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Abstract

The brain age has been proven a phenotype with relevance to cognitive performance and
brain disease. With the development of deep learning, brain age estimation accuracy has
been greatly improved. However, such methods may incur over-fitting and suffer from poor
generalizations, especially for insufficient brain imaging data. This paper presents a novel
regularization method that penalizes the predictive distribution using knowledge distillation
and introduces additional knowledge to reinforce the learning process. During knowledge
distillation, we propose a gated distillation mechanism to enable the student model to
attentively learn key knowledge from the teacher model, given the assumption that the
teacher may not always be correct. Moreover, to enhance the capability of knowledge
transfer, the hint representation similarity is also adopted to regularize the model training.
We evaluate the model by a cohort of 3655 subjects from 4 public datasets, demonstrating
that the proposed method improves the prediction performance over several well-established
models, where the mean absolute error of the estimated ages is 2.129 years.

Keywords: List of keywords, comma separated.

1. Introduction

Neuroimging developments have been widely adopted in medical scenarios such as disease
diagnosis (Zhu et al., 2021; Liu et al., 2022; Yang et al., 2022) and lesion segmentation (Falk
et al., 2019; Menze et al., 2014; Zhou et al., 2018). Advanced neuroimaging candidates, i.e.
functonal Magnetic Resonance Imaging (fMRI) and Diffusion Tensor Imaging (DTI), are
powerful tools for brain disorder diagnosis by characterizing neural connections and infor-
mation flow between brain regions (Yin et al., 2022; Li et al., 2021; Kawahara et al., 2017).
Derived functional and structural connectomes are modeled as graphs by representing the
activity of neurons as nodes interconnected by a set of edges, providing a more holistic view
for relating abnormal discharge of neurons and brain dysfunction (Dadi et al., 2019). Analy-
sis of brain connectome can contribute to the scientific understanding of cognitive processes
and potentially aid in the diagnosis and treatment of neurological disorders (Gabrieli et al.,
2015; Pu et al., 2015).

The brain networks can be catorgoized into two classes: functional connectome derived
from fMRI or EEG, and structural connectome obtained from DTI or DSI. Multi-modal
brain network studies offers a more constructive scene with distinctive biomarkers, and
provides insights into investigating neuron activation and connection in vivo by leveraging
complementary information between functional and structural networks. Despite of the
promising performance achieved by multi-modal technologies, however there still remains a
great challenge to collect large, diverse images with both functional and structural scans.
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Accordingly, learning with insufficient samples may lead to model over-fitting and poor
generalization.

One way to address the abovementioned issue is by introducing incomplete learning.
Apart from multi-modal brain neuroimages, mono-modal neuroimages such as fMRI and
DTI are easier to collect. In this regard, more samples, i.e. multi-modal samples as well as
mono-modal samples, could be gathered for training. Nevertheless, learning with missing
modalities might potentially ignore the complementary information between modalities, and
bring in noise for training.

In this study, we propose to tackle the incomplete learning with missing modalities by
introducing two strategies. On one hand, we propose a modality-mix data augumentation
approach for synthezing samples with incompleteness into complete data for training. The
idea behind this is by mix-up data augumentation approach, where samples of different
classes are mixed with updated label. The modality-mix method randomly samples data
with missing modalities to constitute data with complete modalities. The constructive new
samples are leveraged for auxiliary training. On the other hand, to imitate the noise within
the synthezed data, where the unpaired complementary information between functional
and structural networks might decrease the performance, we investigate the multi-modal
learning with deep supervision for decoulping inter-modal associations. A bilateral learning
framework is introduced for decoulping multi-modal dependencies, where representations
of each branch is fine-tuned by a deep-supervision module. The deep supervision layers are
implemented to refinforce the representation learning with decoupled multi-modal associa-
tions, where the mono-modal features and multi-modal features are re-balanced for training
in order to reduce the importance of unpaired complementary information for learning. Ex-
periments on ADNI data shows the superority of our proposed approaches in improving
learning performance and generalizability.

2. Related works

Multi-modal Brain Connectome study. A simple and straightforward way of multi-
modal brain connectome learning is to concatenate features and feed them into a classifier
such as SVM. Compared with these machine learning approaches, deep learning methods
are feasible to embed high-order representations and achieve better performances. For
example, (Wang et al., 2018) performed a multi-layer convolution on fMRI and DTI data
simultaneously. (Dsouza et al., 2021) regularized convolution on functional connectivity
with structural graph Laplacian. A triplet network with a self-attention mechanism was
introduced to map high-order multi-modal representations. proposed to perform hyperedge
to perform heteogenous graph convolution on multi-modal data (Zhu et al., 2022). In this
study, these approaches are implemented as backbones for multi-modal brain connectome
study. These approaches are proposed for multi-modal learning, however, fail to tackle
incomplete learning. Learning modality interactions and complementary information from
incomplete multimodal data was less unexplored by previvious multimodal machine learning
research (Chen and Zhang, 2020).

Incomplete Learning. Recently, the exploration of incomplete learning with missing
modalities has attracted much attention. Missing modality is a common issue in real-world
multimodal scenarios (Ding et al., 2018), and the missingness can be caused by various
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reasons such as sensor damage, data corruption, and human mistakes in recording (Chen
and Zhang, 2020). In most cases, the incomplete learning can be divided into two condi-
tions: the test set is complete and incomplete, whereas the training samples are incomplete
with missing modalities. In this study, we focus on learning with complete test set, where
mono-modal data samples are implemented to improve the model performance and general-
izability. Data imputation methods such like KNN and filling with zero are commonly used
in most conditions. Advanced imputation methods such as adversial training with similar
structure as GAN have also been proposed to deal with imputing the missing modalities
(Cai et al., 2018). (Wang et al., 2020) proposed a knowledge distillation based approach to
integrate the supplementary information of multiple modalities.

3. Method

3.1. Problem formulation

In this section, we introduce the problem, task and definations. In general, the data with
incompleteness in our study can be divided into training sets and test sets. The training
sets included complete data and incomplete data, while the test sets are complete. For a
multi-modal dataset with M modalities, there are 2M − 1 different combinations of missing
modalities. In this study, we focus on studying with functional and structural brain net-
works, where M = 2. Specially, for the training sets, the samples with missing modalities
are denoted as X1u ∈ Rn1u×d1u , X2u ∈ Rn2u×d2u . And the complete data are represented
as Xc ∈ Rnc×dc with Ntrain = nc + n1u + n2u training samples. While for the test set, the
samples are complete with both two modalities Xc ∈ Rnc×dc with Ntest = nc.

In this study, given a collection of incomplete multi-modal data samples {Xi}Ni=1 as
input, where each sample consists of a set of available modalities Xi = {xi,m}, our goal is
to design a model to capture dependencies between modalities and fuse multi-modal data
with different patterns in a architecture.

3.2. Modality-Mix

(Zhang et al., 2017) first proposed the Mixup method for image classification, where syn-
thetic samples are generated by linearly interpolating a pair of training samples as well as
their targets. Consider a pair of samples (xi; yi) and (xj ; yj), a synthetic sample is geneated
as x̂ij = λxi + (1− λ)xj , yij = λyi + (1− λ)yj , where λ ∈ (0, 1) is the mixing ratio for the
pair. In this study, we follow the mixup approach and propose a modality-mixup method
by replacing the combination operation with concatenatation layers. In detail, the synthetic
data samples are obtained by:

x̂ij = ||{λxi, (1− λ)xj}, xi ∈ X1u, xj ∈ X2u (1)

yij = λyi + (1− λ)yj (2)

where || denotes the concatenatation operation. In this regard, the samples with modal-
ity 1 missing are mixed with those with modality 2 missing, and then constitute into com-
plete data.
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Figure 1: Illustration of the proposed Cross-GNN method including functional, structural,
and cross-modal pathways. The multimodal brain networks are firstly parsed and
then formulated into a correspondence matrix Φ for reasoning. The multi-modal
representations are cross-embedded and cross-distilled for cross-modal represen-
tation learning.

3.3. Deep supervision

One core challenge of data imputation by modality-mixup is the unpaired inter-modal com-
plementary information that would bring in noise and decrease the performance. In order
to reduce the effect of interactions of inter-modal representations, in this study, we propose
to decouple the multi-modal features. In detail, deep supervision is introduced to improve
the importance of mono-modal representations in classification. Figure 1 demonstrates the
scratch of the proposed framework, where representations of each modality are encoded and
then fused by concatenatation to classify. Notably, a multi-layer perception is implemented
to obtain the prediction output of each modal.

Since the multi-modal representations are heteogenous, the way of embedding brain
networks plays a key role in classification. In this study, the encoders are developed by well-
estimated backbone of brain network study, including multi-layer perception (MLP), graph
embedding, and sequential models such like LSTM and GRU. In detail, the MLP layers take
the vectorized brain connectome features into 32 features followed with ReLU activation and
dropout. Graph embedding layers leveraged the normalized brain connectome matrix as
the adjancency matrix and perform graph convolution by symmetric normalized Laplacian.
The sequential models take the brain network input as a sequence with M nodes with M
features.

3.4. Optimization

In the training process, the synthetic data and complete samples are fed into the framework.
The objective function is constructed by a combination of cross-entropy loss from the target
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output and the deep supervision, as:

L = Lce(ym, y) +
m∑
s=1

Lce(ys, y) (3)

where Lce(ym, y) denotes the loss of prediction output of the concatenated multi-modal
representations, Lce(ys, y) represents the s-th deep supervision output.

4. Experiments

4.1. Datasets

In this study, two datasets are implemented for evaluation, where functional MRI and DTI
images are collected.

ADNI Dataset1: 185 subjects were enrolled including 61 healthy controls (HC) and
63 with mild cognitive impairment (MCI), and 61 patients with Alzheimer’s disease (AD).
MCI is considered to be a significant stage for the preclinical diagnosis of AD. The patients
were diagnosed at baseline and the HCs were healthy at their first examination. These
subjects are divided into three groups: AD, MCI, and HC.

Xuanwu dataset: 53 HCs, 50 subjects with iRBD, and 85 subjects with Parkinson’s
Disease (PD) were recruited from the Movement Disorders Clinic of the Xuanwu Hospital of
Capital Medical University. Idiopathic rapid eye movement sleep behaviour disorder (iRBD)
has been increasingly recognized as the heralding features of PD and is characterized by
a long incubation period (Iranzo et al., 2006; Boeve, 2010).In the dataset, the HCs were
all older than 40 years, with no family history of movement disorders and no obvious
cerebral lesions found in MR images. The iRBD patients were screened by the International
Classification of Sleep Disorders-Third Edition (ICSD 3) diagnostic criteria and confirmed
by polysomnography (Sateia, 2014). The PDs were diagnosed according to the MDS Clinical
Diagnostic Criteria for Parkinson’s disease.

4.2. Preprocessing

All the fMRI images were pre-processed by reference to the Configurable Pipeline for the
Analysis of Connectomes (CPAC) pipeline (Craddock et al., 2013), including skull striping,
slice timing correction, motion correction, global mean intensity normalization, nuisance
signal regression with 24 motion parameters, and band-pass filtering (0.01-0.08Hz). The
functional images were finally registered into standard anatomical space (MNI152). The
mean time series for a set of regions were computed and normalized into zero mean and unit
variance. The Pearson Coefficient Correlation was applied to measure functional connec-
tivity. The DTI images were pre-processed by image denoising, head motion, eddy-current,
susceptibility distortion, and field inhomogeneity correction by MRtrix 3 (Tournier et al.,
2012). The streamline count was reconstructed to 5 million. The number of streamlines
connecting each pair of brain regions was used to construct the structural network.

The pre-processed fMRI and DTI images were mapped by the brain template for par-
cellations. In this study, the images in ADNI and Xuanwu datasets were segmented by the
Schaefer atlas (Schaefer et al., 2018) that identified 100 cortical parcels.

1. http://www.adni-info.org/
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4.3. Implementation details

In our implementation, the number of layers of bilateral graph convolution is decided in a
grid search from 1 to 4. The outputs of bilateral graph convolution layers are further fed
into a 3-layer multi-layer perception classifier followed by a leaky ReLU activation function
and a dropout layer. The learning rate is set as 3e-4, and the weight decay is 5e-5. All
the models in this study are trained for 600 epochs and would be early stopped when
the loss has not been decreased for 100 epochs. We trained the models with PyTorch on
one NVIDIA 2080-Ti GPU. 10-fold cross-validation was applied for evaluation, where 10%
samples are randomly selected for testing for each fold. For all experiments, we evaluated the
performance in terms of the diagnosis accuracy (Acc), and sensitivity (Sen), and specificity
(Spe).

4.4. Competitive baseline

In this study, we compare our proposed method with data imputation methods including
training with only complete data (C), missing modality imputation by K-nearest neigh-
bors (KNN) (Campos et al., 2015), adversial-based imputation (ADV) (Cai et al., 2018),
and knowledge distillation-based imputation (KD) (Wang et al., 2020). We also compare
our proposed decoulping framework with multi-modal learning frameworks including Brain-
NetCNN (Kawahara et al., 2017), Triplet Attention Network (Zhu et al., 2022), M-GCN
(Dsouza et al., 2021), HGCN (Feng et al., 2019).

In this study, we compare our proposed Cross-GNN with baseline machine learning
approaches and well-estimated graph methods. These methods include:
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Table 1: An Example Table

Dataset Result
Data1 0.12345
Data2 0.67890
Data3 0.54321
Data4 0.09876

Image

Figure 2: Example Image

Algorithm 1: Computing Net Activation

Input: x1, . . . , xn, w1, . . . , wn

Output: y, the net activation
y ← 0;
for i← 1 to n do

y ← y + wi ∗ xi;
end
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Allende. Evaluating imputation techniques for missing data in adni: a patient classifi-
cation study. In Iberoamerican Congress on Pattern Recognition, pages 3–10. Springer,
2015.

Jiayi Chen and Aidong Zhang. Hgmf: heterogeneous graph-based fusion for multimodal data
with incompleteness. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 1295–1305, 2020.

Cameron Craddock, Sharad Sikka, Brian Cheung, Ranjeet Khanuja, Satrajit S Ghosh,
Chaogan Yan, Qingyang Li, Daniel Lurie, Joshua Vogelstein, Randal Burns, et al. To-
wards automated analysis of connectomes: The configurable pipeline for the analysis of
connectomes (c-pac). Front Neuroinform, 42:10–3389, 2013.

Kamalaker Dadi, Mehdi Rahim, Alexandre Abraham, Darya Chyzhyk, Michael Milham,
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Appendix A. Proof of Theorem 1

This is a boring technical proof of

cos2 θ + sin2 θ ≡ 1. (4)

Appendix B. Proof of Theorem 2

This is a complete version of a proof sketched in the main text.
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