
A Hybrid Neuro-Symbolic Approach for Text-Based Games
using Inductive Logic Programming

Kinjal Basu,1 Keerthiram Murugesan,2 Mattia Atzeni,2,3 Pavan Kapanipathi,2 Kartik
Talamadupula,2 Tim Klinger,2 Murray Campbell,2 Mrinmaya Sachan,4 Gopal Gupta1

1 University of Texas at Dallas 2 IBM Research 3 EPFL 4 ETH Zurich
kinjal.basu@utdallas.edu, keerthiram.murugesan@ibm.com, atz@zurich.ibm.com, kapanipa@us.ibm.com,

krtalamad@us.ibm.com, tklinger@us.ibm.com, mcam@us.ibm.com, mrinmaya.sachan@inf.ethz.ch, gupta@utdallas.edu

Abstract

Text-based games (TBGs) have emerged as an important test-
bed, requiring reinforcement learning (RL) agents to com-
bine natural language understanding with reasoning. A key
challenge for agents solving this task is to generalize across
multiple games and shows good results on both seen and un-
seen objects. Currently, pure deep learning-based RL sys-
tems can perform well to known entities and states. They,
however, perform poorly in novel situations e.g., when han-
dling out-of-vocabulary (OOV) objects. In the perspective of
generalization, recent efforts in infusing external common-
sense knowledge into an RL agent show better results than
pure deep-learning systems. However, the policies learned
by these systems are not interpretable or easily transferable.
To tackle these issues, we have designed a hybrid neuro-
symbolic framework for TBGs that uses symbolic reasoning
along with the neural RL model. It employs inductive logic
programming (ILP) to learn the symbolic rules (policies) as
default theory with exceptions and is represented in the form
of an answer-set-program (ASP) that allows performing non-
monotonic reasoning in the partially observable game envi-
ronment. We use WordNet as an external knowledge source
to lift the learned rules to their generalized versions. These
rules are learned in an online manner and applied with an ASP
solver to predict an action for the agent. We show that the
agents that incorporate the neuro-symbolic hybrid approach
with the generalized rules outperform the baseline agents.

Introduction
Natural language plays a crucial job in human intelligence
and cognition. TBGs become appropriate simulation envi-
ronments for studying the language-informed sequential de-
cision making process as the states and actions in these
games are described in natural language. So, to solve these
games an agent needs the skill of both natural language pro-
cessing (NLP) and reinforcement learning (RL). At a high
level, the existing agents can be classified into two classes
- (a) rule-based agents, and (b) neural agents. Rule-based
agents such as NAIL (Hausknecht et al. 2019) rely heav-
ily on the prior pre-defined knowledge. This makes them
less flexible and adaptable. To overcome the challenges of
rule-based agents, in recent years, with the advent of the
new deep learning techniques, significant progress has been

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

made to the neural RL agents for TBGs (Adhikari et al.
2020; Narasimhan, Kulkarni, and Barzilay 2015). However,
these frameworks suffer from a number of shortcomings.
First, from deep-learning, they inherit the need for very large
training sets, which entails that they learn slowly. Second,
they are brittle in the sense that a trained network that may
show good performance with the seen entities in the train-
ing environments, however, it performs very poorly in the
similar environment with the unseen entities. Also, the poli-
cies learned by these neural RL agents are not interpretable,
which makes them less traceable.

In this paper, we introduce a hybrid neuro-symbolic
(HNS) architecture for TBGs that utilizes the positive fea-
tures from both the neural and the symbolic agents. Instead
of using pre-defined prior knowledge, the symbolic agent
in HNS learns the symbolic policies by leveraging the re-
ward and action pairs while playing the game. This allows
the policies to be interpretable and very natural. Importantly,
the rules are learned as default theories so that the agent can
do non-monotonic reasoning. The non-monotonic reasoning
is crucial in the partially observable world as the agent’s be-
lief can be changed in the presence of new examples. Also,
we lift the rules using WordNet and that gives more gener-
alization capabilities to the rules. The neural part of an HNS
agent is responsible for doing the exploration in the environ-
ment and is used in the scenarios where symbolic agent fails
to provide an action (due to lack of learned rules). We have
tested our HNS agent on TextWorld-Commonsense frame-
work (Murugesan et al. 2021) for TBGs that has received
much attention among the TBGs researchers. Our results
depict that the collaboration between the neural agent and
the symbolic agent along with WordNet based generaliza-
tion outperforms the current state-of-the-art results.

The main contributions of this paper are the follow-
ing: (1) we show a hybrid neuro-symbolic architecture for
TBGs that outperforms existing models in terms of steps
and scores; (2) we discuss the importance of non-monotonic
reasoning in the partially observable world; (3) we demon-
strate how default theories can be learned with exceptions
in an online manner for the TBGs; (4) we provide a novel
information-gain based rule generalization algorithm that
leverages WordNet.

Background
Text-based reinforcement learning: TBGs provide a chal-
lenging environment where an agent can observe the cur-
rent state of the game and act in the world using only the
modality of text. The agent perceives the state of the game
only through natural language observations. Hence, TBGs
can be modeled as a Partially Observable Markov Decision
Process (POMDP) (S,A,O, T , E , r), where S is the set of
states of the game,A is the natural language action space,O
is the set of textual observations describing the current state,
T are the conditional transition probabilities from one state
to another, E are the conditional observation probabilities,
r : S × A → R is a scalar reward function, which maps a
state-action pair to the reward received by the agent.
Inductive Logic Programming (ILP): ILP is one Machine
Learning technique where the learned model is in the form
of logic programming rules (Horn Clauses) that are com-
prehensible to humans. It allows the background knowledge
to be incrementally extended without requiring the entire
model to be re-learned. Meanwhile, the comprehensibility
of symbolic rules makes it easier for users to understand and
verify induced models and even edit them. Details can be
found elsewhere (Muggleton and De Raedt 1994).

Answer Set Programming (ASP): An answer set program
is a collection of rules of the form -

l0 ← l1, ... , lm, not lm+1, ... , not ln.

Classical logic denotes each li is a literal (Gelfond and Kahl
2014). In an ASP rule, the left hand side is called the head
and the right-hand side is the body. Constraints are ASP
rules without head, whereas facts are without body. The
variables start with an uppercase letter, while the predicates
and the constants begin with a lowercase. We will follow
this convention throughout the paper. The semantics of ASP
is based on the stable model semantics of logic program-
ming (Gelfond and Lifschitz 1988). ASP supports negation
as failure (Gelfond and Kahl 2014), allowing it to elegantly
model common sense reasoning, default rules with excep-
tions, etc.

s(CASP) Engine: s(CASP) (Arias et al. 2018) is a query-
driven, goal-directed implementation of ASP that includes
constraint solving over reals. Goal-directed execution of
s(CASP) is indispensable for automating commonsense rea-
soning, as traditional grounding and SAT-solver based im-
plementations of ASP may not be scalable. There are three
major advantages of using the s(CASP) system: (i) s(CASP)
does not ground the program, which makes our framework
scalable, (ii) it only explores the parts of the knowledge base
that are needed to answer a query, and (iii) it provides nat-
ural language justification (proof tree) for an answer (Arias
et al. 2020).

Neuro-Symbolic RL Framework for
Text-Based Games

The goal of this paper is to show how a neural and a sym-
bolic agent can work together in an RL environment for the

OBSERVATION(Ot)
You have entered into a

bedroom. You see a
chest drawer and a

wardrobe. The
wardrobe is open.

INVENTORY: You are
carrying a shirt.

Admissible Actions
(e.g., open chest-drwawer,
insert shirt into wardrobe)

Action Selector

Fact Generalizer
(using WordNet)

Symbolic Facts
Generator

ASP Solver

(s(CASP))

Rules Set

Sy
m
bo

lic
 A

ct
io
n

Se
le
ct

or

Parser + IE
Word

Embeddings

GRU

Context
Encoding

GRU

Co
nt

ex
t

En
co

di
ng

St-1

Word
Embeddings

GRU

A
ct

io
n

En
co

di
ng

Environment

Action Action
+ Reward

Neural Action Selector

Rulest-1

Rulest

ILP
Rule

Generalizer
Symbolic Rule Learner

Figure 1: Overview of the HNS agent’s decision making at
any given time step. The Hybrid Neuro-Symbolic architec-
ture mainly consist of 5 modules - (a) Context Encoder en-
codes the observation to dynamic context, (b) Action En-
coder encodes the admissible actions, (c) Neural Action Se-
lector combines (a) and (b) with

⊕
operator, (d) Symbolic

Action Selector returns a set of candidate actions, and (e)
Symbolic Rule Learner uses ILP and WordNet based rule
generalization to generate symbolic rules.

TBGs. The neural agents are good at exploration whereas
the symbolic agents are good at learning interpretable poli-
cies that offer rewards and apply them to select a candidate
set of actions. Keeping it as a motivation, in this work, we
try to capitalize the power of both the agents to get better
results. The main idea is to use the symbolic agent to learn
the policies in the form of logic rules and apply them us-
ing an ASP solver. When the symbolic agent fails to provide
a good action, then neural agent takes care of it as a fall-
back. In other words, the action selector gives priority to the
symbolic agent over the neural. Figure 1 illustrates the com-
ponents of our HNS architecture and shows an overview of
the decision making process.

Symbolic Policy Learner with Generalization
Deep reinforcement learning (DRL) has gained great suc-
cess by learning directly from high-dimensional sensory in-
puts, yet it suffers from lack of interpretability. Interpretabil-
ity of an agent’s action is of utmost importance in se-
quential decision-making as it increases the transparency of
the black-box-style DRL agents. Also, it helps the RL re-
searchers to understand the high-level behavior of the sys-
tem better. To make a system interpretable, one of the most
vastly used approaches is learning the agent’s policies sym-
bolically. In our work, the HNS agent learns these symbolic
policies in the form of logical rules represented in ASP lan-
guage. For the HNS agent these learned logical ASP rules
not only provide a better understanding of the system’s func-
tionality but also can be used to predict the agent’s action us-
ing an ASP solver. HNS agent learns the rules iteratively and
applies the rules to predict an action in collaboration with the
neural agent. Our result shows, this hybrid approach is very
effective in terms of performance.

insert {o} into {c}
put {o} on {s}

insert dirty whisk into dishwasher
put black hat on hat-rack

insert(dirty_whisk, dishwasher) put(black_hat, hat_rack)
o(dirty_whisk) c(dishwasher) s(hat_rack)

Figure 2: Entity extraction using Action Template

HNS agent works in a partially observable environment,
where it needs to predict an action based on its prior knowl-
edge. If it fails, then it learns a new thing which will be
applied in the next episode. This is very similar to human
thought process as we take decisions based on the knowl-
edge we currently possess and the knowledge increases with
experience. So, similar to a human, the reasoning approach
of the HNS agent is non-monotonic in nature, which means
“what it believes currently may become false in the fu-
ture with new evidence”. We can model this using a non-
monotonic logic programming paradigm which supports de-
fault rules and exception to defaults (Gelfond and Kahl
2014). In our work, the belief of an agent is represented as
an Answer Set Program in the form of default rules with
exception. With the help of ILP, these rules are learned by
the HNS agent after each episode and then apply them in
the following episode. Based on the outcome after applying
the default rules, it updates the learned rules with the excep-
tion (if needed) and also learned new rules. In this way, the
HNS agent incrementally learns these rules along with the
exceptions.

Learning default theories using ILP
In this section, we briefly describe the default theory learn-
ing procedure using ILP in an RL environment. As men-
tioned earlier, the model learned by ILP is in the form
of a logic program. We use ASP as the logic program-
ming paradigm as it has not only the efficiency to repre-
sent the knowledge in default theories with exception using
negation-as-failure (NAF) but also capable to do reasoning
on the represented knowledge. So, the symbolic component
of an HNS agent learns the default rules using ILP and uses
ASP solver - s(CASP) to predict an action.

To apply an ILP algorithm, at first an HNS agent needs to
collect the State, Action, and Reward pairs while exploring
the text based environment. The main two components of the
State description are the inventory information of the agent
and the details of the entities in the environment. The in-
ventory information, which is present explicitly in the HNS
agent, can be easily extracted. To get the entity description,
we utilize the admissible actions of an agent. This set of
admissible actions are also provided by the game environ-
ment at each step and among these actions one action is the
best to take in the perspective of direct/future reward. Now,
the action templates, which are predefined to the agent, can
be applied on the admissible actions to extract the entities
that are present in the current environment. The TWC envi-
ronment includes three main kinds of entities: objects (O),

Goal

Examples

Predicates

insert_washing_machine

POSITIVE: [(shirt(shirt1), dirty(shirt1), …), (singlet(singlet1),
 dirty(singlet1), …), (…), …]
NEGATIVE: [(shirt(shirt2), clean(shirt2), …), (…), …]

shirt, singlet, dirty, clean, etc.

Goal Predicates Examples

{ insert(X, washing_machine) :- dirty(X). }

ILP

Figure 3: ILP Rule Learning Example

supporters (S), and containers (C) and using them the ac-
tion templates are made. An example of an action template
is — “take {O} from {S}”. Figure 2 illustrates an instance
of a first-order predicate generation process by applying the
action templates to the actions. Along with this State de-
scription, the HNS agent also stores the taken Action and the
Reward information at each step.

To learn the rules, an ILP algorithm requires mainly three
types of information - goal, predicate list, and examples.
The goal is the concept that the ILP algorithm is going to
learn by exploring the examples. The predicates give the ex-
planation to a concept. In the learned theory formulated as
logical rules, goal is the head and the predicate list gives
the domain space for the body clauses. The examples are
the set of positive and negative scenarios that are collected
by the agent while playing. In our work, we have mainly fo-
cused on learning the hypothesis for the rewarded actions. In
TWC, the rewarded actions are location oriented or depend
on the storage (S) and containers (C) entities. So, the agent
first splits the gathered information (i.e., state, action, and re-
ward) based on the action and the location of an object in the
form of <action_location> (e.g., insert_washing_machine,
put_shelf, etc.). This <action_location> becomes the goal
for the ILP algorithm. Next, using the rewards (i.e., positive
and negative) the agent splits the corresponding information
of a goal in two separate mutually exclusive sets. These two
sets become the positive and negative example sets for the
ILP. Each example (structured as first-order predicate) in
these sets are presented in the form of <feature(object_id)>,
where the object_id represents a unique instance of the ob-
ject type. It is important to distinguish two or more different
objects of the same type in the same environment with dis-
tinct features. Also, the agent creates the predicate list by
extracting the predicate names from the examples. Now, af-
ter having the goal, predicate list, and the example, the HNS
agent runs the ILP algorithm to learn the hypothesis and then
do simple string post-processing to get the hypothesis in the
below form —
action(X , location) <- feature(X).

Figure 3 elaborates the ILP data preparation procedure along
with an example of a learned rule.

insert(X, wardrobe) <- �e(X).
insert(X, wardrobe) <- jacket(X), not ab(X).
ab(X) <- dirty(X).

insert(X, wardrobe) <- wearable(X), not ab(X).
ab(X) <- dirty(X).

Jacket

Wearable

Tie

WordNet

Figure 4: Example of Rule Generalization

HNS agent learns these rules after each episode iteratively
and applies the rules in the next step. For applying these
rules, HNS agent uses goal-directed ASP solver - s(CASP)
(Arias et al. 2018). Similar to the ILP data preparation pro-
cedure (described above), HNS agent first collects the state
and the admissible actions set and represents them as ASP
facts. Then, employ the s(CASP) engine to get the possi-
ble set of action pairs from the learned rules and the current
state information. As we learn after each episode, because of
very little exploration, the learned rules in the initial stages
are not great and it gradually improves with the no. of train-
ing episodes. One of the key components of this improve-
ment is the exception learning. The exception is a clause in
the rule’s body that uses NAF to capture the exceptional sce-
narios. Classical logic rules are very strict in nature, whereas
using NAF and exception the ASP rules become flexible and
can be applied in the absence of information. An HNS agent
learns these exceptions after applying the rules and failing to
get rewards. For an example, HNS agent learns the rule say-
ing that “apple goes to the fridge”, however, the agent fails
when it tries the rule in the next episode for the “rotten ap-
ple”. Then it learns that the feature - ‘rotten’ is the exception
to the above learned rule. This can be represented as below:

insert(X , fridge) <- apple(X), not ab(X).
ab(X) <- rotten(X).

Also, note that the no. of examples covered by the exception
are always less than the no. of examples covered by the de-
faults and we have incorporated this constraint in the HNS
agent’s exception learning module.

WordNet based Generalization
An ideal RL agent should not only work great with the seen
entities but also supposed to work well with the unseen enti-
ties or out-of-distribution (OOD) data. To achieve this, pol-
icy generalization is the utmost important feature that an
ideal RL agent should possess. In our work, the TWC games
are designed in such a way that the agents are tested on OOD
entities that are not seen before, however, they are similar to
the training data. So, the learned policies as logic rules will
not work on the unseen objects. For an example, the rule “in-
sert(X, fridge) <- apple(X)” can not work on another fruit
such as “orange”. To tackle this, we lift the learned poli-
cies using WordNet’s (Miller 1995) hypernym-hyponym re-
lations to get the generalized rules. Figure 4 illustrates a rule
generalization example from WordNet. The motivation be-
hind this comes from the way humans do the tasks in their
day-to-day life. For an example, if we know a dirty shirt
goes to the washing machine and we have seen a dirty pant.

Algorithm 1: Generalized Rule Generation using WordNet
Input: E: Examples (States, Actions, and Rewards)
Output: RG: Generalized Rules Set

1: procedure GETGENERALIZEDRULES(E)
2: Rg ← {} ▷ initialization
3: Goals ← getGoals(E) ▷ get the list of goals

similar to the ILP data preparation (described above)
4: for each g ∈ Goals do
5: Eg ← getExamples(E, g)
6: (E+

g , E−
g) ← splitByRewards(Eg)

7: (Hyp+g , Hyp−g) ← extractHypernyms(E+
g , E−

g)
▷ get the hypernyms from WordNet

8: rg ← getBestGeneralization(E+
g , E−

g , Hyp+g , Hyp−g)
▷ uses entropy based information gain formula

9: Rg ← Rg ∪ rg
10: end for
11: return Rg

12: end procedure

Then, normally we put the dirty pant into the washing ma-
chine as both are the type of clothes and dirty. The human
mind is capable of doing the generalization in no time and
that works really great.

On one hand, generalization gives better policies to work
with the unseen entities and on the other hand, too much
generalization leads to a drastic increment in false-positive
results. To keep the balance, the agent should know how
much generalization is good. For an example, “apple is a
fruit”, “fruits are part of a plant”, and “plants are living
thing”. Now, if we apply the same rule that explains a prop-
erty of an apple to all the living things, then it will become
too erroneous. In this paper, we introduce a novel algorithm
to dynamically generate the generalized rules exploring the
hypernym relations from the WordNet. The algorithm is
based on information gain calculated using the entropy of
the positive and negative set of examples (collected by the
agent). The illustration of the process is given in the Algo-
rithm 1. The algorithm takes the collected set of examples
and returns the generalized rules set. First, similar to the ILP
data preparation procedure, the goals are extracted from the
examples. For each goal, examples are split into two sets -
E+ and E−. Next, the hypernyms are extracted using the
hypernym-hyponym relations of the WordNet ontology. The
combined set of hypernyms from (E+, E−) gives the body
predicates for the generalized rules. Similar to the ILP (dis-
cussed above) the goal will be the head of a generalized rule.
Next, the best generalized rules are generated by calculating
the max information gain between the hypernyms. Informa-
tion gain for a given clause is calculated using the below
formula (Mitchell 1997) —

IG(R, h) = total ∗ (log2
p1

p1 + n1
− log2

p0
p0 + n0

) (1)

where h is the candidate hypernym predicate to add to the
rule R, p0 is the number of positive examples implied by the
rule R, n0 is the number of negative examples implied by the
rule R, p1 is the number of positive examples implied by the
rule R + h, n1 is the number of negative examples implied

Easy Medium Hard
#steps N. Score #steps N. Score #steps N. Score

IN

Text Only 15.12 ± 1.95 0.91 ± 0.03 33.17 ± 2.76 0.83 ± 0.04 47.68 ± 2.43 0.6 ± 0.05
Best Rules 17.72 ± 3.18 0.92 ± 0.02 46.45 ± 1.85 0.48 ± 0.12 38.33 ± 1.7 0.84 ± 0.03

All-Inclusive Rules 17.39 ± 3.01 0.93 ± 0.04 46.7 ± 2.14 0.42 ± 0.12 37.66 ± 0.93 0.88 ± 0.01

Generalized
Rules

Exhaustive 12.86 ± 3.04 0.91 ± 0.04 29.9 ± 3.16 0.65 ± 0.06 30.44 ± 0.87 0.95 ± 0.03
IG (Hyp. Lvl. 2) 10.59 ± 1.3 0.95 ± 0.02 22.57 ± 1.04 0.77 ± 0.07 30.46 ± 0.74 0.87 ± 0.01
IG (Hyp. Lvl. 3) 9.55 ± 2.34 0.96 ± 0.02 25.34 ± 2.86 0.76 ± 0.03 33.54 ± 1.47 0.91 ± 0.03

OUT

Text Only 16.66 ± 1.74 0.92 ± 0.03 37.3 ± 3.45 0.73 ± 0.06 50.00 ± 0.0 0.3 ± 0.04
Best Rules 21.17 ± 2.3 0.86 ± 0.05 44.26 ± 4.09 0.47 ± 0.1 45.32 ± 2.36 0.57 ± 0.05

All-Inclusive Rules 21.19 ± 0.87 0.84 ± 0.06 46.36 ± 1.52 0.42 ± 0.08 44.25 ± 0.42 0.63 ± 0.01

Generalized
Rules

Exhaustive 14.65 ± 2.18 0.91 ± 0.05 37.07 ± 2.09 0.63 ± 0.06 41.52 ± 1.12 0.83 ± 0.02
IG (Hyp. Lvl. 2) 15.08 ± 1.2 0.91 ± 0.02 40.63 ± 3.03 0.57 ± 0.06 42.18 ± 0.66 0.79 ± 0.01
IG (Hyp. Lvl. 3) 12.72 ± 1.22 0.92 ± 0.02 37.38 ± 3.09 0.64 ± 0.09 43.16 ± 2.83 0.78 ± 0.03

Table 1: Generalization results for within distribution (IN) and out-of-distribution (OUT) games

by the rule R + h, total is the number of positive examples
implied by R also covered by R + h. Finally, it collects all
the generalized rules set and returns. Please note that this
algorithm only learns the generalized rules which are used in
addition to the rules learned by ILP and exception learning
(discussed earlier) are the same for both cases.

Experiments
With the help of TWC framework (Murugesan et al. 2021),
we generate a set of games with 3 different difficulty levels
- (i) easy level: that contains 1 room with 1 to 3 objects; (ii)
medium level: that contains 1 or 2 rooms with 4 or 5 objects;
and (iii) hard level: a mix of games with a high number of
objects (6 or 7 objects in 1 or 2 rooms) or high number of
rooms (3 or 4 rooms containing 4 or 5 objects).

In our work, we want to show that if an RL agent uses
symbolic and neural reasoning in tandem, then the perfor-
mance of that agent increases drastically in the text-based
games. So as a baseline model, we choose the text-only neu-
ral agent (Murugesan et al. 2021) that uses encoded history
of observation to select the best action. For this paper, as our
main focus is on the symbolic reasoning, we kept the text-
only agent same in all of our experiments and tested on five
different symbolic settings. Please note that out of these five
settings two uses only ILP - best and all-inclusive rules, and
other three uses ILP + WordNet based generalization. Below
are the details of all the settings -

Best Rules: A feature of any ILP algorithm is to learn min-
imum amount of rules that covers maximum examples. To
achieve this, whenever there are two or more rules having
same information gain, the ILP selects one of them ran-
domly. This is our best rule settings.
All-Inclusive Rules: Here, the ILP return all the rules that
have same information gain instead of choosing randomly.
Exhaustive Rule Generalization: This setting lifts the rules
exhaustively with all the hypernyms up to WordNet level 3
from an object or in other words select those hypernyms of
an object whose path-distance with the object is ≤ 3.
IG based generalization (Hypernym Level 2): Here, the
agent uses the rule generalization algorithm (algorithm 1).
It takes WordNet hypernyms up to level 2 from an object.

IG based generalization (Hypernym Level 3): Similar to the
above setting, here we provide hypernyms upto level 3.
Table 1 shows the comparison results of all the 5 settings
along with the baseline model (text-only agent). Following
(Murugesan et al. 2021), we compared our agents in two dif-
ferent test sets - (i) IN distribution: that has the same entities
as the training dataset, and (ii) OUT distribution: that has
new entities, which have not been included in the training
set. In the table, we report the number steps taken by the
agent (lower is better) and the normalized scores (higher is
better). Note that, in all the settings, agents are trained using
100 episodes with 50-steps maximum.

Qualitative Studies
The agent with IG based generalization (hypernym Level
3) performs better than the others in the easy and medium
level games, whereas exhaustive generalization works well
in the hard games. This shows that one one side, the exhaus-
tive generalization works slightly better in the environment
where the entities and rooms are more and that needs more
exploration. On another side, IG-based generalization works
efficiently when the agent’s main task is to select appropriate
locations of different objects. In the easy and medium games,
the best rules and the all-inclusive rules (without generaliza-
tion) perform poorly in comparison with the baseline model.
This indicates - only learning rules without generalization
for simple environments leads to bad action selection espe-
cially when the entities are unseen. The out-distribution re-
sults for the medium games are not up to the mark. Further
studies on this show that this happens when the OOD games
have different but similar locations (clothes-line vs. clothes-
drier) along with different objects in the environment. Gen-
eralization on the location gives very noisy results (increases
false-positive cases) as they already belong to a higher level
in the WordNet ontology. The solution for this requires an-
other way of incorporating commonsense to the agent and
we addressed more on this in the future-work section.

Confidence score of a learned rule is crucial as it projects
the reliability of a rule. In our work, the rules are learned
in two different ways - using ILP and generalizing them
later with WordNet. So, HNS agent calculates the confidence
score based on two separate components - (i) coverage of a

2.0000 put(X, shelf) :- flour(X). (1)
2.0000 put(X, shelf) :- peanut_oil(X). (2)
1.9626 insert(X, trash_can) :- used(X). (3)
1.8000 put(X, hat_rack) :- headgear(X). (4)
1.5432 insert(X, fridge) :- dairy_product(X). (5)
0.9519 put(X, shelf) :- seasoner(X). (6)
0.6000 insert(X, fridge) :- structure(X). (7)

Figure 5: Example of Rule’s Confidence Scores (medium
level games)

put(X, clothesline) :- wet(X).
insert(X, wardrobe) :- clothing(X).
insert(X, wardrobe) :- wearable(X).
insert(X, dishwasher) :- utensil(X).
insert(X, dishwasher) :- dirty(X).
insert(X, chest_of_drawers) :- tie(X).
insert(X, fridge) :- vegetable(X).
insert(X, fridge) :- veggie(X).
put(X, hat_rack) :- cap(X).
put(X, hat_rack) :- headdress(X).
put(X, hat_rack) :- headgear(X).
put(X, coffee_table) :-
 kitchen_utensil(X).
put(X, coffee_table) :- pot(X).
put(X, coffee_table) :- teapot(X).
put(X, coffee_table) :- vessel(X).

Sy
m

bo
lic

 A
ct

io
n

N
eu

ra
l A

ct
io

n

OBSERVATION

ACTION

OBSERVATION

ACTION

-= Pantry =-
... The wall opens up to reveal a shelf.
But the thing is empty ...
INVENTORY:
You are carrying some sugar.

-= Bedroom =-
...You can see a wardrobe. The wardrobe
is empty! ...
INVENTORY:
You are carrying a clean checked shirt.

insert clean checkered shirt
into wardrobe

Neural Action: put sugar on shelf

<NO SYMBOLIC ACTION SELECTED>

LEARNED GENERALIZED
 RULES

Figure 6: Examples from TWC game, showing the learned
rules (right hand side) along with the observations and ac-
tion selection (Symbolic vs. Neural)

rule while playing, and (ii) the distance between two nodes
(entity and the hypernym) in the WordNet ontology. The
coverage of a rule can be calculated by the number of times
the rule gives a positive reward after applying divided by the
total number of times the rule has been used. Whereas the
WordNet based confidence gives a higher score to the par-
ent of an entity than its grandparent and also the direct ILP
learned rules get 1.0 (maximum score in this component).
Cumulative maximum score of two components is 2.0 (1.0
from each component). Note that the Best Rules and All-
Inclusive Rules do not get the second component score as
they do not possess any generalization (their maximum score
is 1.0). Figure 5 shows a snippet of a learned set of rules with
different confidence scores. Rule (1) and (2) got the max-
imum score of 2 which means they were learned from the
ILP and always got positive rewards when it was applied.
Rule (3), (4), (5), and (6) got better to medium scores and
we can clearly see why. For example, we normally put dairy
products to the fridge or head-gears to the hat-rack. Rule
(7) did not get a good score as it is a very generalized not-
reliable rule saying - things which has a structure goes to the
fridge.

Figure 6 illustrates an example, showing how a hybrid
neuro-symbolic agent plays the TWC games. HNS agent
learns the symbolic rules using ILP + WordNet based rule
generalization. A snippet of the learned rules is given on

the right-hand side of the figure. To generate action using
the symbolic module, the agent first extracts the information
about the entities from the observation and the inventory in-
formation. Then, this information are represented as ASP
facts along with the hypernyms of the objects. Next, it runs
the ASP solver - the s(CASP) engine to get a set of pos-
sible actions and select an action based on the confidence
scores. The top-left section of figure 6 shows how a sym-
bolic action that has been selected by matching the object
(i.e., clean checked shirt) with the rule set (highlighted in
the right). Here, the solver finds the location of the shirt in
wardrobe as ‘clothing’ and ‘wearable’ are the hypernyms of
the word - shirt. So, whenever the agent does not find a sym-
bolic action or fails to get reward from the suggested sym-
bolic action, then it moves to the neural agent to get an action
(as a fallback). The bottom-left of figure 6 shows that the lo-
cation of ‘sugar’ is not covered by any rules, so the neural
agent selects an action. In a similar way, figure 7 shows two
different scenarios of the game - (a) symbolic agent works
and neural fails, and (b) neural agent works and symbolic
fails. This is how the symbolic and neural modules of the
HNS agent work in tandem.

After doing extensive studies of exhaustive vs. IG based
rule generalization, we found that in exhaustive generaliza-
tion, the rules are lifted without considering the reliability of
the generalized rules. By adding exceptions, the exception
learning module takes care of it and tunes the low reliable
rules to powerful rules that work with different other ob-
jects. Oppositely, for an object, due to the presence of the ex-
ceptional scenario (negative example) for a particular hyper-
nym, the information gain becomes lower for that hypernym
in comparison with others. So, IG based generalization does
not learn that rule. In another sense, the IG based generaliza-
tion only learns the best hypernyms and that is much more
effective when the agent has seen many objects and their
correct locations (more exploration). The easy and medium
game results depicts the same. Figure 8 shows two snippets
of learned rules from the exhaustive generalization and the
IG based generalization for the entities whose location is
shoe cabinet. Both of the generalization methods learn al-
most the same set of rules, except the exhaustive one learn-
ing two more rules (rule no. 3 & 5). The reason behind is
the comprehensive generalization with the exception learn-
ing. So, in exhaustive generalization first, the rules are lifted
with the hypernyms without considering the negative exam-
ples and later exception learner adds that negative example
as an exception to fit all the examples with the learned rules.
So, ‘scarf’, which is a type of ‘covering’ but does not go to
a ‘shoe cabinet’, learned as an exception (rule no. 5) to the
rule no. 3. In IG based generalization, due to the presence
of a negative example (the ‘scarf’), the information gain for
‘covering’ goes down in comparison with the other hyper-
nyms. This ends up in not learning the rule for ‘covering’ in
IG based generalization.

Related Works
Text-based reinforcement learning: TBGs emerged as
promising environments for studying grounded language
understanding and have drawn significant research inter-

insert(X, chest_of_drawers) :- tie(X).
insert(X, fridge) :- onion(X).
insert(X, fridge) :- red_onion(X).
insert(X, laundry_basket) :- dirty(X)
put(X, clothesline) :- wet(X).
insert(X, clothes_drier) :- wet(X)
put(X, shelf) :- sugar(X).
insert(X, shoe_cabinet) :- footgear(X).
insert(X, shoe_cabinet) :- footwear(X).

OBSERVATION

ACTION

-= Backyard=-
...Let's see what's in here. It's a clothesline. ...
look over there, it's a BBQ ...
INVENTORY:
You are carrying a wet plaid blazer

Symbolic Action:
 put wet plaid blazer on clotheline

LEARNED GENERALIZED
 RULES

Neural Action:
 put wet plaid blazer on BBQ

(A) Instance of a game where Symbolic works and Neural fails

put(X, clothesline) :- wet(X).
insert(X, wardrobe) :- clothing(X).
insert(X, wardrobe) :- wearable(X).
insert(X, dishwasher) :- utensil(X).
insert(X, dishwasher) :- dirty(X).
insert(X, chest_of_drawers) :- tie(X).
insert(X, fridge) :- vegetable(X).
insert(X, fridge) :- veggie(X).
put(X, hat_rack) :- cap(X).

OBSERVATION

ACTION

-= Bedroom =-
...You can see a wardrobe. The wardrobe is
empty! You can see a open chest of drawers...
INVENTORY:
You are carrying a black gloves

Symbolic Action:
 insert black gloves into wardrobe

LEARNED GENERALIZED
 RULES

Neural Action:
insert black gloves into chest of

drawers

(B) Instance of a game where Symbolic Fails and Neural works

Figure 7: Two instances of TWC games, showing two different scenarios - (A) when symbolic agent works and neural agent
fails, and (B) when symbolic agent fails and neural agent works

Generalized Rules: Exhaustive
 1. insert(X, shoe_cabinet) :- footgear(X).
 2. insert(X, shoe_cabinet) :- footwear(X).
 3. insert(X, shoe_cabinet) :- covering(X), not ab1(X).
 4. insert(X, shoe_cabinet) :- shoes(X).
 5. ab1(X) :- scarf(X).

Generalized Rules: IG-based (Level 3)
 1. insert(X, shoe_cabinet) :- footgear(X).
 2. insert(X, shoe_cabinet) :- footwear(X).
 3. insert(X, shoe_cabinet) :- shoes(X).

Figure 8: Generalized Rule Examples (medium level games)

est. Recently, Zahavy et al. (2018) introduced the Action-
Elimination Deep Q-Network (AE-DQN), which learns to
predict invalid actions in the text-adventure game Zork. Côté
et al. (2018) designed TextWorld, a sandbox learning en-
vironment for training and evaluating RL agents on text-
based games. On the same line, Murugesan et al. (2021) in-
troduced TWC, a set of games requiring agents with com-
monsense knowledge. The LeDeepChef system (Adolphs
and Hofmann 2019) achieved good results on the First
TextWorld Problems (Trischler, Côté, and Lima 2019) by su-
pervising the model with entities from FreeBase, allow-
ing the agent to generalize to unseen objects. A recent line
of work learns symbolic (typically graph-structured) repre-
sentations of the agent’s belief. Notably, Ammanabrolu and
Riedl (2019) proposed KG-DQN and Adhikari et al. (2020)
proposed GATA.
Symbolic rule learning approaches: Symbolic rule learn-
ing using inductive logic programming has a long history of
research. After the success of ASP, many works have been
emerged that are capable of learning non-monotonic logic
programs, such as FOLD (Shakerin, Salazar, and Gupta
2017), ILASP (Law, Russo, and Broda 2014), XHAIL (Ray
2009), ASPAL (Corapi, Russo, and Lupu 2011), etc. FOLD
algorithm can learn default theories with exception from a
large set of data using background knowledge. Whereas,
the others resort to an exhaustive search for the hypothesis
in the data and that makes them non-scalable on the real-

world datasets. Also, there are not many efforts that have
been taken on lifting the rules to their generalized version
and then learning exceptions. Also, they do not perform well
on noisy datasets. To tackle these issues, there are efforts in
combining ILP with differentiable programming (Evans and
Grefenstette 2018; Rocktäschel and Riedel 2017). However,
it requires lots of data to be trained on. In our work, we use a
simple information gain based inductive learning approach,
as the HNS agent learns the rules after each episode with a
very small amount of examples (sometimes with zero neg-
ative examples). And, to make the rule non-monotonic, the
HNS agent learns the exception separately from the game
experience and updates the previously learned rules. Also,
we assume TWC games data are not noisy. In future, with
more harder games that have uncertainty and noise, we will
investigate more on differentiable ILP algorithms and will
see how we can apply them in the RL environment along
with exception learning. There are recent works in this di-
rection (Jiang and Luo 2019), however, they do not focus on
learning the non-monotonic programs, which is crucial in a
partially observable world.

Future Works and Conclusion
For the TBGs, this project is a proof of concept to show
how a symbolic agent can work together with a neural agent
in an RL environment. So, in our future work, we plan to
focus more on the action selector module that chooses the
best action between the symbolic agent vs. the neural agent.
From the current version, we have learned that too much de-
pendency on the symbolic agent and heavy generalization
is not always good. So next, we mainly want to work on
the process of switching between neural agent vs. symbolic
agent. We need to find a better way of choosing between
the actions generated by the neural and the symbolic agents.
One idea will be to use the neural-agent generated proba-
bility distributions over the admissible actions to filter out
the lower confident admissible actions and use the symbolic
agent to choose an action from the rest. Another approach
will be calculating the rule’s confidence based on external
commonsense knowledge. We hope, with these updates, our
HNS agent will perform better not only on TWC but also on
much harder text-adventure games like ZORK.

References
Adhikari, A.; Yuan, X.; Côté, M.-A.; Zelinka, M.; Rondeau,
M.-A.; Laroche, R.; Poupart, P.; Tang, J.; Trischler, A.; and
Hamilton, W. L. 2020. Learning dynamic knowledge graphs
to generalize on text-based games.
Adolphs, L.; and Hofmann, T. 2019. LeDeepChef: Deep
Reinforcement Learning Agent for Families of Text-Based
Games. ArXiv, abs/1909.01646.
Ammanabrolu, P.; and Riedl, M. 2019. Playing Text-
Adventure Games with Graph-Based Deep Reinforcement
Learning. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), 3557–3565.
Arias, J.; Carro, M.; Chen, Z.; and Gupta, G. 2020. Justifi-
cations for Goal-Directed Constraint Answer Set Program-
ming. arXiv preprint arXiv:2009.10238.
Arias, J.; Carro, M.; Salazar, E.; Marple, K.; and Gupta, G.
2018. Constraint answer set programming without ground-
ing. TPLP, 18(3-4): 337–354.
Corapi, D.; Russo, A.; and Lupu, E. 2011. Inductive logic
programming in answer set programming. In Interna-
tional conference on inductive logic programming, 91–97.
Springer.
Côté, M.-A.; Kádár, A.; Yuan, X.; Kybartas, B.; Barnes, T.;
Fine, E.; Moore, J.; Hausknecht, M.; Asri, L. E.; Adada, M.;
Tay, W.; and Trischler, A. 2018. TextWorld: A Learning En-
vironment for Text-based Games. CoRR, abs/1806.11532.
Evans, R.; and Grefenstette, E. 2018. Learning explanatory
rules from noisy data. Journal of Artificial Intelligence Re-
search, 61: 1–64.
Gelfond, M.; and Kahl, Y. 2014. Knowledge representation,
reasoning, and the design of intelligent agents: The answer-
set programming approach. Cambridge University Press.
Gelfond, M.; and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In ICLP/SLP, volume 88,
1070–1080.
Hausknecht, M.; Loynd, R.; Yang, G.; Swaminathan, A.; and
Williams, J. D. 2019. Nail: A general interactive fiction
agent. arXiv preprint arXiv:1902.04259.
Jiang, Z.; and Luo, S. 2019. Neural logic reinforcement
learning. In International Conference on Machine Learn-
ing, 3110–3119. PMLR.
Law, M.; Russo, A.; and Broda, K. 2014. Inductive learning
of answer set programs. In European Workshop on Logics
in Artificial Intelligence, 311–325. Springer.
Miller, G. A. 1995. WordNet: a lexical database for English.
Communications of the ACM, 38(11): 39–41.
Mitchell, T. 1997. Machine learning. McGraw Hill series in
computer science. McGraw-Hill.
Muggleton, S.; and De Raedt, L. 1994. Inductive logic pro-
gramming: Theory and methods. The Journal of Logic Pro-
gramming, 19: 629–679.
Murugesan, K.; Atzeni, M.; Kapanipathi, P.; Shukla, P.; Ku-
maravel, S.; Tesauro, G.; Talamadupula, K.; Sachan, M.;

and Campbell, M. 2021. Text-based RL Agents with Com-
monsense Knowledge: New Challenges, Environments and
Baselines. In Thirty Fifth AAAI Conference on Artificial In-
telligence.
Narasimhan, K.; Kulkarni, T.; and Barzilay, R. 2015. Lan-
guage understanding for text-based games using deep rein-
forcement learning. arXiv preprint arXiv:1506.08941.
Ray, O. 2009. Nonmonotonic abductive inductive learning.
Journal of Applied Logic, 7(3): 329–340.
Rocktäschel, T.; and Riedel, S. 2017. End-to-end differen-
tiable proving. arXiv preprint arXiv:1705.11040.
Shakerin, F.; Salazar, E.; and Gupta, G. 2017. A new al-
gorithm to automate inductive learning of default theories.
Theory and Practice of Logic Programming, 17(5-6): 1010–
1026.
Trischler, A.; Côté, M.-A.; and Lima, P. 2019. First
TextWorld Problems, the competition: Using text-based
games to advance capabilities of AI agents.
Zahavy, T.; Haroush, M.; Merlis, N.; Mankowitz, D. J.; and
Mannor, S. 2018. Learn what not to learn: Action elimi-
nation with deep reinforcement learning. In Advances in
Neural Information Processing Systems, 3562–3573.

