
Under review as a conference paper at ICLR 2021

DYNAMIC GRAPH: LEARNING INSTANCE-AWARE
CONNECTIVITY FOR NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

One fundamental principle in the design of networks is applying the same archi-
tecture to every input sample in a dataset. However, a static architecture may not
be representative enough for the whole dataset with high diversity and variety.
To promote the model capacity, existing approaches usually add more layers or
enlarge the size of convolutional kernels, which may introduce an additional large
computational cost. In this paper, we address this issue by raising Dynamic Graph
(DY-Graph), which learns the instance-aware connectivity of neural networks, al-
lowing different forward paths for input samples. Topologically, we formulate the
network into a directed acyclic graph, where nodes represent convolutional blocks
and edges indicate connections. We further rewire the graph as a complete graph
and assign learnable weights to edges to adjust the connectivity. During the forward
procedure, instead of sharing the calculation paths, DY-Graph aggregates features
dynamically in each node based upon their attention, which is input dependent.
This allows the network to have more representation power since these features
are aggregated in a non-linear way via attention. To adapt to batch training, we
represent the connectivity of each sample in an adjacency matrix. And matrices in
a batch are cached in a buffer, which is updated along with the forward procedure.
In this way, DY-Graph is easy and memory-conserving to train. To demonstrate
the superiority of DY-Graph, we validate on several static architectures, including
MobileNetV2, ResNet, ResNeXt, and RegNet. Extensive experiments are also
conducted on ImageNet classification and COCO object detection to illustrate the
effectiveness and generalization of our method.

1 INTRODUCTION

The success of deep convolutional neural networks has driven a shift from feature engineering to
feature learning in computer vision. Improvements in performance largely come from well-designed
networks with increasing capacity of models (He et al., 2016a; Xie et al., 2017; Huang et al., 2017; Tan
& Le, 2019). One fundamental assumption in the design of networks is that the same architecture are
applied to every input sample in a dataset. However, the large distribution variance brings difficulties
to feature representation. To handle this problem, model developers usually add more layers (Szegedy
et al., 2015) or expand the size of existing convolutions (kernel width, number of channels) (Huang
et al., 2019; Tan & Le, 2019; Mahajan et al., 2018) to increase the capacity of a model. In either
case, the additional cost of capacity increases deploying burden and limits applications with strict
computational constraints. To this end, a more flexible sample-dependent network is needed to
accommodate the input variance without introducing much more computational cost.

Relevantly, there exists some work that attempts to solve this problem using conditional networks
with extra sample-dependent modules. Squeeze-and-Excitation network (SENet) (Hu et al., 2018)
learns to scale the activations in the channel dimension conditionally on the input. Conditionally
Parameterized Convolution (CondConv) (Yang et al., 2019) uses over-parameterization weights and
generates individual convolutional kernels for each sample, achieving large improvements. GaterNet
(Chen et al., 2018) adopts a gate network to extract features and generate sparse binary masks
for selecting filters in the backbone network based upon inputs. But these methods mainly focus
on the adjustment of the micro structure of neural networks. They are more about combining or
reweighting features or weights at the same level of representation. Meanwhile, features generated
by convolutional layers with different depths own different semantic information according to

1



Under review as a conference paper at ICLR 2021

some research (Le et al., 2012; Zeiler & Fergus, 2014). Therefore, we intend to consider a macro
conditional network, where the features generated by different layers are combined for reconstruction,
to strengthen some signals and suppress some signals according to the input. This is very similar
to the mammalian brain mechanism in biology (Rauschecker, 1984), where neurons are linked by
synapses and responsible for sensing different information. When perceiving external information,
synapses are activated to varying degrees.

To adapt the network in a macro type, in this paper, we learn to optimize the connectivity of neural
networks based upon inputs. Instead of using stacked-style or hand-designed manners, we allow
more flexible selection for forwarding paths. Specifically, we reformulate the network into a directed
acyclic graph, where nodes represent aggregation and convolution while edges indicate connections.
Different from randomly wired neural networks (Xie et al., 2019) that generate random graphs as
connectivity using predefined generators, we rewire the graph as a complete graph, in which all
nodes establish connections with each other. This allows for more possible connectivity. In this way,
finding the most suitable connectivity for each sample is equivalent to finding the optimal subgraph
in the complete graph. In the graph, each node aggregates features from preorder nodes, performs
feature transformation (e.g. convolution, normalization, and non-linear operations), and distributes
the transformed features to postorder nodes. The output feature of the last node in the topological
order is employed as the representation through the graph. To adjust the contribution of different
nodes to the feature representation, we further assign weights to the edges in the graph. The weights
are generated dynamically for each input via input dependent attention. This is implemented by
adding an extra module (denoted as router) along with each node, which predicts the weights of
edges connected with the node. During inference, only crucial connections are maintained. We call
this method dynamic graph (denoted as DY-Graph).

In DY-Graph, the connectivity for each sample is generated through non-linear functions determined
by routers, which has more representation power than its static counterpart. Meanwhile, DY-Graph is
computationally efficient. It does not increase the depth or width of the network. It only introduces
extra computational cost to compute attention and aggregate features. The key insight is that within
reasonable cost of model size to increase the representation capacity of a network. The main
contributions of our work are as follows, and we believe this is a promising direction and hope it
would have a border impact on the vision community:

• We first explore increasing the model capacity of neural networks through introducing
dynamic connectivity based upon inputs. Without bells and whistles, simply replacing static
connectivity with dynamic one in many networks achieves solid improvement with only a
slight increase of (∼ 1%) parameters and (∼ 2%) computational cost (see table 1).

• DY-Graph is easy and memory-conserving to train. The parameters of networks and routers
can be optimized jointly in a differentiable manner. To support batch training and be
compatible with current deep learning libraries, we propose a caching mechanism that keeps
the information of connectivity along with the forward procedure.

• We show that DY-Graph not only improves the performance for human-designed networks
(e.g. MobielNetV2, ResNet, ResNeXt), but also boosts the performance for automatically
searched architectures (e.g. RegNet).

• DY-Graph demonstrates good generalization ability on ImageNet classification (see table 1)
and COCO object detection (see table 2) tasks.

2 RELATED WORK

Non-modular Network Wiring. Different from the modularized designed network which consists
of topologically identical blocks, there exists some work that explores more flexible wiring patterns.
MaskConnect (Ahmed & Torresani, 2018) removes predefined architectures and learns the connec-
tions between modules in the network with k conenctions. Randomly wired neural networks (Xie
et al., 2019) use classical graph generators to yield random wiring instances and achieve competitive
performance with manually designed networks. DNW (Wortsman et al., 2019) treats each channel as
a node and searches a fine-grained sparse connectivity among layers. TopoNet (Yuan et al., 2020)
learns to optimize the connectivity of neural networks in a complete graph that adapt to the specific
task. Prior work demonstrates the potential of exploring more flexible wirings, our work on DY-Graph

2



Under review as a conference paper at ICLR 2021

pushes the boundaries of this paradigm, by enabling each example to be processed with different
connectivity.

Dynamic Networks. Dynamic networks, adjusting the network architecture to the corresponding
input, have been recently studied in the computer vision domain. SkipNet (Wang et al., 2018),
BlockDrop (Wu et al., 2018) and HydraNet (Mullapudi et al., 2018) use reinforcement learning to
learn the subset of blocks needed to process a given input. Some approaches prune channels (Lin
et al., 2017a; You et al., 2019) for efficient inference. However, most prior methods are challenging to
train, because they need to obtain discrete routing decisions from individual examples. Different from
these approaches, DY-Graph learns continuous weights for connectivity to enable ramous propagation
of features, so can be easily optimized in a differentiable way.

Conditional Attention. Some recent work proposes to adapt the distribution of features or weights
through attention conditionally on the input. SENet (Hu et al., 2018) boosts the representational
power of a network by adaptively recalibrating channel-wise feature responses by assigning attention
over channels. CondConv (Yang et al., 2019) and dynamic convolution (Chen et al., 2020) are
restricted to modulating different experts/kernels, resulting in attention over convolutional weights.
Attention-based models are also widely used in language modeling (Luong et al., 2015; Bahdanau
et al., 2015; Vaswani et al., 2017), which scale previous sequential inputs based on learned attention
weights. In the vision domain, previous methods most compute attention over micro structure,
ignoring the influence of the features produced by different layers on the final representation. Unlike
these approaches, DY-Graph focuses on learning the connectivity based upon inputs, which can be
seen as attention over features with different semantic hierarchy.

Neural Architecture Search. Recently, Neural Architecture Search (NAS) has been widely used
for automatic network architecture design. With evolutionary algorithm (Real et al., 2019), reinforce-
ment learning (Pham et al., 2018) or gradient descent (Liu et al., 2019), one can obtain task-dependent
architectures. Different from these NAS-based approaches, which search for a single architecture,
the proposed DY-Graph generates forward paths on the fly according to the input without search-
ing. We also notice a recent method InstaNAS (Cheng et al., 2020) that generates domain-specific
architectures for different samples. It trained a controller to select child architecture from the defined
meta-graph by reinforcement learning, achieving latency reduction during inference. Different from
them, DY-Graph focuses on learning connectivity in a complete graph using a differentiable way and
achieves higher performance.

3 METHODOLOGY

3.1 FORMULATING CONNECTIVITY USING DAGS

Regular networks usually use chain-like wiring patterns. ResNets (He et al., 2016a) use x+F(x) as a
regular connectivity template and stack modules to form the network. DenseNets (Huang et al., 2017)
concat features from previous layers with [x,F(x)]. But their connectivity is inflexible, and arbitrary
changes can lead to a mismatch in the dimension of channels. Some NAS methods (Real et al.,
2019; Liu et al., 2019) also attempt to find efficient patterns of wiring and operation. However, these
methods constrain the connectivity in a small space, in which layers only connect two immediately
preceding layers and generate output to a subsequent layer. To remove these limitations and gain
larger search space, the connectivity pattern needs to be redefined.

In this work, we convert the network into a directed acyclic graph (DAG), in which nodes stand for
feature transformation (e.g. aggregation, convolution, normalization, and non-linear activation) and
edges represent connections between layers. For simplicity, we denote a DAG with N ordered nodes
as G = (N , E), where N is the set of nodes, and E denotes the set of edges and E ⊆ N ×N .

In the graph, nodes aggregate features from connected preceding layers and conduct transformations.
Specifically, the first node in the topological order is set to be the input node that only allocates
features to posterior nodes. And the last node is set to be the output one, which only aggregates
features from preceding nodes for the final representation. For the i-th node, corresponding mapping
function is denoted as oi(·, ·). The set of edges can be represented as E = {e(i,j)|1 ≤ i < j ≤ N},
where e(i,j) indicates a directed edge from the i-th node to the j-th node. With each edge e(i,j), we

3



Under review as a conference paper at ICLR 2021

2 3

4
5

6

7

8

1

2 3

4
5

6

7

8

1

⋅⋅⋅⋅⋅⋅

⋅⋅⋅⋅⋅⋅

⋅⋅⋅⋅⋅⋅

+

Convolution

!! !"

"!# ""#

!#$

!#
Router

"#% "#&

+
+

1. Aggregation

2. Transformation

3. Prediction

4. Distribution

Input

Output

Graph 1 Graph 2

Figure 1: The framework of DY-Graph. Left: For a training batch, each sample performs different
forward paths that are determined by the data-dependent macro connectivity. Right: Node operations
at the micro level. Here we illustrate a node with 2 input edges and 2 output edges. First, it
aggregates input features from preceding nodes by weighted sum. Second, convolutional blocks
make a transformation to the aggregated features. Third, a router predicts routing weights for each
sample on the output edges according to the transformed features. Last, the transformed data is sent
out by the output edges to the following nodes. Arrows indicate the data flow.

associate a probability αij which determines the importance of connections. For a node, the number
of input edges is called in-degree and denoted as δi. While the number of output edges is called
out-degree and denoted as ζi. In a common static graph, the output at the j-th node can be formulated
as:

xj = oj(wj
o,
∑

e(i,j)∈E

αij · xi) (1)

where xi ∈ RB×C×H×W denotes the transformed feature from the i-th node and wj
o are the

convolutional weights of the j-th node.

To expand the search space with more possible connectivity, two modifications are made in DY-Graph.
First, we remove the constraint on the in/out-degree of nodes, so that the connectivity is rewired in a
complete graph, which contains all possible combinations of forwarding paths. In this way, finding
good connectivity is akin to finding an optimal sub-graph. Second, instead of selecting discrete edges
in a hard way where αij ∈ {0, 1}, we convert the connections to a soft form with αij ∈ [0, 1). When
αij = 0, the edge from i-th node to j-th node will be marked as closed. And all the edges with
αij > 0 will be reserved, continuously enabling feature fusion. This makes the connectivity can be
optimized in a differentiable manner, and will be covered in detail in section 3.3.

3.2 INSTANCE-AWARE CONNECTIVITY THROUGH ROUTING MECHANISM

We propose a dynamic graph, which does not increase either the depth or the width of the network,
but increase the model capability by aggregating features generated by different nodes via attention.
Note that these features are assembled differently for different input images. For each input sample
xb, as shown in the left of Fig. 1, there exists an individual connectivity Eb to determine the forward
paths. Compared with the static type in Eq. (1), for a batch containing B samples, the dynamic type
can be rewrittern as:

xj = [xj1, · · · ,x
j
b, · · · ,x

j
B ], and xjb = oj(wj

o,
∑

e(i,j)∈Eb

αijb · x
i
b) (2)

where xib ∈ R1×C×H×W , and αijb represents the instance-aware probability of the edge. In particular,
except for the probabilities of edges, the parameters of the network are shared.

4



Under review as a conference paper at ICLR 2021

Batch Matrices Buffer

In-edge

Out-edge

!!

!"

!#

!$

0.13

0.89

0.09

0.23

0.94

0.83

1

2

3

4

5

6

1 2 3 4 5 6

0.13

0.89

0.09

0.23

0.94

0.83 0.17

0.09

0.76

0.06

0.63

1

2

3

4

5

6

1 2 3 4 5 6

0.13

0.89

0.09

0.23

0.94

0.83 0.17

0.09

0.76

0.06

0.63

0.82

0.13

0.12

0.69

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6 0.13

0.89

0.09

0.23

0.94

0.83 0.17

0.09

0.76

0.06

0.63

0.82

0.13

0.12

0.69

0.24

0.93

0.26

1 2 3 4 5 6

0.13

0.89

0.09

0.23

0.94

0.83 0.17

0.09

0.76

0.06

0.63 0.64

0.82

0.13

0.12

0.69

0.24

0.93

0.26 0.31

1

2

3

4

5

6

1 2 3 4 5 6

0.13

0.89

0.09

0.23

0.94

0.83 0.17

0.09

0.76

0.06

0.63 0.64

0.82

0.13

0.12

0.69

0.24

0.93

0.26 0.31 0.96

1

2

3

4

5

6

1 2 3 4 5 6

0.13

0.89

0.09

0.23

0.94

0.83 0.17

0.09

0.76

0.06

0.63 0.64

0.82

0.13

0.12

0.69

0.24

0.93

0.26 0.31 0.96

1

2

3

4

5

6

1 2 3 4 5 6

Node-1 Node-2 Node-3

Node-4 Node-5 Node-6 Node-7

Figure 2: The procedure of updating the coefficients in the adjacency matrix (left) and the proposed
buffer for storing matrices in a batch (right). The i-th node obtains the weights of input edges from
the (i-1)-th row (blue) and generates weights to output edges saving in the i-th column (green). The
matrices are saved in a buffer that supports training in a large batch efficiently.

The probabilities of edges are generated from an extra router module along with each node, as
presented in the right diagram of Fig. 1. For the i-th node, the router receives the transformed feature
and apply squeeze-and-excitation to compute attentions πi over connections with posterior nodes.
Structurally, the router applies a lightweight module consisted of a global average pooling ϕ(·), a
fully-connected layer F(·, ·) and a sigmoid activation σ(·). The global spatial information is firstly
squeezed by global average pooling. Then we use a fully-connected layer and sigmoid to generate
normalized routing attentions for ζi output edges. The operations of router can be written as:

πi = σ(F(wi
r, ϕ(xi)) + bir) (3)

where wi
r and bir are weights and bias of the fully-connected layer. And πi ∈ RB×ζi contains

routing weights of existing connections for a batch. Specifically, the b-th input will generate individual
αijb = πib,j ∈ R1×1×1×1, which means the connectivity varies with inputs, or so called instance-
aware. Particularly, DY-Graph is computationally efficient because of the dimension reduction of ϕ(·)
from C ×H ×W to a 1-D dimension. This is much less than the computational cost of convolution,

Besides, we set a learnable weight of τ that acts as a threshold for each node to control the connected-
ness. When the weight is less than the threshold, the connection will be closed. If the input or output
edges for a node are closed, the node will be removed to accelerate inference. This can be noted as:

αij =

{
0 αij < τ
αij αij ≥ τ (4)

3.3 BUFFER MECHANISM FOR BATCH TRAINING

DY-Graph needs individual graphs to adjust the aggregation of features for each sample during the
forward procedure. But most current neural network libraries such as PyTorch (Paszke et al., 2019)
or TensorFlow (Abadi et al., 2015) do not work well with dynamic networks that change for every
training instance in a batch. It is inefficient to take one sample at a time during training. Meanwhile,
some optimization techniques in deep learning such as BatchNorm (Ioffe & Szegedy, 2015) is highly
dependent on large batch training. To resolve this contradiction and fully utilize GPU accelerators,
we propose using a buffer mechanism to support batch training.

Specifically, for the b-th input, the connectivity which determines the graph can be represented in an
adjacency matrix (denoted asMb ∈ RN×N ). An example is given in the left of Fig. 2, where rows
reflect the coefficients of input edges and columns are of output edges for a node. During the forward
procedure, each node performs aggregation through weights acquired from the corresponding row
ofMb. Then the node generates attentions over output edges through accompanying the router and

5



Under review as a conference paper at ICLR 2021

stores them into the columns ofMb. In this way, the adjacency matrix is updated progressively and
shared within the graph. For a batch with B samples, different matrices are concatenated and cached
in a defined buffer (denoted as M ∈ RB×N×N , where Mb,:,: = Mb), as shown in the right of Fig.
2. Under this mechanism, the DY-Graph is compatible with batch training. The predicted weights
in Eq. (3) can be saved by M:,i,: = πi. For feature aggregation, the attention weights can also be
obtained through πj = M:,:,j . This guarantees that DY-Graph can be trained like ordinary batch
training without introducing excessive computation or time-consuming burden.

3.4 OPTIMIZATION OF DY-GRAPH

During training, the parameters of the network Wo = {wi
o}, as well as the parameters of routers

Wr = {wi
r,b

i
r}, are optimized simultaneously using gradients back-propagation. Given an input x

and corresponding label y, the objective function can be represented as:
min

Wo,Wr

Lt(Γ(x;Wo,Wr),y) (5)

where Γ(·, ·) is the mapping function from the sample to the feature representation, and Lt(·, ·)
denotes the loss function w.r.t specific tasks (e.g. cross-entropy loss for image classification).

4 EXPERIMENTS

4.1 IMAGENET CLASSIFICATION

Dataset and evaluation metrics. We evaluate our approach on the ImageNet 2012 classification
dataset (Russakovsky et al., 2015). The ImageNet dataset consists of 1.28 million training images
and 50,000 validation images from 1000 classes. We train all models on the entire training set
and compare the single-crop top-1 validation set accuracy with input image resolution 224×224.
We measure performance as ImageNet top-1 accuracy relative to the number of parameters and
computational cost in FLOPs.

Model selection and training setups. We validate our approach on a number of widely used
models including MobileNetV2-1.0 (Sandler et al., 2018), ResNet-18/50/101 (He et al., 2016a) and
ResNeXt50-32x4d (Xie et al., 2017). To further test the effectiveness of DY-Graph, we attempt to
optimize recent NAS-based networks of RegNets (Radosavovic et al., 2020), which are the best
models out of a search space with ∼ 1018 possible configurations. Our implementation is based on
PyTorch (Paszke et al., 2019) and all experiments are conducted using 16 NVIDIA Tesla V100 GPUs
with a total batch of 1024. All models are trained using SGD optimizer with 0.9 momentum. Detailed
information about the training setting can be seen in appendix 6.1.

Table 1: ImageNet validation accuracy (%) and inference cost for our DY-Graph models on several
baseline model architectures. DY-Graph improves the accuracy of all baseline architectures with
small relative increase in the number of parameters and inference cost.

Network Baselines DY-Graph
∆ Top-1Params(M) FLOPs(M) Top-1 Params(M) FLOPs(M) Top-1

MobileNetV2-1.0 3.51 299 72.60 3.58 312 73.17 0.57

ResNet18 11.69 1813 70.30 11.71 1826 71.30 1.00
ResNet50 25.55 4087 76.70 25.62 4125 78.00 1.30
ResNet101 44.54 7799 78.29 44.90 7837 79.68 1.39

ResNeXt50-32x4d 25.02 4228 77.97 25.09 4305 79.18 1.21

RegNet-X-600M 6.19 600 74.03 6.22 601 74.60 0.57
RegNet-X-1600M 9.19 1602 77.26 9.22 1604 77.86 0.60

Analysis of experimental results. We verify that DY-Graph improves performance on a wide range
of architectures in Table 1. For fair comparison, we retrain all of our baseline1 models with the same

1Our re-implementation of the baseline models and our DY-Graph models use the same hyperparameters.
For reference, published results for baselines are: MobileNetV2-1.0 (Sandler et al., 2018): 72.00%, ResNet-

6



Under review as a conference paper at ICLR 2021

hyperparameters as the DY-Graph models. Compared with baselines, DY-Graph gets considerable
gains with a small relative increase in the number of parameters (< 2%) and inference cost of FLOPs
(< 1%). This includes architectures with mobile setting (Sandler et al., 2018), classical residual
wirings (He et al., 2016a; Xie et al., 2017), multi-branch operation (Xie et al., 2017) and architecture
search (Radosavovic et al., 2020). We further find that DY-Graph benefits from the large search space
which can be seen in the improvements of ResNets. With the increase of the depth from 18 to 101,
the formed complete graph includes more nodes, resulting in larger search space and more possible
connectivity. And the gains raise from 1.00% to 1.39% in top-1 accuracy.

4.2 COCO OBJECT DETECTION

We report the transferability results by fine-tuning the networks for COCO object detection (Lin et al.,
2014). We use Faster R-CNN (Ren et al., 2015) with FPN (Lin et al., 2017b) as the object detector.
Our fine-tuning is based on the 1× setting of the publicly available Detectron (Girshick et al.,
2018). We replace the backbone with those in Table 1.

The object detection results are given in Table 2. And FLOPs of the backbone are computed with
an input size of 800×1333. Compared with the static network, DY-Graph improves AP by 1.55%
with ResNet-50 backbone. When using a larger search space of ResNet101, our method significantly
improves the performance by 2.63% in AP. It is worth noting that stable gains are obtained for objects
of different scales varying from small to large. This further verifies that instance-aware connectivity
can improve the representation capacity toward the dataset with a large distribution variance.

Table 2: COCO object detection minival performance of our DY-Graph with FPN as the object
detection method. APs (%) of bounding box detection are reported. Note that DY-Graph brings
consistently and substantially improvement across multiple backbones on all scales.

Backbone Method GFLOPs AP AP.5 AP.75 APS APM APL

ResNet50 Baseline 174 36.42 58.54 39.11 21.93 40.02 46.58
DY-Graph 176 37.97+1.55 60.42 40.79 23.40 41.36 48.21

ResNet101 Baseline 333 38.59 60.56 41.63 22.45 43.08 49.46
DY-Graph 335 41.22+2.63 63.51 44.86 25.57 45.47 52.56

ResNeXt50-32x4d Baseline 181 38.07 60.42 41.01 22.97 42.10 48.68
DY-Graph 183 39.22+1.15 62.16 42.41 25.23 43.12 49.59

4.3 COMPARED WITH RELATED WORK

Compared with InstaNAS (Cheng et al., 2020). InstaNAS generates data-dependent networks
from a designed meta-graph. During inference, it uses a controller to sample possible architectures
by a Bernoulli distribution. But it needs to carefully design the training process to avoid collapsing
the controller. Differently, DY-Graph builds continuous connections between nodes, which allowing
more possible connectivity. And the proposed method is compatible with gradient descent, and
can be trained in a differentiable way easily. MobileNetV2 is used as the backbone network in
InstaNAS. It provides multiple searched architectures under different latencies. For a fair comparison,
DY-Graph adopts the same structure as the backbone and reports the results of ImageNet. The latency
is tested using the same hardware. The results in Table 3 demonstrate DY-Graph can generate better
instance-aware architectures in the dimension of connectivity.

Compared with RandWire (Xie et al., 2019). Randomly wired neural networks explore using
flexible graphs generated by different graph generators as networks, losing the constraint on wiring
patterns. But for the entire dataset, the network architecture it uses is still consistent. Furthermore,
DY-Graph allows instance-aware connectivity patterns learned from the complete graph. We compare
three types of generators in their paper with best hyperparameters, including Erdös-Rényi (ER),
Barabási-Albert (BA) and Watts-Strogatz (WS). Since the original paper does not release codes,

18 (He et al., 2016b), 69.57%, ResNet-50 (Goyal et al., 2017): 76.40%, ResNet-101 (Goyal et al., 2017):
77.92%, ResNeXt50-32x4d (Xie et al., 2017): 77.80%, RegNetX-600M (Radosavovic et al., 2020): 74.10%,
RegNetX-1600M (Radosavovic et al., 2020): 77.00%.

7



Under review as a conference paper at ICLR 2021

we reproduce these graphs using NetworkX2. We follow the small computation regime to form
networks. Experiments are performed in ImageNet using its original training setting except for the
DropPath and DropOut. Comparision results are shown in Table 4. DY-Graph is superior to three
classical graph generators in a similar computational cost. This proves that under the same search
space, the optimized data-dependent connectivity is better than randomly wired static connectivity.

Table 3: Compared with InstaNAS under com-
parable latency in ImageNet.

Model Top-1 Latency (ms)

MobileNetV2-1.0 72.6 0.257±0.015

InstaNAS-ImgNet-A 71.9 0.239±0.014

InstaNAS-ImgNet-B 71.1 0.189±0.012

InstaNAS-ImgNet-C 69.9 0.171±0.011

DY-Graph-MBv2-1.0 73.2 0.257±0.015

Table 4: Compared with RandWire under small
computation regime in ImageNet.

Wiring Type Top-1 FLOPs(M)

ER (P=0.2) 71.5 602
BA (M=5) 71.2 582

WS (K=4, P=0.75) 72.2 572

DY-Graph 73.1 611

Compared with state-of-the-art NAS-based methods. For completeness, we compare with the
most accurate NAS-based networks under the mobile setting (∼ 600M FLOPs) in ImageNet. It is
worth noting that this is not the focus of this paper. We select RegNet as the basic architecture as
shown in Table 1. For fair comparisons, here we train 250 epochs and other settings are the same with
section 4.1. We note RegNet-X with the dynamic graph as DY-Graph-A and RegNet-Y with dynamic
graph as DY-Graph-B (with SE-module for comparison with particular searched architectures e.g.
EfficientNet). The experimental results are given in Table 5. It shows that with a single operation
type (Regular Bottleneck), DY-Graph can obtain considerable performance with other NAS methods.

Table 5: Comparision with NAS methods under mobile setting. Here we train for 250 epochs similar
to (Zoph et al., 2018; Real et al., 2019; Xie et al., 2019; Liu et al., 2018; 2019), for fair comparisons.

Network Params(M) FLOPs(M) Top-1 Top-5

NASNet-A (Zoph et al., 2018) 5.3 564 74.0 91.6
NASNet-B (Zoph et al., 2018) 5.3 488 72.8 91.3
NASNet-C (Zoph et al., 2018) 4.9 558 72.5 91.0
Amoeba-A (Real et al., 2019) 5.1 555 74.5 92.0
Amoeba-B (Real et al., 2019) 5.3 555 74.0 91.5
Amoeba-C (Real et al., 2019) 6.4 570 75.7 92.4

RandWire-WS (Xie et al., 2019) 5.6 583 74.7 92.2
PNAS (Liu et al., 2018) 5.1 588 74.2 91.9

DARTS (Liu et al., 2019) 4.9 595 73.1 91.0
EfficientNet-B0 (Tan & Le, 2019) 5.3 390 76.3 93.2

DY-Graph-A 6.2 600 75.4 92.3
DY-Graph-B 6.2 600 76.7 92.9

5 CONCLUSION AND FUTURE WORK

In this paper, we present the Dynamic Graph (noted as DY-Graph), that allows learning instance-aware
connectivity for neural networks. Without introducing much computation cost, the model capacity
can be increased to ease the difficulties of feature representation for samples with high diversity and
variety. We show that DY-Graph is superior to many static networks, including human-designed and
automatically searched architectures. Besides, DY-Graph demonstrates good generalization ability on
ImageNet classification as well as COCO object detection. It also achieved SOTA results compared
with related work. DY-Graph explores the connectivity in an enlarged search space, which we believe
is a new research direction. In future work, we consider verifying DY-Graph on more NAS-searched
architectures. Moreover, we will study learning dynamic operations beyond the connectivity as well
as adjusting the computation cost based upon the difficulties of samples.

2https://networkx.github.io

8

https://networkx.github.io


Under review as a conference paper at ICLR 2021

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL http://tensorflow.org/. Software available from
tensorflow.org.

Karim Ahmed and Lorenzo Torresani. Maskconnect: Connectivity learning by gradient descent. In
ECCV (5), volume 11209 of Lecture Notes in Computer Science, pp. 362–378. Springer, 2018.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In ICLR, 2015.

Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen, Lu Yuan, and Zicheng Liu. Dynamic
convolution: Attention over convolution kernels. In CVPR, pp. 11027–11036. IEEE, 2020.

Zhourong Chen, Yang Li, Samy Bengio, and Si Si. Gaternet: Dynamic filter selection in convolutional
neural network via a dedicated global gating network. CoRR, abs/1811.11205, 2018.

An-Chieh Cheng, Chieh Hubert Lin, Da-Cheng Juan, Wei Wei, and Min Sun. Instanas: Instance-aware
neural architecture search. In AAAI, pp. 3577–3584. AAAI Press, 2020.

Ross Girshick, Ilija Radosavovic, Georgia Gkioxari, Piotr Dollár, and Kaiming He. Detectron.
https://github.com/facebookresearch/detectron, 2018.

Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: training imagenet
in 1 hour. CoRR, abs/1706.02677, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, pp. 770–778. IEEE Computer Society, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In ECCV (4), volume 9908 of Lecture Notes in Computer Science, pp. 630–645.
Springer, 2016b.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In CVPR, pp. 7132–7141. IEEE
Computer Society, 2018.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks. In CVPR, pp. 2261–2269. IEEE Computer Society, 2017.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Xu Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen. Gpipe: Efficient training of giant
neural networks using pipeline parallelism. In NeurIPS, pp. 103–112, 2019.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In ICML, volume 37 of JMLR Workshop and Conference
Proceedings, pp. 448–456. JMLR.org, 2015.

Quoc V. Le, Marc’Aurelio Ranzato, Rajat Monga, Matthieu Devin, Greg Corrado, Kai Chen, Jeffrey
Dean, and Andrew Y. Ng. Building high-level features using large scale unsupervised learning. In
ICML. icml.cc / Omnipress, 2012.

Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime neural pruning. In NIPS, pp. 2181–2191,
2017a.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In ECCV (5),
volume 8693 of Lecture Notes in Computer Science, pp. 740–755. Springer, 2014.

9

http://tensorflow.org/
https://github.com/facebookresearch/detectron


Under review as a conference paper at ICLR 2021

Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He, Bharath Hariharan, and Serge J. Belongie.
Feature pyramid networks for object detection. In CVPR, pp. 936–944. IEEE Computer Society,
2017b.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan L.
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In ECCV (1),
volume 11205 of Lecture Notes in Computer Science, pp. 19–35. Springer, 2018.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable architecture search. In
ICLR (Poster). OpenReview.net, 2019.

Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-based
neural machine translation. In EMNLP, pp. 1412–1421. The Association for Computational
Linguistics, 2015.

Dhruv Mahajan, Ross B. Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yixuan
Li, Ashwin Bharambe, and Laurens van der Maaten. Exploring the limits of weakly supervised
pretraining. In ECCV (2), volume 11206 of Lecture Notes in Computer Science, pp. 185–201.
Springer, 2018.

Ravi Teja Mullapudi, William R. Mark, Noam Shazeer, and Kayvon Fatahalian. Hydranets: Spe-
cialized dynamic architectures for efficient inference. In CVPR, pp. 8080–8089. IEEE Computer
Society, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In NeurIPS, pp. 8024–8035, 2019.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. In ICML, volume 80 of Proceedings of Machine Learning Research,
pp. 4092–4101. PMLR, 2018.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross B. Girshick, Kaiming He, and Piotr Dollár. Designing
network design spaces. CoRR, abs/2003.13678, 2020.

JP Rauschecker. Neuronal mechanisms of developmental plasticity in the cat’s visual system. Human
neurobiology, 3(2):109–114, 1984.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized evolution for image
classifier architecture search. In AAAI, pp. 4780–4789. AAAI Press, 2019.

Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: towards real-time object
detection with region proposal networks. In NIPS, pp. 91–99, 2015.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and Fei-Fei Li.
Imagenet large scale visual recognition challenge. Int. J. Comput. Vis., 115(3):211–252, 2015.

Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In CVPR, pp. 4510–4520. IEEE Computer
Society, 2018.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):
1929–1958, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
CVPR, pp. 1–9. IEEE Computer Society, 2015.

10



Under review as a conference paper at ICLR 2021

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A. Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning. In AAAI, pp. 4278–4284.
AAAI Press, 2017.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In ICML, volume 97 of Proceedings of Machine Learning Research, pp. 6105–6114.
PMLR, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pp. 5998–6008, 2017.

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E. Gonzalez. Skipnet: Learning dynamic
routing in convolutional networks. In ECCV (13), volume 11217 of Lecture Notes in Computer
Science, pp. 420–436. Springer, 2018.

Mitchell Wortsman, Ali Farhadi, and Mohammad Rastegari. Discovering neural wirings. In NeurIPS,
pp. 2680–2690, 2019.

Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie, Larry S. Davis, Kristen Grauman,
and Rogério Schmidt Feris. Blockdrop: Dynamic inference paths in residual networks. In CVPR,
pp. 8817–8826. IEEE Computer Society, 2018.

Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In CVPR, pp. 5987–5995. IEEE Computer Society,
2017.

Saining Xie, Alexander Kirillov, Ross B. Girshick, and Kaiming He. Exploring randomly wired
neural networks for image recognition. In ICCV, pp. 1284–1293. IEEE, 2019.

Brandon Yang, Gabriel Bender, Quoc V. Le, and Jiquan Ngiam. Condconv: Conditionally parameter-
ized convolutions for efficient inference. In NeurIPS, pp. 1305–1316, 2019.

Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping Wang. Gate decorator: Global filter
pruning method for accelerating deep convolutional neural networks. In NeurIPS, pp. 2130–2141,
2019.

Kun Yuan, Quanquan Li, Jing Shao, and Junjie Yan. Learning connectivity of neural networks from a
topological perspective. In ECCV. Springer, 2020.

Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In ECCV
(1), volume 8689 of Lecture Notes in Computer Science, pp. 818–833. Springer, 2014.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning transferable architectures
for scalable image recognition. In CVPR, pp. 8697–8710. IEEE Computer Society, 2018.

11



Under review as a conference paper at ICLR 2021

6 APPENDIX

6.1 MODEL SETTINGS IN IMAGENET CLASSIFICATION

Setup for MobileNetV2. We train the networks for 200 epochs with a half-period-cosine shaped
learning rate decay. The initial learning rate is 0.4 with a warmup phase of 5 epochs. The weight
decay is set to 4e-5. To prevent overfitting, we use label smoothing (Szegedy et al., 2017) with a
coefficient of 0.1 and dropout (Srivastava et al., 2014) before the last layer with rate of 0.2. For
building DY-Graph, the Inverted Bottleneck block is represented as a node.

Setup for ResNets and ResNeXt. The networks are trained for 100 epochs with a half-period-
cosine shaped learning rate decay. The initial learning rate is 0.4 with a warmup phase of 5 epochs.
The weight decay is set to e-4. We use label smoothing with a coefficient of 0.1. Other details of
the training procedure are the same as (Goyal et al., 2017). To form DY-Graph, the BasicBlock of
ResNet18 and Bottleneck block of ResNet50/101 are denoted as nodes. For ResNeXt, the Aggregated
Bottleneck block is set to be a node.

Setup for RegNets. The networks are trained for 100 epochs with a half-period-cosine shaped
learning rate decay. The initial learning rate is 0.8 with a warmup phase of 5 epochs. The weight
decay is set to 5e-5. We use label smoothing with a coefficient of 0.1. Other details are the same as
(Radosavovic et al., 2020). For DY-Graph, the Regular Bottleneck is transformed to be a node.

6.2 LOCATION OF ROUTERS

+

Convolution

!! !"

"!# ""#

!#$

!#
Router

"#% "#&

+
+

(a) (b)

+

Convolution

!! !"

"!# ""#

!#$

!#

+
+

"#% "#&

Router Router

(c)

+

Convolution

!! !"

"!# ""#

!#$

!#

"#% "#&

+
+

Router Router

Router
Router

Figure 3: Different routing methods with different locations of routers.

In this paper, the connectivity is determined by the weights of edges which are predicted using extra
conditional module routers. Within a node, there are two ways to obtain the weights, respectively
predicting the weights of the output edges (as shown in Fig. 3 (a)) or predicting the weights of the
input edges (as shown in Fig. 3 (b)). For the output type, as described in section 3.2, the router
receives the transformed features as input and generates attention over output edges connected with
posterior nodes. For the input type, the number of routers is related to the in-degree of the current
node. Each router receives features from the connected preceding node and predicts weight for each
input edge independently.

Although the form seems to be different, the two methods are equivalent under the routing function
we designed. The router module consists of a global average pooling, a fully-connected layer and a

12



Under review as a conference paper at ICLR 2021

sigmoid activation. The router in Fig. 3 (a) can be split into the type of Fig. 3 (c). It can be noted as:

πi = σ(WT × x) = [σ(WT
:,0 × x), · · · , σ(WT

:,j × x)] (6)

where x is the feature vector after global average pooling, W is the weight of fully-connected layer,
W:,j is the weight of independent fully-connected layer after splitting, and (×) denotes the matrix
multiplication. The prediction for the output edge of the current node is equal to the prediction for
the input edge of the next node. Therefore, the two methods are equivalent. To simplify, we select the
first type in implementation.

6.3 ABLATION STUDY

We conduct ablation study on different connectivity methods to reflect the effectiveness of the
proposed DY-Graph. The experiments are performed in ImageNet and follow the training setting in
section 4.1. For a fair comparison, we select ResNet-50/101 as the backbone structure. The symbol α
denotes assigning learnable parameters to the edge directly, which learns fixed connectivity for all
samples. The symbol αb denotes the type of DY-Graph, which learns instance-aware connectivity.
The experimental results are given in Table 6. In this way, ResNet-50 with αb still outperforms one
with α by 1.00% in top-1 accuracy. And ResNet-101 is the same. This demonstrates that due to the
enlarged optimization space, dynamic connectivity is better than static connectivity in these networks.

Table 6: Ablation study on different connectivity methods. Experiments are conducted in Ima-
geNet and Top-1/5 accuracies are reported. And the numbers in subscript represent incremental
improvements.

Backbone α αb Top-1 Top-5

ResNet-50 76.70 93.39
X 77.00+0.30 93.39

X 78.00+1.00 94.04

ResNet-101 78.29 94.09
X 78.64+0.35 94.32

X 79.68+1.04 94.73

13


	Introduction
	Related Work
	Methodology
	Formulating Connectivity Using DAGs
	Instance-aware Connectivity Through Routing Mechanism
	Buffer Mechanism for Batch Training
	Optimization of DY-Graph

	Experiments
	ImageNet Classification
	COCO Object Detection
	Compared with Related Work

	Conclusion and Future Work
	Appendix
	Model Settings in ImageNet Classification
	Location of Routers
	Ablation Study


