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Abstract

Recent years have witnessed the vast development of large-scale pre-training frame-1

works that can extract multi-modal representations in a unified form and achieve2

promising performances when transferred to downstream tasks. Nevertheless, ex-3

isting approaches mainly focus on pre-training with simple image-text pairs, while4

neglecting the semantic connections between concepts from different modalities.5

In this paper, we propose a knowledge-based pre-training framework, dubbed6

Knowledge-CLIP, that injects semantic information into the widely used CLIP7

model [41]. Through introducing knowledge-based objectives in the pre-training8

process and utilizing different types of knowledge graphs as training data, our9

model can semantically align the representations in vision and language, and also10

enhance the reasoning ability across scenarios and modalities. Extensive experi-11

ments on various vision-language downstream tasks demonstrate the effectiveness12

of Knowledge-CLIP comparing with the original CLIP and competitive baselines.13

1 Introduction14

Large-scale vision-language pre-training has attracted wide research interests in recent years [10,15

29, 41, 76]. Different from training different models for each specific task, pre-trained models take16

the analogy of human biological intelligence system, trying to perceive the world from various17

data modalities and handle comprehensive tasks. Specifically, it aims to provide a unified inference18

paradigm that simultaneously learns representations for multi-modal data and can easily transfer to a19

variety of downstream tasks. Benefiting from the accessibility of massive image-text pairs from the20

web, the pre-training scheme can leverage a broader source of supervision, and effectively improves21

the model’s generalization power.22

Early attempts on vision-language pre-training mainly focus on detecting objects in the images and23

aligning the corresponding word tokens with object regions [10, 31, 54]. Though effective, the24

entanglement with the concept of objects, and the additional resources for pre-trained object detectors25

impose restrictions on real-world applications. One of the pioneer works, CLIP [41], extends the26

scale of the pre-training dataset to 400 million image-text pairs, and learns representations by directly27

matching raw text with the corresponding image. Through a contrastive-based training scheme, CLIP28

learns visual concepts under a large vocabulary which greatly improves the model performances on29

various downstream tasks. Taking inspiration from CLIP, the following researches further extend the30

work from several perspectives, including data modality [76], downstream tasks [62], and training31

data efficiency [21, 47].32

Although showing promising results, the current pre-training frameworks also suffer from limitations.33

Specifically, the data pairs for pre-training are organized in the simplest manner, where only the34

descriptions of matched and unmatched are used to represent the relation between a given image35

and text pair. This usually leads to a degenerated scenario, where the model tends to rely on the36
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Figure 1: CLIP fails to accurately capture some fine-grained semantic information. When given
opposite semantic descriptions, e.g., adding ’not’ in the template or describing an image with wrong
color, CLIP tends to give similar distribution as the correct counterpart. Best view in color.

co-occurrence of inputs instead of their semantic meanings. We give a toy example in Fig. 1 by37

evaluating the zero-shot transfer performance of CLIP on the ImageNet dataset [11] with the templates38

’a photo of a {}’ and ’not a photo of a {}’. It is shown that the distributions of CLIP outputs under39

two templates are quite similar, suggesting that the current model fails to understand the semantic40

meaning of word tokens. As a result, the transferability of the model is restricted, and tends to show41

worse performances on tasks that require reasoning ability, e.g., visual question answering.42

To address the limitation of pre-trained models on semantic perceiving, we resort to the technique of43

knowledge graph, which has been widely studied in the field of natural language processing [8, 63].44

Knowledge graph (KG) is a large-scale semantic network that comprises entities as nodes and45

semantic relations as edges. Through organizing data in a graph structure, knowledge graphs provide46

rich information on describing the relations between entities and enable a reasoning process through47

the whole graph. These advantages over regular-structured data are favorable on various tasks48

including question-answering [20, 74], relation prediction [32, 46] and knowledge reasoning [7, 64].49

In recent years, knowledge graph has also been investigated in the field of computer vision, e.g.,50

scene graph [69], and the integration of both language and image [2]. This bridges the gap between51

different modalities in the knowledge graph, which inspires us to explore a new knowledge-based52

pre-training framework, and inject semantic information into simple image-text pairs.53

In this paper, we propose a novel vision-language pre-training approach, dubbed Knowledge-CLIP, by54

constructing a knowledge-enhanced pre-training framework based on the widely used CLIP models.55

As illustrated in Fig. 2, we follow the structure of CLIP, and use two Transformer-based models as56

image and text encoders respectively. These two encoders take entities and relations in the knowledge57

graph as input and extract raw features for both entities and relations. Notably, entities can be in58

the form of image/text, while the relations are constantly described by language tokens. Then, a59

multi-modal Transformer encoder is adopted to fuse the entity features conditioned on their relations.60

In this way, the pre-trained model is pushed to concentrate on understanding semantic relations61

between visual and word concepts, thereby establishing strong semantic connections between vision62

and language modalities.63

To additionally improve the training efficiency and avoid the massive computation cost in the pre-64

training procedure, we adopt a simple continuous learning strategy by training our model based65

on the pre-trained weights of CLIP. This provides a possibility of efficiently promoting the model66

performance of CLIP with low training resources.67

We practically train our model on three knowledge graph datasets, namely Visual-Genome [27]68

(scene graph), ConceptNet [49] (language-based graph), and VisualSem [2] (multi-modal graph), and69

also adopt part of datasets from CLIP to avoid the model forgetting problem. With the knowledge-70

enhanced pre-training, Knowledge-CLIP achieves consistent improvements over the original CLIP71

models on various vision and language downstream tasks. Our model can also transfer to several72

graph-based tasks, including link prediction and entity classification, and achieve competitive results.73
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2 Related works74

Large-scale pre-training. Large-scale pre-training framework has received wide concerns in recent75

years and shown promising results in the field of computer vision and natural language processing.76

GPT [42] is one of the pioneer works for language pre-training which optimizes the probability of77

output based on previous words in the sequence. BERT [13] adopts the masked language modeling78

technique and predicts the masked tokens conditioned on the unmasked ones.79

Similarly, computer vision society also witnesses the development of pre-training models thanks to80

the emergence of large-scale image datasets. IGPT [6] proposes a generative pre-training technique81

and shows promising results on classification task. MAE [19] adopts a similar pre-training scheme as82

BERT and predicts the masked regions of an image with unmasked ones.83

Multi-modal pre-training bears differences from the aforementioned frameworks and requires the84

alignment between various data modalities. Using enormous image-text pairs collected from Internet,85

vision-language models show significant improvements on various downstream tasks. Among these86

approaches, various pre-training scheme is adopted, including contrastive learning [1, 30, 34], masked87

language modeling [50, 55], and masked region modeling [10].88

The problem of semantic misunderstanding has also been investigated by previous works. EI-89

CLIP [37] considers the problem of cross-modal retrieval in the field of E-commerce. Sharing similar90

insight with our work, the authors notice the model bias towards some specific word tokens in91

CLIP, and introduce causal inference to align the text encoder with e-commerce domain knowledge.92

K3M [77] focuses on the modality-missing and modality-noise problem and introduces knowledge93

modality into E-commerce tasks. DeVLBert [73] studies the spurious correlations between different94

modalities and adjusts the conditional probability of image tokens and word tokens. Kaleido-95

BERT [78] focuses on image-text coherence by introducing several novel self-supervised tasks.96

Comparing to previous approaches, we are the first to incorporate multi-modal knowledge graphs97

into the pre-training process, and effectively enhance the model perception on semantic relations98

between visual and language concepts.99

Knowledge Graph. Knowledge graph is first introduced in the field of natural language processing,100

and the knowledge graph embedding approaches have been successful on capturing the semantics101

of symbols (entities and relations) and achieving impressive results on a wide range of real-world102

applications including text understanding [15, 70], recommendation system [18, 61] and natural103

language question answering [20, 74]. On the other hand, scene graphs represent a type of graph-104

structured data in computer vision, where the visual concepts in the image are connected with105

semantic relations. Scene graphs emphasize the fine-grained semantic features for images and are106

widely adopted in various downstream tasks, including scene graph generation [69], and Scene107

Graph Parsing [72]. Besides scene graph, knowledge graph is also adopted in other computer vision108

tasks, including image classification [25], panoptic segmentation [67], and image captioning [75].109

On this basis, multi-modal knowledge graph earns wide concerns in recent years. Considering the110

natural alignment between different data modalities, multi-modal knowledge graphs have been widely111

adopted in various graph-based tasks including link prediction [3, 33], entity classification [66], while112

also showing great potential on out of graph applications like visual question answering [22, 44] and113

recommendation systems [52, 56].114

3 Contrastive Language-Image Pre-training (CLIP)115

We first provide a brief review of model architectures and training settings in CLIP.116

CLIP uses two separate models for image encoder and text encoder respectively. For text inputs, a117

12-layer Transformer is adopted with 512 width and 8 attention heads. Raw texts are first converted118

using byte pair encoding [43] technique under a vocabulary size of 49,152. The text sequence length is119

capped at 76 and added by a positional encoding before being sent into the text encoder. On the other120

hand, CLIP has different versions of image encoder with ResNet-based and Vision Transformer-based121

architectures. As the following researches have demonstrated the better performances of Vision122

Transformer models, we only consider Transformer-based image encoders in this paper. Similar to123

the text input, images are first converted to patches, and added by a positional encoding. At the last124

stage of both encoders, a global pooling function is adopted to compress the feature map into a single125
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Figure 2: An overview of our framework. (A) Given a data triplet h, r, t with entities h, t and their
relation r, image and text encoders first extract raw features, then a multi-modal encoder consumes
the concatenated triplet sequence and outputs triplet and relation representations. (B) Three types of
training objectives adopted in our framework.

feature, which serves as the representation of the whole image/text sequence. The cosine distance of126

the image and text features is computed as the similarity of the data pair. For training supervision, a127

contrastive loss is adopted to maximize the similarity of matched pairs while minimizing the similarity128

of unmatched pairs. Given a batch of N data pairs {Ii,Ti}Ni=1, where Ii and T represents the ith129

image and text respectively, the loss function can be parameterized as:130

L = −1

2

N∑
i=1

(
log

exp(cos(fI(Ii), fT(Ti))/τ)∑N
j=1 exp(cos(fI(Ii), fT(Tj))/τ)

+ log
exp(cos(fI(Ii), fT(Ti))/τ)∑N
j=1 exp(cos(fI(Ij), fT(Ti))/τ)

)
,

(1)
where fI and fT correspond to image and text encoders, cos(·) denotes the cosine similarity between131

the inputs, and τ is a learnable temperature initialized at 0.07.132

While effective, this simple training framework actually brings several concerns that need to be133

addressed. First, the pre-training framework fails to model the semantic information of inputs due134

to the simplicity of the data structure. This results in inferior performances on tasks that require135

reasoning ability, e.g., visual question answering and visual commonsense reasoning. Second, the136

image and text features reside in separate spaces, which makes it difficult to model the interactions137

between different modalities. Third, the massive time and resource consumption in the training138

procedure set restrictions on performing a full pre-training schedule from scratch.139

4 Knowledge-CLIP140

As we have summarized above, there are several concerns that hinder the transferability of CLIP141

and potential improvements on model performances. In this paper, we propose a novel pre-training142

framework based on knowledge graphs, that addresses the limitation of the original CLIP model143

from several perspectives: (1) We introduce knowledge graphs into the training dataset where the144

graph-structured data and semantic relations between concepts enable the model to extract semantic145

features and establish semantic connection across inputs; (2) A multi-modal encoder is added on top146

of the current image and text encoders to fuse the features from different modalities, and model the147

joint distribution between inputs; (3) A continuous learning strategy based on the pre-trained model148

of CLIP is adopted which greatly avoids the massive computation cost in the pre-training procedure,149

and enhance the generalization power of the model efficiently. We introduce our framework in detail150

in the following sections, and show the overview in Fig. 2.151

4.1 Data Preparation152

Different from raw image-text pairs adopted in the original CLIP, our model takes knowledge graphs153

as input. A knowledge graph can be defined as a directed graph G = {ξ,R, TR}, where ξ, R154

correspond to sets of entities and relations, and TR represent the set of relation triplets. A triplet155

(h, r, t) ∈ TR denotes that entity h ∈ ξ has relation r ∈ R with entity t ∈ ξ. As illustrated in Fig. 3,156

we pre-train our model on three types of knowledge graphs, including multi-modal knowledge graph,157
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Figure 3: Illustrations of the pre-training knowledge graph datasets, including ViusalSem [2] (multi-
modal graph), Visual Genome [27] (scene graph), and ConceptNet [49] (language-based graph).

scene graph, and language-based knowledge graph. Among these, relations are constantly described158

in language tokens, where the entities are from different modalities in different forms.159

For multi-modal knowledge graph, the entities contain both illustrative images and language descrip-160

tions. Through representing the same entity under various modalities and connecting entities with161

relations, it helps to build semantic connections between vision and language concepts. In practice,162

language and vision descriptions are randomly chosen for each entity. In this way, the triplet set TR163

contains different forms including (Img, Rel, Img), (Img, Rel, Text), and (Text, Rel, Text), providing164

rich information across modalities while also enhancing perceptions within modalities.165

Different from multi-modal knowledge graph, scene graph extracts visual concepts (mainly objects)166

for each image, and connects them with predefined semantic relations describing relative locations,167

actions, etc. Therefore, the entities in the scene graph correspond to a certain region in an image, with168

the triplet form of (Img, Rel, Img). We practically use the selected regions as the input and discard169

the irrelevant parts. As two entities in the same triplet denote different regions in the same image, it170

forces the model to extract more fine-grained features.171

Lastly, language-based knowledge graph connects words and phrases of natural language with labeled172

edges. It is built on only language modality with the triplet form of (Text, Rel, Text), while helping to173

build semantic alignment within word tokens.174

4.2 Model Architecture175

The model architecture and the training framework are illustrated in Fig. 2(A). Specifically, we first176

process the inputs into token sequences with modality-specific tokenizers. The BPE tokenzier [43] is177

adopted for language inputs, while image inputs are sliced into non-overlapped patches and converted178

into a sequence of patches following ViT [14]. For convenient processing, we set the length of the179

image sequence and text sequence as lI and lT respectively for all inputs. To preserve the relative180

position information in the input, learnable positional encodings are added to the corresponding181

sequences before being sent to the model.182

Two separate image encoder fI(·) and text encoder fT(·) are then adopted to extract features from183

raw inputs. For a given triplet (h, r, t), the entities h and t are sent to the encoders with respect to184

their modalities (image or text). The relation r, which is represented by language tokens, is sent to185

text encoder similar to text entity.186

Comparing to the model structure in CLIP, we introduce a modification to better adapt our framework.187

Specifically, vanilla CLIP models use a pooling function at the last layer of two encoders to compress188

the feature map into a global representation. Namely, for an input u ∈ RL×di , where L and di denote189

the sequence length and feature dimension, the output of the encoder can be formulated as:190

xu = f(u) ∈ RL×do , x̄u = Pool(xu) ∈ Rdo , (2)
where f represents the feature extraction module, Pool(·) denotes the pooling function, and do is the191

output dimension. Though efficient, it also leads to inevitable information loss in the local region,192

especially for the image inputs. Therefore, we remove the pooling functions for image and text193

entities to preserve the local information, and use xu ∈ RL×do as the extracted feature. The relation,194

on the other hand, is normally under a limited sequence length, e.g., one or two word tokens, where195

the information density is smaller than entities. Therefore, we retain the pooling function for relation196

input and use x̄u ∈ Rdo as the extracted features.197
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In this way, we have extracted the features defined as (xh, x̄r, xt), which correspond to the elements198

in the input triplet (h, r, t). To model the joint distribution of different elements in the triplet,199

we consider a multi-modal encoder TransEncoder(·) to fuse the features from different sources.200

Specifically, we first concatenate all the features in the triplet into a single sequence and use a head201

token <head> at the beginning of the sequence. To emphasize the status of the tokens in the202

sequence, we consider additional learnable encodings for each element h, r, t in the triplet:203

X(h, r, t) = [<head>, xh+PEh, x̄r+PEr, xt+PEt]. (3)

After processing by the multi-modal encoder, the feature of the head token <head> finally serves as204

the representation of the whole sequence:205

Y (h, r, t) = TransEncoder(X(h, r, t))[0, :]. (4)

Also, representation for relation is extracted from the corresponding token:206

R(h, r, t) = TransEncoder(X(h, r, t))[1 + len(xh), :]. (5)

4.3 Training Targets207

Considering the unique data structure of knowledge graphs, we mainly adopt two types of training208

targets in our framework, including triplet-based loss and graph-based loss as illustrated in Fig. 2(B).209

Besides, a knowledge distillation loss is also considered due to the continuous learning strategy210

adopted in our framework.211

Triplet-based loss considers a batch of triplets as the input and supervises the training of our model by212

estimating the joint distribution of elements in the triplets. Inspired by the mask prediction technique213

that models the distribution of masked tokens conditioned on the unmasked regions, we similarly214

mask the elements in the triplets and predict the distribution with the help of a multi-modal encoder.215

Specifically, for incomplete triplets where certain elements are missing in the input, the concatenated216

sequence can be similarly derived as in Eq. 3 by masking the corresponding feature. For example, the217

concatenated sequence for an input (h, r, -) can be represented as:218

X(h, r, -) = [<head>, xh+PEh, x̄r+PEr, 0]. (6)

On this basis, given a set of input D = {(hi, ri, ti)}Ni=1, we first model the distribution when one of219

the entities, i.e., ti, is masked, and derive the Entity-Entity (E2E) Loss by minimizing the negative220

log-likelihood:221

−E(h,r)∼Dlog(P (xt|xh, x̄r)). (7)

We practically approximate the distribution P (xt|xh, x̄r) as the cosine similarity of P (xt) and222

P (xh, x̄r), and defined the loss function as:223

LE2E = −
N∑
i=1

log(
exp(cos(Y (-, -, ti), Y (hi, ri, -))/τ)∑
j exp(cos(Y (-, -, ti), Y (hj , rj , -))/τ)

). (8)

We also model the distribution when the relation in the triplet is masked, and similarly derive the224

Entity-Relation (E2R) Loss:225

−E(h,t)∼Dlog(P (x̄r|xh, xt)). (9)
Different from E2E loss, the relations in the triplets are defined in a limited set of relation groups.226

Therefore, we instead extract the representation of relation through an auxiliary two-layer MLP227

network, and model the objective as a classification problem from a predefined set of relation labels228

R. In this way, the loss function can be defined as:229

LE2R = −
N∑
i=1

∑
r∈R

1(r=ri)log(y(x̄ri)), where y(x̄ri) = MLP(R(hi, -, ti)), (10)

is extracted from an MLP model followed by the output of multi-modal encoder defined in Eq. (5).230

Graph-based loss. We also take advantage of the graph structure in knowledge graph datasets, and231

adopt a graph neural network to extract deeper structural information among entities. We propagate232

information through connected edges in the graph, and update entity representations with aggregated233
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feature. Specifically, for a graph neural network with L layers, the update function for the lth layer234

can be formulated as:235

G(l)(t) = E{hi,ri,t}∈TR g(l−1)(R(hi, -, t))G(l−1)(hi), G0(t) = Y (-, -, t), (11)

where g(l)(R(hi, -, t)) = W (l)R(hi, -, t), (12)

calculates the aggregation weights by relation representation R(hi, -, t) with a learnable matrix W (l).236

Finally, we define the Graph-Entity(G2E) Loss by computing the cosine similarity of entity features237

before and after the propagation procedure in the graph:238

LG2E = − 1

Nξ

∑
ti∈ξ

log(
exp(cos(Y (-, -, ti), G(L)(ti))/τ)∑
tj
exp(cos(Y (-, -, ti), G(L)(tj))/τ)

). (13)

Continuous Learning. Large-scale pre-training usually requires massive computation resources239

which makes it highly inefficient when training from scratch. Therefore, to inject the semantic240

information in an efficient manner, we consider training our model based on the pre-trained weights241

from the original CLIP. This powerful initialization promotes the convergence of our model and242

greatly enhances the training efficiency. However, naively extending the training process with new243

data leads to severe forgetting problem that hampers the performance of the original models.244

To address this limitation, we adopt simple solutions to maintain CLIP performances while improving245

its ability to extract semantic features from knowledge graphs. (1) Besides the knowledge graph246

datasets, we also train our model on several widely adopted image-text datasets that share a similar247

data distribution with the training data in CLIP. To better fit our pre-training framework, we convert248

the original image-text pair into the form of triplets, with specifically designed relations ’image of’249

and ’caption of’. (2) We also use the original CLIP model as the teacher, and use an auxiliary loss250

LKD to measure the KL distance between the output of CLIP and our model.251

Overall, the final pre-training objective of Knowledge-CLIP is formulated as:252

L = LE2E + LE2R + LG2E + LKD. (14)

5 Experiments253

5.1 Implementation Details254

Experimental Setup. In all the experiments, we use the same model structure as CLIP [41]. A255

12-layer Transformer model with 512 width is adopted for text encoder, and ViT-L/14 is adopted256

for image encoder. For text and image encoder, we use the pre-trained weights in the original CLIP257

as the initialization. For the multi-modal encoder, we consider a 4 layer Transformer model with258

1024 width. The rate for drop path is set as 0.1 during training. As the added multi-modal encoder is259

trained from random initialization, we decrease the learning rate for the pre-trained weights from260

CLIP to achieve a more balanced step in the optimization. We train Knowledge-CLIP with an initial261

learning rate of 1e-5 for image and text encoders, and 1e-3 for the multi-modal encoder. Cosine262

learning rate with linear warmup is used in the training schedule. Weight decay and gradient clip are263

also adopted. See more details in the supplemental material.264

Pre-train Dataset. Three knowledge graph datasets are adopted in the pre-training process. Visu-265

alSem [2] is a high-quality multi-modal knowledge graph dataset for vision and language concepts,266

including entities with multilingual glosses, multiple illustrative images, and visually relevant rela-267

tions, covering a total number of 90k nodes, 1.3M glosses and 938k images. 13 semantic relations268

are used to connect different entities in the graph, while the entities in VisualSem are linked to269

Wikipedia articles, WordNet [38], and high-quality images from ImageNet [11]. Visual Genome [27]270

is a knowledge-based scene graph dataset that connects structured image concepts with semantic271

relations. Visual Genome serves as the benchmark for various vision tasks, e.g., visual grounding,272

and scene graph generation. ConceptNet [49] is a knowledge graph that connects words and phrases273

of natural language with labeled edges. Its knowledge is collected from many sources including274

expert-created resources and crowd-sourcing built on only language modality.275

Besides the three knowledge graph datasets, we also train our model on two widely adopted image-276

text datasets that share the similar data distribution with the training data in CLIP. We practically add277
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Table 1: Fine-tuned image-text retrieval results on Flockr30K and COCO datasets. The best result is
shown in blue and the better result between CLIP and our approach is shown in bold.

Method
Flickr30K (1K test set) MSCOCO(5K test set)

Text Retrieval Image Retrieval Text Retrieval Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

UNITER [10] 87.3 98.0 99.2 75.6 94.1 96.8 65.7 88.6 93.8 52.9 79.9 88.0
VILLA [16] 87.9 97.5 98.8 76.3 94.2 96.8 - - - - - -
OSCAR [31] - - - - - - 73.5 92.2 96.0 57.5 82.8 89.8
ERNIE-ViL [71] 88.7 98.0 99.2 76.7 93.6 96.4 - - - - - -
Unicoder-VL [28] 86.2 96.3 99.0 71.5 91.2 95.2 62.3 87.1 92.8 48.4 76.7 85.9
ViLT [26] 83.5 96.7 98.6 64.4 88.7 93.8 61.5 86.3 92.7 42.7 72.9 83.1
Uni-Perceiver [76] 87.9 98.2 99.1 74.9 93.5 96.0 64.7 87.8 93.7 48.3 75.9 84.5
CLIP [41] 88.6 98.5 99.4 72.4 92.3 96.6 67.3 85.4 92.4 54.3 83.5 90.0
Ours 89.2 98.9 99.4 75.7 94.4 96.8 70.2 89.2 94.4 57.6 83.9 90.4

COCO Caption [9] and CC3M [45] to the training set, while large-scale datasets like CC12M [5] or278

YFCC [24] are not considered to maintain training efficiency.279

Downstream Task. To validate the effectiveness of our framework, we conduct experiments on280

various downstream tasks, including multi-modal tasks like text and image retrieval, visual question281

answering, and uni-modal tasks like image classification and natural language understanding. We282

also show the performances of our models on several knowledge-based tasks including link prediction283

and triple classification, where our model can benefit from the graph-based training schedule.284

5.2 Multi-modal Tasks285

Image and text retrieval. We first conduct experiments on Flickr30k [40] and COCO Caption [9]286

dataset to show the performances of our model on image-text retrieval tasks. Given input sets X287

and Y of images and texts, we use Knowledge-CLIP to extract features for each input, and model288

the joint probability with the cosine similarity between image and text pairs. We summarize the289

comparison results of Knowledge-CLIP with competitive baselines in Tab. 1. It is shown that our290

model consistently achieves better results over the original CLIP on both datasets, while comparable291

with competitive baselines like OSCAR.292

Table 2: Fine-tuned results on other V-L tasks.

Method VQA SNLI_VE
test-dev test-std val test

UNITER [10] 72.70 72.91 78.59 78.28
VILLA [16] 73.59 73.67 79.47 79.03
OSCAR [31] 73.16 73.44 - -
ALBEF [29] 74.54 74.70 80.14 80.30
Uni-Perceiver [76] 73.4 74.1 - -
FLAVA [48] 72.8 - 78.89 -

CLIP [41] 74.10 73.56 79.51 80.01
Ours 76.11 75.24 80.52 80.97

Visual question answering / Visual Entail-293

ment. We also validate the effectiveness294

of Knowledge-CLIP on other vision-language295

tasks, including VQA [17] and SNLI-VE [68].296

We show the comparison results in Tab. 2.297

Comparing to competitive baselines including298

VILLA [16] and ALBEF [29], Knowledge-299

CLIP with ViT-L/14 shows better performances300

under all settings, while the smaller model also301

achieves competitive results. Comparing to the302

original CLIP model, our pre-trained model303

practically improves its transferability on down-304

stream tasks, especially on the datasets like305

VQA that requires reasoning ability.306

5.3 Uni-modal Tasks307

Table 3: Fine-tuned results
on ImageNet.

Method Acc(%)
DeiT [58] 83.4
CLIP [41] 84.2
Ours 84.4

Image Classification. To further demonstrate the generalization308

power of Knowledge-CLIP, we compare the performances of pre-train309

models on the ImageNet classification task [11]. We summarize the310

comparison results in Tab. 3, and show that Knowledge-CLIP can also311

handle vision tasks well. We argue the improvements over baselines312

may attribute to the scene graphs in our pre-training dataset, which313

emphasize the visual concepts in the images.314

Language Understanding. We validate the generalization performance of Knowledge-CLIP for315

language understanding tasks on the widely adopted GLUE dataset [60]. Specifically, we conduct316
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Table 4: Fine-tuned language understanding results on GLUE dataset. The best result is shown in
blue and the better result between CLIP and our approach is shown in bold.

Method CoLA SST-2 RTE MRPC QQP MNLI QNLI
Mcc. Acc. Acc. Acc./F1 Acc./F1 Acc Acc

VilBERT [35] 36.1 90.4 53.7 69.0/79.4 88.6/85.0 79.9 83.8
VL-BERT [51] 38.7 89.8 55.7 70.6/81.8 89.0/85.4 81.2 86.3
UNITER [10] 37.4 89.7 55.6 69.3/80.3 89.2/85.7 80.9 86.0
SimVLM [65] 46.7 90.0 63.9 75.2/84.4 90.4/87.2 83.4 88.6
FLAVA [48] 50.7 90.9 57.8 81.4/86.9 90.4/87.2 80.3 87.3
CLIP [41] 42.1 90.5 59.2 82.4/87.0 90.4/87.1 80.9 87.1
Ours 50.4 91.2 62.4 83.5/87.6 90.5/87.9 83.6 89.5

Table 5: Fine-tuned link prediction results on WN18RR and FB15K-237.

Method
WN18RR FB15k-237

MR MMR Hits MR MMR Hits
@1 @3 @10 @1 @3 @10

TransE [4] 3384 0.182 0.027 0.295 0.444 357 0.257 0.174 0.284 0.420
ConvE [12] 4187 0.430 0.400 0.440 0.520 244 0.325 0.237 0.356 0.501
RotatE [53] 3340 0.476 0.428 0.492 0.571 177 0.338 0.241 0.375 0.533
InteractE [59] 5202 0.463 - 0.430 0.528 172 0.354 0.263 - 0.535
Ours 2689 0.467 0.430 0.477 0.572 182 0.356 0.281 0.391 0.530

experiments on 7 tasks in GLUE and summarize the comparison results in Tab. 4. It is shown that317

our model achieves comparable performances with competitive baseline models. Also, for tasks like318

QQP and MNLI that require sentence-pair matching, Knowledge-CLIP shows higher performances,319

due to the existence of language triplets in the pre-training dataset.320

5.4 Knowledge-based Tasks321

Benefiting from the graph-based learning framework in the pre-training process, our models enjoy322

advantages on several knowledge-based downstream tasks. Therefore, we conduct experiments on323

link prediction, entity classification and triple classification tasks.324

Link prediction task aim to recover an incomplete triplet when one of the entities is masked, i.e.,325

predicting entity h given (-, r, t). This task shares certain similarities with our pre-training objectives.326

We validate the performances of our model on the WN18RR [12] and FB15K-237 [57] datasets, where327

MR (MeanRank), MRR(Mean Reciprocal Rank), and Hit@n are adopted as the evaluation metrics.328

As shown in Tab. 5, Knowledge-CLIP is able to perform competitive performances comparing to329

several baseline models, and achieves better results on 3 of 5 metrics.330

Table 6: Fine-tuned results on YAGO39K.

Triple Classification(%)
Method Accuracy Precision Recall F1-Score
TransE [4] 92.1 92.8 91.2 92.0
TransD [23] 89.3 88.1 91.0 89.5
HolE [39] 92.3 92.6 91.9 92.3
Ours 92.7 92.6 91.9 92.5

Triple classification requires the model to dis-331

tinguish matched triples from unmatched ones,332

which can serve as a binary classification task.333

We validate our model on YAGO39K [36]334

dataset, with Accuracy, Precision, Recall, and335

F1-Score as the evaluation metric. It is shown in336

Tab. 6 that our model shows promising results337

over competitive baselines.338

6 Conclusion339

In this paper, we propose a novel vision-language pretraining framework that incorporates knowledge340

information to model the semantic connections between vision and language entities. We introduce341

three types of graph-structured datasets into the training process, and adopt a multi-modal encoder to342

model the joint distribution of entities and their semantic relations. Extensive experiments on various343

downstream tasks including multi-modal, uni-modal, and graph-based tasks validate the transfer and344

generalization ability of our model. Our approach is now limited in injecting knowledge information345

into the CLIP models. However, our training objectives and new knowledge graph datasets are346

technically compatible with other large-scale pretraining frameworks. We will explore the possibility347

of further applications in the future.348
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4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...606

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 5.607

(b) Did you mention the license of the assets? [Yes] See Section 5.608

(c) Did you include any new assets either in the supplemental material or as a URL? [No]609

(d) Did you discuss whether and how consent was obtained from people whose data you’re610

using/curating? [No] The dataset is readily available in public.611

(e) Did you discuss whether the data you are using/curating contains personally identifiable612

information or offensive content? [No]613

5. If you used crowdsourcing or conducted research with human subjects...614

(a) Did you include the full text of instructions given to participants and screenshots, if615

applicable? [N/A]616

(b) Did you describe any potential participant risks, with links to Institutional Review617

Board (IRB) approvals, if applicable? [N/A]618

(c) Did you include the estimated hourly wage paid to participants and the total amount619

spent on participant compensation? [N/A]620
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