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Abstract

Designing spectral convolutional networks is a challenging problem in graph1

learning. ChebNet, one of the early attempts, approximates the spectral graph2

convolutions using Chebyshev polynomials. GCN simplifies ChebNet by utilizing3

only the first two Chebyshev polynomials while still outperforming it on real-world4

datasets. GPR-GNN and BernNet demonstrate that the Monomial and Bernstein5

bases also outperform the Chebyshev basis in terms of learning the spectral graph6

convolutions. Such conclusions are counter-intuitive in the field of approximation7

theory, where it is established that the Chebyshev polynomial achieves the optimum8

convergent rate for approximating a function.9

In this paper, we revisit the problem of approximating the spectral graph convolu-10

tions with Chebyshev polynomials. We show that ChebNet’s inferior performance11

is primarily due to illegal coefficients learnt by ChebNet approximating analytic12

filter functions, which leads to over-fitting. We then propose ChebNetII, a new13

GNN model based on Chebyshev interpolation, which enhances the original14

Chebyshev polynomial approximation while reducing the Runge phenomenon. We15

conducted an extensive experimental study to demonstrate that ChebNetII can learn16

arbitrary graph convolutions and achieve superior performance in both full- and17

semi-supervised node classification tasks. Most notably, we scale ChebNetII to a18

billion graph ogbn-papers100M, showing that spectral-based GNNs have superior19

performance.20

1 Introduction21

Graph neural networks (GNNs) have received considerable attention in recent years due to their22

remarkable performance on a variety of graph learning tasks, including social analysis [30, 24, 37],23

drug discovery [47, 19, 31], traffic forecasting [25, 3, 7] and recommendation system [40, 44].24

Spatial-based and spectral-based graph neural networks (GNNs) are the two primary categories of25

GNNs. To learn node representations, spatial-based GNNs [21, 15, 38] often rely on a message26

propagation and aggregation mechanism between neighboring nodes. Spectral-based methods [8, 12]27

create spectral graph convolutions or, equivalently, spectral graph filters, in the spectral domain of the28

graph Laplacian matrix. We can further divide spectral-based GNNs into two categories based on29

whether or not their graph convolutions can be learned.30

• Predetermined graph convolutions: GCN [21] employs a simplified first tow Chebyshev31

polynomials as the graph convolution, which is a fixed low-pass filter [1, 39, 41, 50].32

APPNP [22] and GDC [12] set the graph convolution with Personalized PageRank (PPR)33

and also achieve a low-pass filter. [12, 50]. S2GC [49] derives the graph convolution from the34

Markov Diffusion Kernel, which is a low- and high-pass filter trade-off. GNN-LF/HF [50]35
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designs the graph convolutions from the perspective of graph optimization that can imitate36

low- and high-pass filters.37

• Learnable graph convolutions: ChebNet [8] approximates the graph convolutions using38

Chebyshev polynomials and, in theory, could learn arbitrary filters [1]. CayleyNet [23]39

learns the graph convolutions with Cayley polynomials and generates various graph filters.40

GPR-GNN [6] uses the Monomial basis to approximate graph convolutions, which can41

derive low- or high-pass filters. ARMA [2] learns the rational graph convolutions through42

the Auto-Regressive Moving Average filters family [27]. BernNet [17] utilizes the Bernstein43

basis to approximate the graph convolutions, which can also learn arbitrary graph filters.44

Despite the recent developments, two fundamental problems with spectral-based GNNs remain45

unsolved. First of all, it is well-known that GCN [21] outperforms ChebNet [8] on real-world46

datasets (e.g., semi-supervised node classification tasks on citation datasets [21]). However, it is47

also established that GCN is a simplified version of ChebNet with only the first two Chebyshev48

polynomials and that ChebNet has more expressive capability than GCN in theory [1]. Consequently, a49

natural question is: Why is ChebNet’s performance inferior to GCN’s despite its better expressiveness?50

Secondly, as shown in [17], the real-world performance of ChebNet is also inferior to that of GPR-51

GNN [6] and BernNet [17], which use Monomial polynomial basis and Bernstein polynomial basis52

to approximate the spectral graph convolutions. Such a conclusion is counter-intuitive in the field of53

approximation theory, where it is established that the Chebyshev polynomial achieves near-optimum54

error when approximating a function [13]. Therefore, the second question is: Why is ChebNet’s filter55

inferior to that of GPR-GNN and BernNet, despite the fact that Chebyshev polynomials have a higher56

approximation ability?57

In this paper, we attempt to tackle these problems by revisiting the fundamental problem of approxi-58

mating the spectral graph convolutions with Chebyshev polynomials. First of all, according to the59

theory of the Chebyshev approximation, we observe that the coefficients of the Chebyshev expansion60

for an analytic function need to satisfy an inevitable convergence. Consequently, we prove that61

ChebNet’s inferior performance is primarily due to illegal coefficients learnt by ChebNet approx-62

imating analytic filter functions, which leads to over-fitting. Furthermore, we propose ChebNetII,63

a new GNN model based on Chebyshev interpolation, which enhances the original Chebyshev64

polynomial approximation while reducing the Runge phenomenon [10]. Our ChebNetII model65

has robust scalability and can easily cope with various constraints on the learned filters via simple66

reparameterization, such as the non-negativity constraints proposed in [17]. Finally, we conduct an67

extensive experimental study to demonstrate that ChebNetII can achieve superior performance in both68

full- and semi-supervised node classification tasks and scale to the billion graph ogbn-papers100M .69

2 Revisiting ChebNet70

Notations. We consider an undirected graph G = (V,E) with node set V and edge set E. Let71

n = |V | denote the number of nodes. We use x ∈ Rn to denote the graph signal, where x(i) denotes72

the signal at node i. Note that in the general case of GNNs where the input feature is a matrix X, we73

can treat each column of X as a graph signal. Let A denote the adjacency matrix and D denote the74

diagonal degree matrix, where Dii =
∑n

j Aij . For convenience, we use P = D−1/2AD−1/2 and75

L = I−D−1/2AD−1/2 to denote the normalized adjacency matrix and the normalized Laplacian76

matrix of G, respectively. We use L = UΛUT to represent the eigendecomposition of L, where U77

denotes the matrix of eigenvectors and Λ = diag[λ1, ..., λn] is the diagonal matrix of eigenvalues.78

2.1 Spectral-based GNNs and ChebNet79

Spectral-based GNNs create the spectral graph convolutions in the domain of Laplacian spectrum.80

Recent studies suggest that many popular methods use the polynomial spectral filters to achieve graph81

convolutions [8, 21, 17]. We can formulate this polynomial filtering operation as82

y = Udiag [h(λ1), ..., h(λn)]U
Tx = Uh (Λ)UTx ≈

K∑
k=0

wkL
kx, (1)

where y denotes the filtering results of x, and h(λ) is called the spectral filter, which is a function83

of eigenvalues of the Laplacian matrix L. The wk denote the polynomial filter weights, and the84
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Table 1: Comparison of ChebNet and GCN.
Method Cora Citeseer Pubmed

ChebNet (2) 80.54±0.38 70.35±0.33 75.52±0.75
ChebNet (10) 74.91±0.52 67.69±0.64 65.91±1.71
GCN 81.32±0.18 71.77±0.21 79.15±0.18

Table 2: Comparison of different bases.
Method Cora Citeseer Pubmed

ChebBase 79.29±0.36 70.76±0.37 78.07±0.32
GPR-GNN 83.95±0.22 70.92±0.57 78.97±0.27
BernNet 83.15±0.32 72.24±0.25 79.65±0.25

polynomial filter can be defined as h(λ) =
∑K

k=0 wkλ
k, λ ∈ [0, 2]. ChebNet [8] is a remarkable85

attempt in this field, which uses Chebyshev polynomial to approximate the filtering operation.86

y ≈
K∑

k=0

wkTk(L̂)x, (2)

where L̂ = 2L/λmax − I denotes the scaled Laplacian matrix. λmax is the largest eigenvalue of L87

and wk denote the Chebyshev coefficients. The Chebyshev polynomials can be recursively defined as88

Tk(x) = 2xTk−1(x)− Tk−2(x), with T0(x) = 1 and T1(x) = x. ChebNet’s structure is:89

Y =

K∑
k=0

Tk(L̂)XWk, (3)

with the trainable weights Wk. The Chebyshev coefficients wk of the filtering operation (2) are90

implicitly encoded in the weight matrices Wk. We list more spectral-based GNNs’ details in the91

supplementary materials.92

2.2 The motivation of revisiting ChebNet93

ChebNet versus GCN. Even though GCN is a simplified form of ChebNet, it is well known that94

ChebNet is inferior to GCN for semi-supervised node classification tasks [21]. Table 1 shows the95

results of ChebNet and GCN for semi-supervised node classification tasks on Cora, Citeseer and96

Pubmed datasets (see the Appendix for experimental details) . We find that ChebNet is outperformed97

by GCN, especially when we increase the polynomial order K from 2 to 10 in Equation (3).98

On the other hand, existing research [1] has shown that ChebNet is more expressive than GCN in99

theory. In particular, ChebNet can approximate arbitrary spectral filters as K increases, while GCN100

is a fixed low-pass filter. If we set K = 1 and w0 = w1 in the Equation (2), ChebNet corresponds101

to a high-pass filter; if we set K = 1 and w0 = −w1, ChebNet becomes a low-pass filter which is102

essentially the same as GCN. Consequently, a natural question is: Why is ChebNet’s performance103

inferior to GCN’s despite its better expressiveness?104

Chebyshev basis versus other bases. Chebyshev polynomials are widely used to approximate105

various functions in the digital signal processing and the graph signal filtering [35, 36]. The truncated106

Chebyshev expansions are demonstrated to produce a minimax polynomial approximation for the107

analytic functions [13]. Consequently, the spectral filters can be well-approximated by a truncated108

expansion in terms of Chebyshev polynomials Tk(x) up to K-th order [16].109

h(λ̂) ≈
K∑

k=0

wkTk(λ̂), λ̂ ∈ [−1, 1], (4)

where λ̂ is the eigenvalue of the scaled Laplacian matrix L̂. ChebNet [8] then defined the graph110

convolutions using the Chebyshev approximated filters, while recent works were inspired by ChebNet111

and used Monomial (i.e., GPR-GNN [6]) and Bernstein (i.e., BernNet [17]) bases to approximate112

filters. In order to evaluate the approximation ability of Chebyshev basis, we propose ChebNet113

with explicit coefficients, ChebBase, which simply replaces the Monomial basis of GPR-GNN and114

Bernstein basis of BernNet with the Chebyshev basis. The expression of ChebBase is115

Y =

K∑
k=0

wkTk(L̂)fθ (X) , (5)

where fθ(X) denotes Multi-Layer Perceptron (MLP). Table 2 reveals the results of ChebBase,116

GPR-GNN and BernNet for node classification tasks on three citation graphs. We can observe that117
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Figure 1: Illustrations of the Chebyshev expansion’s coefficients of exp(λ̂) and the Chebyshev
coefficients learnt by ChebBase and ChebBase/k on Cora.

ChebBase has the worst performance, which is inconsistent with the fact that the Chebyshev basis118

can approximate minimax polynomial in theory. Therefore, the second question is: Why is ChebNet’s119

filter inferior to that of GPR-GNN and BernNet, despite the fact that Chebyshev polynomials have a120

higher approximation ability?121

2.3 Coefficient Constraints122

We now demonstrate that ChebNet’s suboptimal performance is due to the illegal coefficients learned,123

which results in over-fitting. Given an arbitrary continuous function f(x) in the interval [−1, 1],124

the Chebyshev expansion is defined as f(x) =
∑∞

k=0 wkTk(x) with the Chebyshev coefficients wk.125

The following theorem establishes that in order to approximate an analytic function, the Chebyshev126

expansion’s coefficients must be constrained.127

Theorem 2.1. [46] If f(x) is weakly singular at the boundaries and analytic in the interval (−1, 1),128

then the Chebyshev coefficients wk will asymptotically (as k → ∞) decrease proportionally to 1/kq129

for some positive constant q.130

Here, "weakly singular" means that the derivative of f could vanish at the boundaries, and "analytic"131

means f can be locally given by a convergent power series in the interval (−1, 1). Intuitively,132

Chebyshev polynomial Tk(x) with larger k corresponds to higher frequency oscillation (see the133

Appendix for more details). Theorem 2.1 essentially demonstrates that high frequency polynomials134

should be constrained in the Chebyshev expansion to approximate an analytic function. Figure 1(a)135

depicts the Chebyshev expansion’s coefficients of the analytic function exp(λ̂) used as a spectral136

filter in GDC [12] and shows that the coefficients are convergent.137

Table 3: The performance of ChebBase.

Method Cora Citeseer Pubmed

ChebNet 80.54±0.38 70.35±0.33 75.52±0.75
GCN 81.32±0.18 71.77±0.21 79.15±0.18
ChebBase 79.29±0.36 70.76±0.37 78.07±0.32
ChebBase/k 82.66±0.28 72.52±0.29 79.25±0.31

The ability to approximate an analytic function is138

crucial in the task of approximating the spectral139

filters, since non-analytic filters are more difficult140

to approximate by polynomials and may result in141

over-fitting. In particular, ChebNet and ChebBase142

learn the coefficients wk by gradient descent with-143

out any constraints. The coefficients may not satisfy144

Theorem 2.1, leading to their poor performance. To145

validate this conjuncture, we conducted an empirical analysis of ChebBase with difference coefficient146

constraints. Inspired by Theorem 2.1, we use the following propagation process for the ChebBase/k.147

Y =

K∑
k=0

wk

k
Tk(L̂)fθ (X) , (6)

where wk/k denote the Chebyshev coefficients implemented by reparameterizing the learnable param-148

eters wk. Table 3 shows the experimental results of the semi-supervised node classification performed149

on the citation graphs. We can observe that with a simple penalty on wk, ChebBase/k outperforms150

ChebNet, ChebBase, and GCN. Figure 1(b) plots the absolute value of the Chebyshev coefficients151

learnt by ChebBase and ChebBase/k on Cora. We can observe that the coefficients of ChebBase/k152

could more readily satisfy the convergence constraint. These results validate Theorem 2.1.153
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3 ChebNetII model154

Although ChebBase/k appears to be a promising approach, it still has some drawbacks: 1) Imposing155

the penalty on the coefficients is not mathematically elegant, as Theorem 2.1 only provides a156

necessary condition for the coefficients; 2) It is hard to impose further constraints on the learned157

spectral filters. For example, it is unclear how we can modify Equation (6) to obtain non-negative158

filters, a requirement proposed in [17]. In this section, we describe ChebNetII, a GNN model based159

on Chebyshev interpolation that resolves the above two issues. We also discuss the advantages and160

disadvantages of various polynomial interpolations as well as the Runge phenomenon.161

3.1 Chebyshev interpolation162

Consider a real filter function h(λ̂) that is continuous in the interval [−1, 1]. When the values of this163

filter are known at a finite number of points λ̂k, one can consider the approximation by a polynomial164

PK with K degree such that h(λ̂k) = PK(λ̂k), which is the general polynomial interpolation. We165

give an explicit expression of the general polynomial interpolation in the supplementary materials.166

We generally sample the K + 1 points λ̂0 < λ̂1 < ... < λ̂K uniformly from [−1, 1] to construct the167

interpolating polynomial PK(λ̂). Intuitively, increasing K should improve the approximation quality.168

However, this is not always the case due to the Runge Phenomenon [10] (The details are discussed in169

section 3.3). The popular approach to this problem in the literature [14] is Chebyshev interpolation,170

having superior approximation ability and faster convergence. Instead of sampling the interpolation171

points uniformly, Chebyshev interpolation uses Chebyshev nodes as the interpolation points, which172

are essentially the zeros of the (K + 1)-th Chebyshev polynomial.173

Definition 3.1. (Chebyshev Nodes) The Chebyshev polynomial Tk(x) satisfies the closed form174

expression Tk(x) = cos (k arccos(x)). The Chebyshev Nodes for Tk(x) are defined as xj =175

cos
(
2j+1
2k π

)
, j = 0, 1, ..., k − 1, which lie in the interval (−1, 1) and are the zeros of Tk(x).176

Definition 3.1 suggests that each Chebyshev polynomial Tk(x) has k zeros, and we can define177

Chebyshev interpolation by replacing the equispaced points with Chebyshev nodes in the general178

polynomial interpolation (see the Appendix for details). More eloquently, definition 3.2 efficiently179

defines the Chebyshev interpolation via their orthogonality properties.180

Definition 3.2. (Chebyshev Interpolation) [14] Given a continuous filter function h(λ̂), let xj =181

cos
(

j+1/2
K+1 π

)
, j = 0, . . . ,K denote the Chebyshev nodes for TK+1 and h(xj) denotes the function182

value at node xj . The Chebyshev interpolation of h(λ̂) is defined to be183

PK(λ̂) =

K∑
k=0

c′kTk(λ̂), ck =
2

K + 1

K∑
j=0

h(xj)Tk(xj), (7)

where the prime indicates the first term is to be halved, that is, c′0 = c0/2, c′1 = c1, . . . , c
′
K = cK .184

3.2 ChebNetII via Chebyshev Interpolation185

Inspired by Chebyshev interpolation, we propose ChebNetII, a graph convolutional network that186

approximates an arbitrary spectral filter h(λ̂) with an optimal convergence rate. ChebNetII simply187

reparameterizes the filter value h(xj) in Equation (7) as a learnable parameter γj , which allows the188

model to learn an arbitrary spectral filter via gradient descent. More precisely, the ChebNetII model189

can be formulated as190

Y =
2

K + 1

K∑
k=0

K∑
j=0

γjTk(xj)Tk(L̂)fθ(X), (8)

191

where xj = cos ((j + 1/2)π/(K + 1)) are the Chebyshev nodes of TK+1, fθ(X) denotes a MLP192

on the node feature matrix X, and γj for j = 0, 1, ...,K are the learnable parameters. Note that193

similar to APPNP [22], we decouple feature propagation and transformation.194
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Table 4: Dataset statistics.
Chameleon Squirrel Actor Texas Cornell Cora Citeseer Pubmed ogbn-arxiv ogbn-papers100M

Nodes 2277 5201 7600 183 183 2708 3327 19,717 169,343 111,059,956
Edges 31,371 198,353 26,659 279 277 5278 4552 44,324 1,166,243 1,615,685,872
Features 2325 2089 932 1703 1703 1433 3703 500 128 128
Classes 5 5 5 5 5 7 6 5 40 172
H(G) 0.25 0.22 0.22 0.06 0.30 0.83 0.72 0.79 0.63 -

Consequently, the filtering operation of ChebNetII can be expressed as195

y ≈ 2

K + 1

K∑
k=0

K∑
j=0

γjTk(xj)Tk(L̂)x. (9)

It is easy to see that compared to the filtering operation of the original ChebNet (2), we only make196

one simple change: reparameterizing the coefficient wk by wk = 2
K+1

∑K
j=0 γjTk(xj). However,197

this simple modification allows us to have more control on shaping the resulting filter, as Chebyshev198

interpolation suggests that γj directly corresponds to the filter value h(xj) at the Chebyshev node199

xj . The coefficients wk = 2
K+1

∑K
j=0 h(xj)Tk(xj) are fundamentally guaranteed to satisfy the200

constraints of Theorem 2.1 since we directly approximate the filter h. Furthermore, Chebyshev201

interpolation also provides the ChebNetII with several beneficial mathematical properties.202

3.3 Analysis of ChebNetII203

ChebNetII has several advantages over existing GNN models due to the unique nature of Chebyshev204

interpolation. From the standpoint of polynomial approximation and computational complexity, we205

compare ChebNetII with current related approaches such as GPR-GNN [6] and BernNet [17].206

Near-minimax approximation. First of all, we examine ChebNetII’s capabilities in terms of filter207

function approximation. Theorem 3.1 exhibits that ChebNetII provides an approximation that is close208

to the best polynomial approximation for a spectral filter h.209

Theorem 3.1. [26] A polynomial approximation P ∗
K(x) for a function f(x) is said to be near-210

best/minimax approximation with a relative distance ρ if211

||f(x)− P ∗
K(x)|| ≤ (1 + ρ)||f(x)− P ∗

B(x)||, (10)

where ρ is the Lebesgue constant, P ∗
B(x) is a best polynomial approximation, and || · || represents the212

uniform norm (i.e., ||g|| = maxx∈[−1,1] |g(x)|). Then, we have ρ ∼ 2K as K → ∞ for the general213

polynomial interpolation, and ρ ∼ log(K) as K → ∞ for the Chebyshev interpolation.214

Convergence. In comparison to BernNet [17], which uses the Bernstein basis, ChebNetII has a faster215

convergence rate for approximating a filter function. Specifically, we have the following Theorem:216

Theorem 3.2. [14, 28] Let PK(x) be the polynomial approximation for a function f(x). Then217

the error is given as ||f(x)− PK(x)|| ≤ E(K). If PK(x) is obtained by Bernstein approximation,218

then E(K) ∼ (1 + (2K)−2)ω(K−1/2); if PK(x) is obtained by Chebyshev Interpolation, then219

E(K) ∼ Cω(K−1) log(K) with a constant C, where ω is the modulus of continuity.220

Runge phenomenon. In comparison to GPR-GNN [6], which uses the Monomial basis, ChebNetII221

has the advantage of reducing the Runge phenomenon [10]. In particular, when we use the general222

polynomial interpolation to approximate a Runge filter h(λ̂) with a high degree over a set of equis-223

paced interpolation points, it will cause oscillation along the edges of an interval. Consequently, as224

the degree of the polynomial increases, the interpolation error increases. Following [14], we define225

the error of polynomial interpolation as226

RK(λ̂) = h(λ̂)− PK(λ̂) =
hK+1(ζ)

(K + 1)!
πK+1(λ̂), (11)

where πK+1(λ̂) =
∏K

k=0(λ̂− λ̂k) denotes the nodal polynomial and ζ is the value depending on λ̂.227

The terrible Runge phenomenon is caused by the values of this nodal polynomial, which have very228
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Table 5: Mean classification accuracy of semi-supervised node classification with random splits.

Method Cham. Squi. Texas Corn. Actor Cora Cite. Pubm.

MLP 26.36±2.85 21.42±1.50 32.42±9.91 36.53±7.92 29.75±0.95 57.17±1.34 56.75±1.55 70.52±2.01
GCN 38.15±3.77 31.18±0.93 34.68±9.07 32.36±8.55 22.74±2.37 79.19±1.37 69.71±1.32 78.81±0.84
ChebNet 37.15±1.49 26.55±0.46 36.35±8.90 28.78±4.85 26.58±1.92 78.08±0.86 67.87±1.49 73.96±1.68
ARMA 37.42±1.72 24.15±0.93 39.65±8.09 28.90±10.07 27.02±2.31 79.14±1.07 69.35±1.44 78.31±1.33
APPNP 32.73±2.31 24.50±0.89 34.79±10.11 34.85±9.71 29.74±1.04 82.39±0.68 69.79±0.92 79.97±1.58
GPR-GNN 33.03±1.92 24.36±1.52 33.98±11.90 38.95±12.36 28.58±1.01 82.37±0.91 69.22±1.27 79.28±2.25
BernNet 27.32±4.04 22.37±0.98 43.01±7.45 39.42±9.59 29.87±0.78 82.17±0.86 69.44±0.97 79.48±1.47
ChebNetII 43.42±3.54 33.96±1.22 46.58±7.68 42.19±11.61 30.18±0.81 82.42±0.64 69.89±1.21 79.51±1.03

high oscillations around the interval endpoints. In particular, for high-degree polynomial interpolation229

at equidistant points in [−1, 1], we have limK→∞

(
max−1≤λ̂≤1 |RK(λ̂)|

)
= ∞.230

On the other hand, we have the following Theorem 3.3 that explains that Chebyshev nodes can231

minimize and quantify this error caused by the nodal polynomial, meaning Chebyshev interpolation232

minimizes the problem of the Runge phenomenon.233

Theorem 3.3. [14] Consider the Chebyshev nodes xj = cos ((j + 1/2)π/(K + 1)), j = 0, 1, ...,K.234

Then the nodal polynomial T̂K+1(x) =
∏K

k=0(x− xj) has the smallest possible uniform norm, i.e.,235

||T̂K+1(x)|| = 2−K .236

Computational complexity. Compared to BernNet [17], which has a time complexity quadratic to237

the order K in the forward process, ChebNetII can be computed in time linear to K. Specifically,238

we first compute the ChebNetII’s coefficients 2
K+1

∑K
j=0 γjTk(xj) in time linear to K as we can239

precompute Tk(xj), and then plug the coefficients into Equation (8) for propagation, which also takes240

the time linear to K, the same as that of ChebNet [8] and GPR-GNN [6].241

4 Experiments242

In this section, we conduct experiments to evaluate the performance of ChebNetII against the243

state-of-the-art graph neural networks on a wide variety of open graph datasets.244

Dataset and Experimental setup. We evaluate ChebNetII on several real-world graphs for the Semi-245

and Full-supervised node classification tasks. The datasets include three homophilic citation graphs:246

Cora, Citeseer, and Pubmed [34, 43], five heterophilic graphs: the Wikipedia graphs Chameleon247

and Squirrel [33], the Actor co-occurrence graph, and webpage graphs Texas and Cornell from248

WebKB1 [29], as well as two large citation graphs: ogbn-arxiv and ogbn-papers100M [18]. We249

measure the level of homophily of nodes in a graph using H(G) = 1
n

∑
v∈V

|u:(u,v)∈E∧yv=yu|
|u:(u,v)∈E| [29],250

where yv denotes the label of node v. We summarize the dataset statistics in Table 4. All the251

experiments are carried out on a machine with an NVIDIA Geforce RTX 3090 GPU (24GB memory),252

Intel Xeon CPU (2.60 GHz), and 512 GB of RAM.253

4.1 Semi-supervised node classification with polynomial-based methods254

Setting and baselines. For the semi-supervised node classification task, we compare ChebNetII to255

7 polynomial approximation filter methods, including MLP, GCN [21], ARMA [2], APPNP [22],256

ChebNet [8], GPR-GNN [6] and BernNet [17]. For dataset splitting, we employ both random and257

fixed splits and report the results on random splits. The results of fixed splits will be discussed in the258

supplementary materials. Specifically, we apply the standard training/validation/testing split [43] on259

the three homophilic citation datasets (i.e., Cora, Citeseer, and Pubmed), with 20 nodes per class for260

training, 500 nodes for validation, and 1,000 nodes for testing. Since this standard split can not be261

used for very small graphs (e.g. Texas), we use the sparse splitting [6] with the training/validation/test262

sets accounting for 2.5%/2.5%/95%, respectively, on the five heterophilic datasets.263

For ChebNetII, we use Equation (8) as the propagation process and use the ReLu function to264

reparametrize γj , maintaining the non-negativity of the filters [17]. We set the hidden units as 64 and265

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
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Table 6: Mean classification accuracy of full-supervised node classification with random splits.
Method Cham. Squi. Texas Corn. Actor Cora Cite. Pubm.

MLP 46.59±1.84 31.01±1.18 86.81±2.24 84.15±3.05 40.18±0.55 76.89±0.97 76.52±0.89 86.14±0.25
GCN 60.81±2.95 45.87±0.88 76.97±3.97 65.78±4.16 33.26±1.15 87.18±1.12 79.85±0.78 86.79±0.31
ChebNet 59.51±1.25 40.81±0.42 86.28±2.62 83.91±2.17 37.42±0.58 87.32±0.92 79.33±0.57 87.82±0.24
ARMA 60.21±1.00 36.27±0.62 83.97±3.77 85.62±2.13 37.67±0.54 87.13±0.80 80.04±0.55 86.93±0.24
APPNP 52.15±1.79 35.71±0.78 90.64±1.70 91.52±1.81 39.76±0.49 88.16±0.74 80.47±0.73 88.13±0.33
GCNII 63.44±0.85 41.96±1.02 80.46±5.91 84.26±2.13 36.89±0.95 88.46±0.82 79.97±0.65 89.94±0.31
TWIRLS 50.21±2.97 39.63±1.02 91.31±3.36 89.83±2.29 38.13±0.81 88.57±0.91 80.07±0.94 88.87±0.43
EGNN 51.55±1.73 35.81±0.91 81.34±1.56 82.09±1.16 35.16±0.64 87.47±1.33 80.51±0.93 88.74±0.46
PDE-GCN 66.01±1.56 48.73±1.06 93.24±2.03 89.73±1.35 39.76±0.74 88.62±1.03 79.98±0.97 89.92±0.38
GPR-GNN 67.49±1.38 50.43±1.89 92.91±1.32 91.57±1.96 39.91±0.62 88.54±0.67 80.13±0.84 88.46±0.31
BernNet 68.53±1.68 51.39±0.92 92.62±1.37 92.13±1.64 41.71±1.12 88.51±0.92 80.08±0.75 88.51±0.39
ChebNetII 71.37±1.01 57.72±0.59 93.28±1.47 92.30±1.48 41.75±1.07 88.71±0.93 80.53±0.79 88.93±0.29

K = 10 for the all datasets as the same as GPR-GNN [6] and BernNet [17]. We employ the Adam266

SGD optimizer [20] with an early stopping of 200 and a maximum of 1000 epochs to train ChebNetII.267

We use the officially released code for GPR-GNN and BernNet and use the Pytorch Geometric library268

implementations [11] for other models (i.e., MLP, GCN, APPNP, ARMA, and ChebNet). More269

details of hyper-parameters and baselines’ settings are listed in the supplementary materials.270

Results. We utilize accuracy (the micro-F1 score) with a 95% confidence interval as the evaluation271

metric. Table 5 reports the relevant results on 10 random splits. Boldface letters indicate the best272

result for the given confidence interval, and underlinings denote the next best result. We first observe273

that ChebNet is inferior to GCN even on heterophilic graphs, which concurs with our theoretical274

analysis that the illegal coefficients learned by ChebNet lead to over-fitting. ChebNetII, on the other275

hand, outperforms other methods on all datasets excluding Pubmed, where it also achieves top-2276

classification accuracy. This quality is due to the fact that the learnable parameters γj of ChebNetII277

directly correspond to the filter value h(xj) at the Chebyshev node xj , effectively preventing it from278

learning an illegal filter.279

4.2 Full-supervised node classification280

Setting and baselines. For full-supervised node classification, we compare ChebNetII to the281

baselines in the prior semi-supervised node classification. We also include GCNII [5], TWIRLS [42],282

EGNN [48] and PDE-GCN [9] four competitive baselines for full-supervised node classification. For283

all datasets, we randomly split the nodes into 60%, 20%, and 20% for training, validation and testing,284

and all methods share the same 10 random splits for a fair comparison, as suggested in [29, 6, 17].285

For ChebNetII, we also set the hidden units to be 64 and K = 10 for all datasets, and employ the286

same training manner as in the semi-supervised node classification task. For GCNII, TWIRLS,287

EGNN and PDE-GCN we use the officially released code. More details of hyper-parameters and288

baselines’ settings are listed in the supplementary materials.289

Results. Table 6 reports the mean classification accuracy of each model. We first observe that,290

given more training data, ChebNet starts to outperform GCN on both homophilic and heterophilic291

datasets, which demonstrates the effectiveness of the Chebyshev approximation. However, we also292

observe that ChebNetII achieves new state-of-the-art results on 7 out of 8 datasets and competitive293

results on Pubmed. Notably, ChebNetII outperforms GPR-GNN and BernNet by over 10% on the294

Squirrel dataset. We attribute this quality to the fact that Chebyshev interpolation achieves near-295

minimax approximation of any function with respect to the uniform norm, giving ChebNetII greater296

approximation power than GPR-GNN and BernNet do.297

4.3 Scalability of ChebNetII298

For ChebNetII, if we calculate and save L̂kX for k ∈ 0, · · · ,K in the preprocessing, we can scale it299

to large graphs. Specifically, we use the below propagation expression.300

Y = fθ(Z), Z =
2

K + 1

K∑
k=0

K∑
j=0

γjTk(xj)Tk(L̂)X. (12)
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(a) A filter and its approximation results.
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(b) The error of approximation results.

Figure 2: (a) A Runge filter h(λ̂) = 1/(1 + 25λ̂2) and its approximation results by different
polynomial bases. (b) The errors of the different approximation results.

The pre-computed L̂kX allow us to train γj and fθ(·) in a mini-batch manner.This approach also301

works for GPR-GNN [6] and BernNet [17], so we report their results. On ogbn-arxiv and -papers100M302

datasets, we evaluate ChebNetII’s scalability against polynomial-based GNNs and state-of-the-art303

scalable GNNs, SIGN [32], GBP [4], and NDLS∗ [45]. We follow the standard splits [18] for the two304

datasets and set K = 10 for ChebNetII. More details of settings are listed in Appendix.305

Table 7: Mean classification accuracy on large
graphs. OOM denotes "out of memory" and "-"
means failing to finish preprocessing in 24h.

Method ogbn-arxiv ogbn-papers100M

GCN 71.74±0.29 OOM
ChebNet 71.12±0.22 OOM
ARMA 71.47±0.25 OOM
GPR-GNN 71.78±0.18 65.89±0.35
BernNet 71.96±0.27 -
SIGN 71.95±0.12 65.68±0.16
GBP 72.21±0.17 65.23±0.31
NDLS∗ 72.24±0.21 65.61±0.29
ChebNetII 72.32±0.23 66.25±0.32

Table 7 reports the mean accuracy of each model306

over 10 runs. Note that we do not include the re-307

sult of BernNet on ogbn-papers100M as BernNet308

has a time complexity quadratic to the order K309

and fails to finish the preprocessing in 24 hours.310

We can observe that ChebNetII outperforms both311

datasets, which we attribute to Chebyshev Interpola-312

tion’s superior approximation quality. These results313

also show that ChebNetII has lesser complexity and314

greater scalability than BernNet.315

4.4 Comparison of Different Polynomial Bases316

We perform numerical studies comparing the317

Chebyshev basis to the Monomial and Bernstein318

bases to demonstrate ChebNetII’s approximation319

power. Considering a Runge filter h(λ̂) = 1/(1 + 25λ̂2), λ̂ ∈ [−1, 1], Figures 2(a) and 2(b) depict320

the approximation results and errors for several polynomial bases, with the polynomial degree K321

denoted by the numbers in brackets. We find that the Chebyshev basis has a faster convergence rate322

than the Bernstein basis and does not exhibit the Runge phenomenon compared to the Monomial basis.323

These findings provide empirical motivations for designing GNNs with Chebyshev interpolation.324

5 Conclusion325

This paper revisits the problem of approximating the spectral graph convolutions with Chebyshev326

polynomials. We show that ChebNet’s inferior performance is primarily due to illegal coefficients327

learned by approximating analytic filter functions, which leads to over-fitting. Moreover, we propose328

ChebNetII, a new GNN model based on Chebyshev interpolation, enhancing the original Chebyshev329

polynomial approximation while reducing the Runge phenomenon. Experiments show that ChebNetII330

outperforms SOTA methods in terms of effectiveness on real-world both homophilic and heterophilic331

datasets. For future work, a promising direction is to further improve the performance of ChebNetII332

on large graphs and investigate the scalability of spectral-based GNNs.333

Broader Impact334

The ChebNetII algorithm is a solution to the problem of learning spectral graph convolutions. We think335

this algorithm has a broad technical and theoretical contribution with no foreseeable specific impacts.336

Applying ChebNetII models could increase the performance in bioinformatics and recommendation337

systems applications. We leave other potential impacts to be investigated in the future.338
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