assumption 1, M̂CSEq can be interpreted as a weighted average of estimators for the causal177

effect of being treated with a treatment type in one set rather than another. Because MCSEq is defined178

as the maximum of such causal effects for any two subsets of T of the required size, it will always be179

greater than the expectation of this average, leading to the following proposition:180

Proposition 1. If ∀T ′, T ′′ ∈ Tq, E (τ̂(T ′, T ′′)) ≤ τ(T ′, T ′′) and the conditions of Assumption 1
hold, then:

E
(

M̂CSEq

)
≤ MCSEq

Proof in appendix C.1181

The conditions for finite sample conservatism are relatively mild (for example, P̂ (T ′ = T Max
q ∩T ′′ =182

T Min
q ) could be misspecified or inconsistent); however, as formalized in the next proposition, the183

conditions for the consistency of MCSEq are a bit stronger and require that P̂ (T ′ = T Max
q ∩ T ′′ =184

T Min
q ) converge to a binary indicator identifying T Min

q and T Max
q :185

Proposition 2. If ∀T ′, T ′′ ∈ Tq ,186
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P̂ (T ′ = T Max
q ∩ T ′′ = T Min

q |SProb)
p−−−−→

n→∞
1{T ′ = T Max

q }1{T ′ = T Max
q }

and
τ̂(T ′, T ′′) p−−−−→

n→∞
τ(T ′, T ′′)

then
M̂CSEq

p−−−−→
n→∞

MCSEq

This result will also hold if convergence in probability is replaced with almost sure convergence.187

Proof in Appendix C.2.188

Many machine learning techniques (e.g. support vector machines, regression trees, etc.) will not189

readily produce probabilistic estimates for P̂ (T ′ = T Max
q ∩ T ′′ = T Min

q ), instead generating only a190

binary prediction for the two sets T Min
q and T Max

q . The following proposition shows that such binary191

estimators will perform at best as well as probabilistic estimators as long as the two estimators have192

the same expectation:193

Proposition 3. Let, d(T ′, T ′′) ∈ {0, 1} and w(T ′, T ′′) ∈ [0, 1] represent two choices for P̂ (T ′ =

T Max
q ∩ T ′′ = T Min

q ). Let M̂CSEq

d
and M̂CSEq

w
represent the corresponding estimators for MCSEq .

Then if ∀T ′, T ′′ ∈ Tq , E (d(T ′, T ′′)) = E (w(T ′, T ′′)),

E
((

MCSEq − M̂CSEq

w)2)
≤ E

((
MCSEq − M̂CSEq

d
)2
)

Proof in Appendix C.3194

A direct implication of this result is that bootstrap aggregation can be used to improve the performance195

of any binary predictor for P̂ (T ′ = T Max
q ∩ T ′′ = T Min

q ) to create a probabilistic estimator without196

changing the expected value of the predictions.197

4.3 Interval Estimation198

While the previous section establishes the properties of the point estimator for MCSEq , such results199

will be of little utility for applied researchers without a corresponding framework for measuring200

the uncertainty of those estimates. In this section, we begin the process of providing such results201

by introducing the assumption that τ̂(T ′, T ′′) can be represented as a linear combination of the202

estimation set outcomes:203

Assumption 2. LetZ = {ti, xi : i ∈ SEst}. For any T ′, T ′′ ∈ Tq there exists a set of transformations
{fi(Z, T ′, T ′′) : i ∈ SEst} such that:

τ̂(T ′, T ′′) =
∑
i∈SEst

fi(Z, T ′, T ′′)Yi

Many common estimators for causal effects (e.g. matching, weighting, regression techniques, etc) fit204

this form, so such an assumption will not be unduly restrictive in many settings.205

This assumption eases the derivation of asymptotic normality because it shows that τ̂(T ′, T ′′) can be206

represented as the sum of independent random variables. The following proposition uses the central207

limit theorem derived by Neumann [2013] to show that multiplication by P̂ (T ′ = T Max
q ∩T ′′ = T Min

q )208

will not impact this convergence so that asymptotic normality of M̂CSEq can be preserved under209

some mild regularity conditions:210

Proposition 4. If P̂ (T ′ = T Max
q ∩ T ′′ = T Min

q ) satisfies assumption 1; ∀i,E
(
Y 2
i

)
< ∞; and211

∀ε > 0,212

∑
i∈SEst

1

|SEst|
E
(
fi(Z, T ′, T ′′)2Y 2

i 1{|fi(Z, T ′, T ′′)| > ε}
)
−−−−−−→
|SEst|→∞

0
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Then, conditional on observing the estimation set values of ti and xi,(
M̂CSEq − E

(
M̂CSEq

))
√

Var(M̂CSEq)

D−→ N (0, 1)

Proof in Appendix C.4213

The final result necessary for conducting classical statistical inference is a corresponding variance214

estimator. This can be most easily accomplished via the non-parametric bootstrap. Specifically,215

Mammen [1992] shows that the non-parametric bootstrap is consistent for an asymptotically normal216

estimator that can be represented as a linear transformation of some set of independent observations.217

The following lemma uses assumption 2 to provide just such a result:218

Lemma 1.
M̂CSEq =

∑
i∈SEst

Yiwi

where wi =
∑
T ′,T ′′∈Tq P̂ (T ′ = T Max

q ∩ T ′′ = T Min
q )fi(Z, T ′, T ′′)219

Proof. The proof follows trivially by using assumption 2 to substitute
∑

i∈SEst fi(Z, T ′, T ′′) for220

τ̂(T ′, T ′′) in the definition of M̂CSEq and then changing the order of summation.221

So the variance and confidence intervals of M̂CSEq can be consistently estimated by bootstrap222

resampling from the set {Yiwi : i ∈ SEst}.1223

5 Experiments224

5.1 Benchmarks on Synthetic Data225

We first consider the performance of this estimation procedure using synthetic data. Specifically, to226

asses the performance of this estimator, we implemented it on synthetic version of the many causes227

setting. First, we generated a set of N length K vectors of causes for each unit i as ti ∼ N (0,Σ)228

where Σ is some matrix with ones on the diagonal elements and some value ρ ∈ [0, 1] in the off229

diagonal elements. We then generated the outcome as µi = t′iβ where β is a length K vector230

composed of i.i.d draws from the standard normal distribution. Finally, we normalized µi so that the231

corresponding value of MCSEq was always 1 and generated the outcome variables as Yi = µi + εi232

where εi ∼ N (0, 1).233

We implemented two estimators on this dataset. The first is the split sample M̂CSEq estimator234

described in this paper2. Note that under this simulation set up, all the assumptions needed for the235

theoretical results presented in Section 4 to hold are known to be true, so M̂CSEq should be unbiased236

and consistent. We compared the performance of M̂CSEq with an estimate for M̂CSEq generated237

using a linear regression of Yi on the first principal component of ti.3 This estimator corresponds to238

the current state of the art for drawing causal inferences in the face of a complex causal query, which239

involves using dimension reduction techniques to simplify the complex causal query into a simple240

one. We repeated this procedure 100 times for each combination of K = 2, 10, and 50; ρ = 0, .5 and,241

.9; and values of N between 100 and 1,000.242

1Note, clustered standard errors can also be easily generated using the block bootstrap.
2Specifically, one using monte carlo sampling from the asymptotic distribution of linear regression of Yi on

ti as P̂ (T ′ = T Max
q ∩ T ′′ = T Min

q ) and a linear regression for τ̂(T ′, T ′′). See Appendix B.1 for more details
on the implementation of M̂CSEq

3See appendix B.2 for details on the implementation of this estimator.
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Figure 2: Simulation Results
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Note: Red dots identify the bias of the method for quantifying the combined effect of many causes
proposed in this paper while blue dots show the bias of dimension reduction techniques that represent
the current state of the art for this same task.

Figure 2 visualizes the results of this analysis. Each point in the figure represents the average of all243

300 iterations of the simulation procedure with the same values of n and K or n and ρ.4 Because244

the bias of both estimators is large relative to their variance in this setting, Figure 2 focuses on the245

bias of the estimators.5. These estimates show that M̂CSEq is a large improvement over the latent246

trait model, generating significantly less biased estimates even when ρ is large and the principal247

components analysis (PCA) should perform well. Importantly, the bias of M̂CSEq appears to vanish248

asymptotically while the PCA estimator shows little convergence as the sample size increases.249

5.2 An Application to Real World Data250

Our second application focuses on the role of democratic political institutions in reducing the251

likelihood of civil war onset. Democracy is a fundamental concept when modeling the quality of252

governance, but drawing inferences about it’s effect represents a straightforward example of the253

multiple causes setting. In particular, democracy cannot be measured as a single unambiguous feature254

– instead it is a confluence of many conceptually related by empirically distinct features describing255

different aspects of a system of governance. The causal effect of democracy on outcomes like conflict256

initiation is typically measured using a dimension reduction of the features representing the individual257

institutions [Treier and Jackman, 2008]; however, such strategies have led to conflicting results258

about the importance of democracy for political stability [Vreeland, 2008, Fearon and Laitin, 2003].259

4Note, the monte carlo error in these estimates is quite low. The standard error associated with these average
is never higher than .019 for any of the points.

5Appendix 4 presents estimates for the root mean squared error, which show a similar pattern
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Figure 3: The Causal Effect of Democratic Political Institutions on the Probability of Civil War Onset

0.000

0.025

0.050

0.075

0.100

0.1 0.2 0.3 0.4 0.5
q

M
C

S
E

q Model

All Democratic Institutions

V−Dem Democracy Index

Note: The red dots identify estimates for the MCSEq made using the methodology outlined in this
paper and represent the combined influence of many different democratic institutions together. The
blue dots instead represent the influence of just a univariate latent trait produced by the maintainers
of the V-Dem Dataset that is frequently used to model democracy.
Note 2: Confidence intervals adjusted for clustering by country.

Consequently, the role of democratic political institutions in reducing civil war onset represents a260

useful case for comparing latent trait models with with the MCSE.261

Specifically, we used a linear model with 4 lagged outcomes and fixed effects for the country and year262

for both P̂ (T ′ = T Max
q ∩ T ′′ = T Min

q ) and τ̂(T ′, T ′′) and measured democratic political institutions263

using the 128 features describing the system of governance present in a country in the Varieties of264

Democracy Dataset (V-Dem).6 The red dots and confidence intervals in Figure 3 show the estimates265

for MCSEq quantifying the effect of these political institutions on civil war onset for many different266

values of q. In particular, they suggest that countries with one of the 10% most conflict reducing267

institutions have roughly a 5% lower risk of civil war than countries with some of the 10% most268

conflict inducing institutions. The blue dots instead represent predictions for the MCSEq made using269

the predictions of a linear regression of just the V-Dem democracy variable on the probability of civil270

war onset.7 The estimates for MCSE are significantly larger than those generated using the more271

typical univariate model, suggesting that the the MCSE can successfully recover causal effects that272

standard latent variable approaches cannot.8273

Conclusion274

Non-parametric estimation techniques and high dimensional datasets increasingly confront re-275

searchers with estimates for a huge number of distinct causal estimands. While the capacity to276

fit such models represents tremendous progress for the estimation and computational techniques277

that support them, scientific theories rarely make predictions about such a large number of distinct278

parameters. In this article, we propose a framework for making sense of such model outputs by279

focusing on the maximum causal contrast between two sets of a researcher specified size q. We280

also develop an estimator for this estimand that is consistent, conservative in finite samples, and281

asymptotically normal. While the estimator is developed with the many causes and treatment effect282

heterogeneity settings in mind, the framework is extremely flexible and could be extended to a283

myriad of other causal qauntities of interest, speaking to its wide applicability and utility for applied284

researchers.285

6See appendix B.1 for more details on these models.
7Specifically, we used the linear regression to impute the conditional expectation function, and then estimated

the corresponding value of MCSEq using that imputed conditional expectation.
8While there is no straightforward way to generate confidence intervals for the univaraiate MCSE estimates,

the coefficient from regressing civil war occurrence on the democracy variable is not statistically significant.
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Broader Impacts Complex causal queries are ubiquitous in scientific research. While statistical286

analyses typically begin with the researcher specifying a small number of causal variables to focus287

on, scientific theories often make diffuse predictions about many variables working together. Such288

settings are particularly common in the social sciences, where causal variables often correspond to289

latent constructs that are only observed by the researcher as a set of proxies. For example, concepts290

like ideology, intelligence, or good public policy are not observed directly by the researcher, instead291

they are only revealed indirectly through a large number proxies such as votes cast in a legislature,292

answers to questions on an IQ test, or a large number of policies that may or may not be present in293

a particular municipality. Such complex causal queries also emerge in the natural sciences. Most294

prominently, genetics research is directly concerned with assessing the influence of a large number of295

genes on some outcome. Biological systems more generally often involve the complex interaction of296

a large number of distinct processes and could be understood from a similarly framework. These297

wide ranging examples speak to the value of the MCSE as an interpretable causal estimand for a wide298

range of applied researchers.299
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The checklist follows the references. Please read the checklist guidelines carefully for information on368

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or369

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing370

the appropriate section of your paper or providing a brief inline description. For example:371

• Did you include the license to the code and datasets? [Yes] See Section ??.372

• Did you include the license to the code and datasets? [No] The code and the data are373

proprietary.374

• Did you include the license to the code and datasets? [N/A]375

Please do not modify the questions and only use the provided macros for your answers. Note that the376

Checklist section does not count towards the page limit. In your paper, please delete this instructions377

block and only keep the Checklist section heading above along with the questions/answers below.378

1. For all authors...379

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s380

contributions and scope? Yes381

(b) Did you describe the limitations of your work? Yes. Limitations and requirements for382

all main results to hold are clearly stated in each theorem383

(c) Did you discuss any potential negative societal impacts of your work? NA. This work384

essentially generalizes causal inference techniques that have been developed in other385

contexts. While harms can certainly result from the improper use of such techniques,386

we do not perceive any additional problems emerging from the use of this estimand.387

(d) Have you read the ethics review guidelines and ensured that your paper conforms to388

them? Yes389

2. If you are including theoretical results...390

(a) Did you state the full set of assumptions of all theoretical results? Yes391

(b) Did you include complete proofs of all theoretical results? Yes392

3. If you ran experiments...393

(a) Did you include the code, data, and instructions needed to reproduce the main experi-394

mental results (either in the supplemental material or as a URL)? Yes395

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they396

were chosen)? Yes397

(c) Did you report error bars (e.g., with respect to the random seed after running experi-398

ments multiple times)? Yes. The standard error of the bias estimates is discussed in399

footnote 4. They are quite low relative to the magnitude of performance improvement400

that our approach brings and should be unconcerning.401

(d) Did you include the total amount of compute and the type of resources used (e.g., type of402

GPUs, internal cluster, or cloud provider)? No. These analyses are not computationally403

intensive and can be run locally on most computers.404

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...405

(a) If your work uses existing assets, did you cite the creators? Yes406

(b) Did you mention the license of the assets? NA407

(c) Did you include any new assets either in the supplemental material or as a URL? NA408

(d) Did you discuss whether and how consent was obtained from people whose data you’re409

using/curating? NA410

(e) Did you discuss whether the data you are using/curating contains personally identifiable411

information or offensive content? NA412
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5. If you used crowdsourcing or conducted research with human subjects...413

(a) Did you include the full text of instructions given to participants and screenshots, if414

applicable? NA415

(b) Did you describe any potential participant risks, with links to Institutional Review416

Board (IRB) approvals, if applicable? NA417

(c) Did you include the estimated hourly wage paid to participants and the total amount418

spent on participant compensation? NA419
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