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Abstract

3D object detection often involves complicated training and testing pipelines, which1

require substantial domain knowledge about individual datasets. Inspired by re-2

cent non-maximum suppression-free 2D object detection models, we propose a3

3D object detection architecture on point clouds. Our method models 3D object4

detection as message passing on a dynamic graph, generalizing the DGCNN frame-5

work to predict a set of objects. In our construction, we remove the necessity of6

post-processing via object confidence aggregation or non-maximum suppression.7

To facilitate object detection from sparse point clouds, we also propose a set-to-set8

distillation approach customized to 3D detection. This approach aligns the outputs9

of the teacher model and the student model in a permutation-invariant fashion, sig-10

nificantly simplifying knowledge distillation for the 3D detection task. Our method11

achieves state-of-the-art performance on autonomous driving benchmarks. We also12

provide abundant analysis of the detection model and distillation framework.13

Methods for 3D object detection have progressed rapidly, yielding deployable autonomous driving14

perception systems. Following common practice in 2D vision, 3D object detection often employs15

complex training and testing pipelines including many post-processing operations to achieve superior16

performance. These operations are typically non-parallelizable and inefficient even with modern deep17

learning frameworks, implying a steep trade-off between between efficiency and effectiveness.18

Modern methods usually employ two stages [1, 2], including a region proposal network [3] that can19

introduce significant training overhead. Subsequent efforts simplify this pipeline for 3D object detec-20

tion. PointPillars [4] introduces a one-stage anchor-based design, simplfying training. PillarOD [5]21

and CenterPoint [6] improve the one-stage model by making per-pillar predictions, that is, one pre-22

diction per point on the ground plane. They assign ground-truth bounding boxes to multiple outputs23

while training to ease optimization. However, they predict redundant boxes, which can overlap in the24

same positions; extra boxes are eliminated a posteriori using non-maximum suppression (NMS). It25

remains elusive to remove hand-designed components like NMS in training and testing.26

We introduce Object DGCNN, a streamlined architecture for 3D object detection from point clouds.27

Like DETR for 2D object detection [7], we predict a set of bounding boxes from the raw data,28

enabling an NMS-free pipeline that achieves real-time performance. A critical new component is to29

treat each object query as a point in a set whose embedding is learned using DGCNN [8]. Compared30

to the self-attention module [9] in DETR, DGCNN leverages a sparse set of object relations, which31

reflects the real object distribution in the scene. In contrast to PointPillars [4], PillarOD [5], and32

CenterPoint [6], our method does not require post-processing.33

We also provide a knowledge distillation approach customized to 3D object detection. Existing34

methods typically distill dense feature maps from a teacher model to a student model, whose training35

objective does not necessarily capture 3D object detection performance [10]. In contrast, we propose36

set-to-set distillation training that aligns the outputs of the teacher and the student in a permutation-37
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invariant fashion. This process is enabled by the unified Object DGCNN architecture. In addition to38

obtaining better performance, through this process our model can benefit from privileged information39

(e.g., dense point clouds) only available at training time.40

Contributions. We summarize our key contributions as follows:41

• We propose a post-processing-free 3D object detection model achieving state-of-the-art perfor-42

mance. To our knowledge, this is the first NMS-free 3D object detector.43

• We generalize DGCNN to model objects as a point set. The DGCNN module outperforms its44

self-attention counterpart thanks to its sparse structure.45

• We propose a set-to-set distillation method for 3D object detection. In our construction, knowledge46

distillation on object detection simply penalizes differences between the outputs of the teacher47

model and the student model.48

• We show our model can use privileged information (such as dense point clouds) that is naturally49

available at training time to improve the model performance at inference time.50

• We will release our code to promote reproducibility and future research.51

1 Related Work52

2D object detection. Object recognition research has been transitioning from models with hand-53

crafted components to models with limited post-processing. One-stage detectors [11, 12, 13] remove54

the complicated region proposal networks in two-stage objectors [3, 14], yielding more efficient55

training and testing. Anchor-free methods [15, 16] further simplify the one-stage pipeline by shifting56

from per-anchor prediction to per-pixel prediction. However, these methods still make dense predic-57

tions and rely on NMS to reduce redundancy. To alleviate this issue, DETR [7] formulates object58

detection as a set-to-set prediction problem. It introduces a set-to-set loss that implicitly penalizes59

redundant boxes, removing the necessity of post-processing. To accelerate convergence, Deformable60

DETR [17] proposes deformable self-attention and streamlines the optimization process. Our method61

also formulates 3D object detection as set prediction, but with a customized design for 3D.62

3D object detection. VoxelNet [18] generalizes one-stage object detection to 3D. It uses 3D dense63

convolutions to learn representations on voxelized point clouds, which is too inefficient to capture64

fine-grained features. To address that, PIXOR [19] and PointPillars [4] project points to a birds-eye65

view (BEV) and operate on 2D feature maps; PointNet [20] aggregates features within each BEV66

pixel. We use a variant of PointPillars [4] for 3D detection (§3). These methods are efficient but drop67

information along the vertical axis. To accompany the BEV projection, MVF [21] adds a spherical68

projection. PillarOd [5] and CenterPoint [6] use pillar-centric object detection, making predictions69

per BEV pixel (pillar) rather than per anchor. These anchor-free methods simplify 3D object detection70

while maintaining efficiency. Beyond SSD-style [11] one-stage models, Complex-YOLO [22]71

extends YOLO to 3D for real-time perception. PointRCNN [23] employs a two-stage architecture for72

high-quality detection. To improve representations of two-stage models, PVRCNN [2] proposes a73

point-voxel feature set abstraction layer to leverage the flexible receptive fields of PointNet-based74

networks. Unlike works on point clouds, LaserNet [24] operates on raw range scans with comparable75

performance. [25, 26, 27] combine point clouds with camera images. Frustum-PointNet [28]76

leverages 2D object detectors to form a frustum crop of points and then uses PointNet to aggregate77

features. [29] describes an end-to-end learnable architecture that exploits continuous convolutions to78

fuse feature maps. VoteNet [30, 31] generalizes Hough voting [32] for 3D object detection in point79

clouds. DOPS [33] extends VoteNet and predicts 3D object shapes. In addition to visual input, [34]80

shows that high-definition (HD) maps can boost performance of 3D object detectors. [35] argues that81

multi-tasking can learn better representations than single-tasking. Beyond supervised learning, [36]82

learns a perception model for unknown classes.83

DGCNN. DGCNN [8] pioneered learning point cloud representations via dynamic graphs. It models84

point clouds as connected graphs, which are dynamically built using k-nearest neighbors in the latent85

space. DGCNN learns per-point features through message passing. However, it operates on point86

clouds for single object recognition and semantic segmentation. One of our key contributions is to87

generalize DGCNN to model scene-level object relations for 3D detection.88

Knowledge distillation (KD). KD compresses knowledge from an ensemble of models into a single89

smaller model [37]. [38] generalizes this idea and combines it with deep learning. KD transfers90

knowledge from a teacher model to a student model by minimizing a loss, in which the target is the91
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distribution of class probabilities induced by the teacher. [39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]92

improve knowledge distillation for classification. Beyond image classification, KD has been extended93

to improve object detection. [51] leverages FitNets for object detection, addressing obstacles such94

as class imbalance, loss instability, and feature distribution mismatch. [52] distills between region95

proposals, accelerating training with added instability. To address this issue, [53] uses fine-grained96

representation imitation using object masks. [54] uses KD to tackle a continual learning problem.97

Privileged information. [55] introduces the framework of learning with privileged information in98

the context of support vector machines (SVMs), wherein additional information is accessible during99

training but not testing. [56] unifies KD and learning using privileged information theoretically. [57]100

identifies practical applications, e.g., transferring knowledge from localized data to non-localized101

data, from high resolution to low resolution, from color images to edge images, and from regular102

images to distorted images. To mediate uncertainty and improve training efficiency, [58] makes the103

variance of Dropout [59] a function of privileged information. We extend these methods to 3D data,104

in which privileged information consists of dense point clouds aggregated from LiDAR sequences.105

2 Overview106

Our target application of object detection differs from the recognition and segmentation tasks107

considered for DGCNN. Our point clouds typically contain too many points to apply DGCNN and its108

peers directly to the entire scene. Moreover, the size of our output set, a small set of bounding boxes,109

differs from the size of our input set, a huge set of points in R3.110

Following state-of-the-art in large-scale object detection, our pipeline learns a grid-based intermediate111

representation to capture local features (§3). We test two standard learning-based methods for112

collecting local point cloud features on a birds-eye view (BEV) grid. While in principle it might be113

possible to avoid grids entirely in our pipeline, this BEV representation is far more efficient and—as114

observed in previous work—is sufficient to find objects reliably in autonomous driving, where there115

is likely only one object above any given grid cell on the ground plane.116

Our main architecture contribution is the Object DGCNN pipeline (§4), which transitions from117

this BEV grid of features to a set of object bounding boxes. Object DGCNN draws inspiration118

from the DGCNN architecture; its layers alternate between local feature transformations and k-119

nearest neighbor aggregation to capture relationships between objects. Unlike conventional DGCNN,120

however, Object DGCNN incorporates features from the BEV grid in each of its layers; each layer121

incorporates several queries into the BEV to refine object position estimates. The output of Object122

DGCNN is a set of objects in the scene. We use a permutation-invariant loss (10) to measure123

divergence from the ground truth set of objects.124

The pipeline above does not require hand-designed post-processing like NMS; our output boxes are125

usable directly for object detection. Beyond simplifying the object detection pipeline, this allows us126

to propose object detection-specific distillation procedures (§6.3) that further improve performance.127

These use one network to train another, e.g., to train a network operating on sparse point clouds to128

output features that imitate those learned by a network trained on denser, more detailed point clouds.129

3 Local Features130

We begin with a point cloud X = {x1, . . . ,xi, . . . ,xN} ⊂ R3 with per-point features F =131

{f1, . . . ,f i, . . . ,fN} ⊂ RK , ground-truth bounding boxes B = {b1, . . . , bj , . . . , bM} ⊂ R9, and132

categorical labels C = {cj , . . . , cj , . . . , cM} ⊂ Z. Each bj contains position, size, heading angle,133

and velocity in the birds-eye view (BEV); our architecture aims to predict these boxes and their labels134

from the point cloud and its features.135

As an initial step, modern 3D object detection models scatter points into either BEV pillars or136

3D voxels and then use convolutional neural networks to extract features on a grid. This strategy137

accelerates object detection for large point clouds. We test two neural network architectures for BEV138

feature extraction, detailed below.139

PointPillars [4] maps sparse point clouds onto a dense BEV pillar map on which 2D convolutions can140

be applied. Suppose FP (i) returns the points in pillar i, that is, the set of points in a vertical column141

above point i on the ground. When collecting features from points to pillars, multiple points can fall142
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Figure 1: Overview. Point cloud features are learned in BEV, followed by L DGCNNs to model
object relations. We predict a set of bounding boxes and compute loss in a one-to-one manner.

into the same pillar. In this case, PointNet [20] (PN) is used to obtain pillar-wise features:143

fpillar
i = PN({f j |xj ∈ FP (pi)}), (1)

where fpillar
i is the feature of pillar pi. We set the features for empty pillars to 0. This results in144

a dense 2D grid Fpillar ⊂ RHp×Wp×Cp

, where Hp,W p and Cp are the height, width, number of145

channels of this 2D pillar map, respectively. Multiple stacked convolutional layers further embed the146

pillar features to the final feature map Fd ⊂ RHd×Wd×Cd

.147

An alternative BEV embedding is SparseConv [60]. If FV (i) returns the set of points in voxel i,148

SparseConv collects point-wise features into voxel-wise features by149

fvoxel
i = PN({f j |xj ∈ FV (i)}), (2)

where fvoxel
i contains the features of voxel i. In contrast to PointPillars, SparseConv conducts 3D150

sparse convolutions to refine the voxel-wise features. Finally, we compress these sparse voxels to a151

BEV 2D grid by filling empty voxels with zeros and averaging along the z-axis. For ease of notation,152

we also denote the resulting 2D grid Fd ⊂ RHd×Wd×Cd

.153

4 Object DGCNN154

After obtaining the BEV features Fd using one of the architectures above, we predict a set of155

bounding boxes as well as a label for each box. The key difference between our architecture and most156

recent 3D object detection methods is that ours produces a set of bounding boxes rather than a box157

per grid cell followed by NMS, as in [5, 6]. Hence, we need to transition from a grid of per-pillar158

features to an unordered set of objects; we detail our approach below. We address two key issues:159

prediction of the bounding boxes and evaluation of the loss.160

Desiderata. Object DGCNN uses a DGCNN-inspired architecture but incorporates grid-based BEV161

features, built on the philosophy that local features (§3) are reasonable to store on a dense grid, but162

object predictions are better modeled using sets. Hence, we require a new architecture and set-to-set163

loss that encourage bounding box diversity.164

Object DGCNN uses L layers that follow a series of set-based computations to produce bounding165

box predictions from the BEV feature maps. Each layer employs the following steps (Figure 1):166

1. predict a set of query points and attention weights;167

2. collect BEV features from keypoints determined by the queries; and168

3. model object-object interactions via DGCNN.169

Each layer results in a more refined set of bounding box predictions, one per query. At the end170

of these layers, we match the prediction set with the ground-truth set in a one-to-one fashion and171

evaluate a set-to-set object detection loss.172

Single layer. Inspired by DETR [7], each layer ` ∈ {0, . . . , L− 1} of Object DGCNN operates on a173

set of object queriesQ` = {q`1, . . . , q`M∗} ⊂ RQ, producing a new setQ`+1. Although queries are174

fully learnable, our intuition is that they represent progressively refined object positions.175
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The initial set of object queries Q0 is learned jointly with the neural network weights, yielding176

a dataset-specific prior. Beyond this fixed initial set, below we detail how to incorporate scene177

information to obtain Q`+1 from Q` using an approach inspired by DGCNN [8] and deformable178

self-attention [17]. For notational convenience, we drop the ` subscript.179

Starting from each query qi (or, without the index dropped, q`i), we decode a reference point pi ∈ R2,180

a set of offsets {δi0, . . . , δiK} ⊂ R2, and a set of attention weights {wi0, . . . , wiK} ⊂ R:181

pi = Φref(qi), {δ0i , . . . , δ
k
i , . . . δ

K
i } = Φneighbor(qi),

{w0
i , . . . , w

k
i , . . . w

K
i } = Φatten(qi),

(3)

where Φref , Φneighbor, and Φatten are shared neural networks among the queries. We think of pi as a182

hypothesis for the center of the i-th object; the δ’s represent the positions of K informative points183

relative to the position of the object that determine its geometry.184

Next, we collect a BEV feature f ik associated to each neighbor point pik = pi + δik :185

f ik = fbilinear(Fd,pi + δik), (4)

where fbilinear bilinearly interpolates the BEV feature map Fd. Note this step is the interaction186

between our set-based architecture manipulating query points qi and the grid-based feature map Fd.187

We then aggregate a single object query feature foi from the f iks:188

foi =
∑
k

ewik∑
k e

wik
f ik. (5)

This generates scene-aware features; each object query “attends” to a certain area in the scene.189

In the current layer `, the queries have not yet interacted with each other. To incorporate neighborhood190

information in object detection estimates, we use DGCNN-style operations to model a sparse set of191

relations. We construct a graph between the queries using a nearest neighbor search in feature space.192

In particular, we connect each query feature foi to its 16 nearest neighbors as ablated in Table 7.193

Identically to DGCNN, we learn a feature per edge eij and then aggregate back to the vertices i to194

produce the new set of object queries. In detail, we write:195

q(`+1)i = max
edges eij

Φedge(f
o
i ,f

o
j), (6)

where max denotes a channel-wise maximum and Φedge is a neural network for computing edge196

features. This completes our layer for computing Q`+1 from Q`. Optionally, we repeat this last step197

multiple times, in effect applying DGCNN to the features foi to get the point set Q`+1.198

Set-to-set loss. After L Object DGCNN layers as described above, we are left with a set of M∗199

queries QL used to predict our bounding boxes. For each query qLi, we use a classification network200

to predict a categorical label ĉi and a regression network to predict bounding box parameters b̂i. Our201

final task is to assign the predictions to the ground-truth boxes and compute a set-to-set loss.202

Most object detection models minimize a loss Lod given by203

Lod =

M̂∑
j=1

− log p̂σ̂(j)(ĉj) + 1{cσ̂(j) 6=∅}Lbox(b̂j , bσ̂(j)), (7)

where M̂ = Hd ∗W d, σ̂(∗) returns the corresponding index of the ground-truth bounding box,204

p̂σ̂(j)(cj) is the probability of class cσ̂(j) for the prediction with index σ(j), ∅ denotes an invalid box,205

and Lbox is typically the L1 distance. Different matchings σ̂ yield different optimization landscapes206

and hence different prediction models. Pillar-OD [5] and CenterPoint [6] employ a simple σ̂ to207

determine the ground-truth box used to evaluate the box predicted at BEV pixel j:208

σ̂overlap(j) =

{
j
′
, if bj′ overlaps with BEV pixel j;

∅, otherwise.
(8)

This strategy can assign a box to multiple nearby BEV pixels. This one-to-many assignment provides209

dense supervision for the object detector and eases optimization. Since the training objective210
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(a) Student network (b) Teacher network (fixed)

Figure 2: The set-to-set distillation pipeline. The student network is trained with the ground-truth
supervision as well as with the supervision from a fixed teacher network.

encourages each BEV pixel to predict the same surrounding box, however, redundant boxes are211

inevitable. So, NMS is usually required to remove redundant boxes at inference time.212

Rather than performing dense predictions in the BEV, we make per-query predictions. Typically, M∗213

is much larger than the number of ground-truth boxes M . To account for this difference, we pad the214

set of ground-truth boxes with ∅s (no object) up to M∗. Following [7], we use an objective built on215

an optimal matching between these two sets. We define the optimal bipartite matching as216

σ∗ = arg min
σ∈P

M∑
j=1

−1{cj=∅}p̂σ(j)(cj) + 1{cj=∅}Lbox(bj , b̂σ(j)), (9)

where P denotes the set of permutations, p̂σ(j)(cj) is the probability of class cj for the prediction217

with index σ(j), and Lbox is the L1 loss for bounding box parameters. We use the Hungarian218

algorithm [61] to solve this assignment problem, as in [62, 7]. Our final set-to-set loss adapts (7):219

Lsup =

N∑
j=1

− log p̂σ∗(j)(cj) + 1{cj=∅}Lbox(bj , b̂σ∗(j)). (10)

5 Distillation220

Object DGCNN enables a new set-to-set knowledge distillation (KD) pipeline. KD usually involves221

a teacher model T and a student model S. The common practice is to align the outputs of the222

student with those of the teacher using L2 distance or KL-divergence. In past 3D object detection223

methods, since final performance heavily relies on NMS and the predictions are post-processed224

to be a smaller set, distilling the teacher to the student is neither efficient nor effective. Since our225

set-based detection model is NMS-free, we can easily distill the information between models with226

homogeneous detection heads (per-query object detection head in our case). First, we train a teacher227

T using the method above with the loss in (10). Then, we train a student S with supervision given by228

T and the ground-truth. The class label and box parameters predicted by the teacher for each object229

query are cTj and bTj , respectively. The corresponding student outputs are cSj and bSj . We find an230

optimal matching between the output set of the teacher and that of the student:231

σ∗d = arg min
σd∈P

N∑
j

− log pσd(j)(c
T
j ) + Lbox(bTj , b

S
σd(j)

). (11)

Then, the optimal matching’s KD loss is given by232

Ldistill =

N∑
j

− log p̂σ∗d(j)(c
T
j ) + Lbox(bTj , b

S
σ∗d(j)

). (12)

So the overall loss during KD is L = αLsup + βLdistill, where α and β balance the supervised loss233

and distillation loss. In practice, we use α = β = 1.234
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Table 1: Comparisons to recent works. Our method is robust to whether to use NMS. ∗: imple-
mentations with the same PointPillars backbone. ‡: implementations with the same SparseConv
backbone.

Method NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓ NMS
PointPillars [4] 53.3 40.0 - - - - - X

SSN [63] 54.83 41.56 - - - - - X
FreeAnchor [64] 55.3 43.7 - - - - - X

RegNetX-400MF-SECFPN [65] 55.2 41.2 - - - - - X
Pillar-OD [5] 56.84 44.41 - - - - - X

CenterPoint (pillar) [6] ∗ 59.56 47.48 31.27 25.81 33.78 32.25 20.20 X
CenterPoint (pillar) [6] ∗ 55.08 40.27 35.14 26.44 36.75 32.66 19.55
CenterPoint (voxel) [6] ‡ 64.19 54.99 29.83 25.71 32.56 26.08 18.89 X
CenterPoint (voxel) [6] ‡ 57.00 45.32 31.66 27.14 40.47 37.23 20.14

Ours (pillar) ∗ 60.54 48.71 32.54 26.15 33.95 26.60 18.73 X
Ours (pillar) ∗ 60.54 48.67 32.54 26.15 33.95 26.60 18.73
Ours (voxel) ‡ 64.18 54.87 29.75 25.77 32.40 26.11 18.91 X
Ours (voxel) ‡ 64.17 54.96 29.74 25.78 32.42 26.16 18.94

Table 2: Comparisons of different distillation approaches.

Method NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
Baseline (without distillation) 41.32 37.78 44.99 27.65 64.43 144.26 39.30
Feature distill (voxel→pillar) 41.89 38.12 44.87 27.78 64.12 143.78 39.19
Pseudo labels (voxel→pillar) 39.39 36.56 45.25 28.12 65.23 144.56 40.13

Set-to-set distill (voxel→pillar) 42.21 39.01 43.97 27.73 64.00 143.75 39.20

6 Experiments235

We present our experiments in four parts. We introduce the dataset, metrics, implementation, and236

optimization details in §6.1. Then, we demonstrate performance on the nuScenes dataset [66] in §6.2.237

We present knowledge distillation results in §6.3. Finally, we provide ablation studies in §6.4.238

6.1 Training & testing procedures239

Dataset. We experiment on the nuScenes dataset [66]. nuScenes provides rich annotations and240

diverse scenes. It has 1K short sequences captured in Boston and Singapore with 700, 150, 150241

sequences for training, validation, and testing, respectively. Each sequence is ∼20s and contains 400242

frames. This dataset provides annotation every 0.5s, leading to 28K, 6K, 6K annotated frames for243

training, validation, and testing. nuScenes uses 32-beam LiDAR, producing 30K points per frame.244

Following common practice, we use calibrated vehicle pose information to aggregate every 9 non-key245

frames to key frames, so each annotated frame has ∼300K points. The annotations include 23 classes246

with a long-tail distribution, of which 10 classes are included in the benchmark.247

Metrics. The major metrics are mean average precision (mAP) and the nuScenes detection score248

(NDS). In addition, we use a set of true positive metrics (TP metrics), which include average249

translation error (ATE), average scale error (ASE), average orientation error (AOE), average velocity250

error (AVE), and average attribute error (AAE). These metrics are computed in the physical unit.251

Model architecture. Our model consists of three parts: a point-based feature extractor, a DGCNN to252

encode object queries and to connect the point cloud features to object queries, and a detection head253

to output the categorical label and bounding box parameters. We experiment with PointPillars [4]254

and SparseConv [60] as feature extractors. The three blocks of the PointPillars backbone have255

[3, 5, 5] convolutional layers, with dimensions [64, 128, 256] and strides [2, 2, 2]; the input features256

are downsampled to 1/2, 1/4, 1/8 of the original feature map. For SparseConv, we use four blocks of257

[3, 3, 3, 2] 3D sparse convolutional layers, with dimensions [16, 32, 64, 128] and strides [2, 2, 2, 1];258

the input features are downsampled to 1/2, 1/4, 1/8, 1/8 of the original feature map. For SparseConv,259

we transform the features into BEV by collapsing the z-axis. Both backbones use two deformable260

self-attention [17] layers with dimensions [256, 256] to transform the BEV features. Then, we use261

two DGCNNs to encode the object queries. Each DGCNN [8] contains two EdgeConv layers with262

dimensions [256, 256], both with 16 nearest neighbors. For each object query, we predict four points263
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Table 3: Comparisons of self-distillation versus baselines.
Method NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓

Baseline (without distillation) 41.32 37.78 44.99 27.65 64.43 144.26 39.30
Self-distillation (pillar→pillar) 42.12 38.89 44.01 27.78 64.01 144.01 39.21
Baseline (without distillation) 58.46 48.01 31.33 25.99 33.89 32.29 20.37

Self-distillation (voxel→voxel) 59.55 49.84 31.17 25.77 33.73 32.22 20.22

Table 4: Self-distillation with privileged information.

Method NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
Sparse→sparse (pillar) 42.12 38.89 44.01 27.78 64.01 144.01 39.21
Dense→sparse (pillar) 42.79 39.10 43.89 27.77 64.01 143.97 39.11
Sparse→sparse (voxel) 59.55 49.84 31.17 25.77 33.73 32.22 20.22
Dense→sparse (voxel) 59.89 50.12 31.11 25.76 33.70 32.19 20.11

in the BEV to obtain and aggregate the BEV features. The final feature for this object query is the264

weighted sum of features of these four BEV points. The final detection head takes the features of265

each object query and predicts class label and bounding box parameters w.r.t. the reference point.266

Training & inference. We use AdamW [67] to train the model. The weight decay for AdamW is267

10−2. Following a cyclic schedule [68], the learning rate is initially 10−4 and gradually increased268

to 10−3, which is finally decreased to 10−8. The model is initialized with a pre-trained PointPillars269

network on the same dataset. We train for 20 epochs on 8 RTX 3090 GPUs. During inference, we270

take the top 100 objects with highest classification scores as the final predictions.We do not use any271

post-processing such as NMS. For evaluation, we use the toolkit provided with the nuScenes dataset.272

6.2 Object DGCNN273

We compare to top-performing methods on the nuScenes dataset in Table 1. PointPillars [4] is an274

anchor-based method with reasonable trade-off between performance and efficiency. FreeAnchor [64]275

extends PointPillars by learning how to assign anchors to the ground-truth. RegNetX-400MF-276

SECFPN [65] uses neural architecture search (NAS) to learn a flexible neural network for 3D277

detection; it is essentially a variant of PointPillars with an enhanced backbone network. Different278

from anchor-based methods, Pillar-OD [5] makes predictions per pillar, alleviating the class imbalance279

issue caused by anchors. CenterPoint [6] exploits similar detection heads, with better performance280

using better training scheduling and data augmentation. For these methods, we use re-implementations281

in MMDetection3D [69], which match the performances in the original papers.282

We mainly compare to CenterPoint with both PointPillars and SparseConv backbones, denoted283

as “voxel” and “pillar” respectively. Our method outperforms other methods significantly and284

achieves comparable results compared to CenterPoint with NMS. Without NMS, the performance of285

CenterPoint drops considerably while our method is unaffected by NMS. This finding verifies the286

DGCNN implicitly models object relations and removes redundant boxes.287

6.3 Set-to-set distillation288

In this section, we present experiments involving our set-to-set distillation pipeline. To limit com-289

putation time, we train each model over a shorter period of time (1 epoch versus 20 epochs in the290

previous section). We conduct three types of distillation. First, we distill a teacher model with a Spar-291

seConv backbone to a student model with a PointPillars backbone (denoted as “voxel→pillar”). This292

aligns with the common knowledge distillation setup for classification. We compare to feature-based293

distillation and pseudo label based methods. The objective of feature-based distillation is to align294

the middle-level features of the teacher model and the student model while the pseudo label based295

methods generate pseudo training examples with the pre-trained teacher networks. As Table 2 shows,296

our set-to-set distillation achieves better performance, confirming that distilling the last stage of the297

object detection model is more effective than distilling feature maps.298

Second, we perform self-distillation [49] (denoted as “voxel→voxel” and “pillar→pillar”), where299

the teacher and the student are identical and take the same point clouds as input. As Table 3 shows,300

even when the teacher network and the student network have the same capacity, self-distillation still301

introduces a performance boost. This finding is consistent with the results in [49].302
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Finally, we try distillation with privileged information [56], where the teacher gets access to privileged303

information but the student does not. Following [10], the teacher takes dense point clouds, and the304

student takes sparse point clouds (denoted as "dense→sparse"). The goal is for the student model to305

learn the same representations as the teacher model without knowing the dense inputs. In Table 4, we306

compare this setup with self-distillation, where the difference is the teacher model and the student307

model take the same sparse point clouds in self-distillation. The student achieves better performance308

when the teacher takes dense point clouds. The result suggests that set-to-set knowledge distillation309

is an effective approach to transfer insight from privileged information.310

6.4 Ablation311

We provide ablation studies on different components of our model to verify assorted design choices.312

First, we study the improvements of DGCNN over its counterpart, multi-head self-attention [9]. The313

multi-head self-attention has 8 heads with embedding dimension 256 and LayerNorm [70], following314

common usage. The DGCNN has two EdgeConv layers with dimensions [256, 256]. The number of315

neighborsK in EdgeConv is 16. In principle, DGCNN is a sparse version of multi-head self-attention;316

the sparse structure reduces overhead in back-propagation and leads to sharper “attention maps” as317

well as faster convergence.318

Table 5: DGCNN versus multi-head self-attention.

Metric
Method Multi-head self-attention DGCNN

NDS 39.89 41.32
mAP 36.35 37.81

Table 6: Models with different # DGCNNs.

Metric
# layers 1 2 3 4 5 6

NDS 35.91 39.75 41.15 41.26 41.07 41.32
mAP 32.32 36.54 37.25 37.75 37.78 37.81

Table 7: The number of neighbors in DGCNN.

Metric
# neigbhors 1 4 8 16 32 64

NDS 40.21 40.45 40.51 41.32 40.17 39.80
mAP 36.81 37.15 37.46 37.81 37.12 36.70

Table 5 shows the comparisons: DGCNN con-319

sistently outperforms multi-head self-attention.320

This aligns with our hypothesis: objects are dis-321

tributed sparsely in the scene, so dense inter-322

actions among objects are neither efficient nor323

effective. Furthermore, we study the effect of324

number of neighbors in DGCNN. When it is 1,325

The model reduces to an architecture without326

object interaction. As we increase the number, it327

approaches multi-head self-attention. As shown328

in Table 7, the sweet spot is 16, which appears329

to balance object interactions and sparsity.330

We also investigate improvements introduced331

when more DGCNNs are stacked in Table 6.332

This result suggests it is beneficial to incorporate multiple DGCNNs to model the dynamic object333

relations.334

7 Conclusion335

Object DGCNN is a highly-efficient 3D object detector for point clouds. It is able to learn object336

interactions via dynamic graphs and is optimized through a set-to-set loss, leading to NMS-free337

detection. The success of Object DGCNN indicates that many post-processing operations in 3D338

object detection are likely unnecessary and can be replaced with suitable neural network modules.339

Moreover, we introduce a set-to-set knowledge distillation pipeline enabled by the Object DGCNN.340

This new pipeline significantly simplifies knowledge distillation for 3D object detection and may341

be applicable to other tasks like 3D model compression. Beyond the direct usage of our model, our342

experiments suggest several future directions to address current limitations. For example, our method343

is initialized with a pre-trained backbone network. Training the model from scratch remains elusive344

due to the sparse set-to-set supervision; solving this issue may yield improved generalization as in [71].345

Furthermore, studying 3D-specific feature extractors will improve the speed and generalizability of346

3D object detection. Finally, the large amount of unlabeled data available at training time can serve347

as another type of privileged information to apply self-supervised learning to 3D domains through348

set-to-set distillation.349

Potential impact. Our method aims to improve the object detection pipeline, which is crucial for the350

safety of autonomous driving systems. One potential negative impact of our work is that it still lacks351

theoretical guarantees, similar to many deep learning methods. Future work to improve applicability352

in this domain might consider challenges of explainability and transparency.353
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