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Abstract

In this extended abstract we present a new highly efficient software tool called1

HAPNEST that enables machine learning practitioners to easily generate and2

evaluate large synthetic datasets for human genetics applications. HAPNEST3

enables the generation of diverse synthetic datasets from small, publicly accessible4

reference datasets. We demonstrate the suitability of HAPNEST-generated data5

for supervised tasks such as genetic risk scoring. The HAPNEST software can be6

accessed at [GitHub URL to be shared in final version after blind submission].7

1 Introduction8

Machine learning applications related to human genetics require large datasets that fairly represent the9

diversity of the human genome, yet privacy concerns and other practical constraints make it difficult10

for machine learning practitioners to acquire this data. Synthetic data is a promising alternative,11

but for privacy reasons, training data is limited to small, publicly available datasets. Furthermore,12

existing reference-based simulation methods [1, 2, 3] do not easily scale to generating large (> 113

million individuals) synthetic datasets. Thus new scalable approaches are required to generate large,14

high-fidelity synthetic datasets that generalize beyond the small number of training examples.15

In this extended abstract we present a new method called HAPNEST that enables efficient, large-scale16

generation of genetics and phenotypic data for multiple ancestry groups. In addition to synthetic data17

generation tools, the containerized HAPNEST software application also includes tools for evaluating18

synthetic data quality, from the perspectives of fidelity, generalizability and diversity. We demonstrate19

that an approximate Bayesian computation (ABC) procedure formulated to give preference to models20

generating high-fidelity synthetic samples that have low genetic relatedness with the reference data21

results in synthetic data that preserves key statistical properties of real genetics data with better22

generalization than alternative approaches.23

Our intention is for HAPNEST-generated data to be used as a benchmark for supervised learning tasks24

with common genetic variants and complex disease traits. We present an application demonstrating25

the utility of HAPNEST-generated data for predicting an individual’s genetic risk of disease.26

2 HAPNEST27

Previous approaches to generating synthetic data in genetics include coalescence-based approaches28

[4], which simulate artificial genomes using predefined statistical models, and reference-based29

approaches [1, 2, 3], which construct artificial genomes by resampling segments from a reference30

dataset. Our approach builds upon ideas from this second class of methods, which are known to31

preserve key statistical properties (e.g. linkage disequilibrium patterns) of real genetics data for32

common genetic variants, which form the bulk of complex disease heritability.33
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Figure 1: A set of real haplotypes (a.) are imperfectly copied segment-by-segment (example of
an individual segment in b.) to construct a synthetic haplotype (c.). A phenotype is simulated as a
summation of genetic, covariate and environmental (noise) effects (d.).

HAPNEST generates synthetic data of the form (X(i), Y (i))ni=1 for n synthetic individuals, where34

X(i) ∈ {0, 1, 2}m represents a genotype for m common genetic variants (i.e. single nucleotide35

polymorphisms) and Y (i) ∈ Rk represents k (binary or continuous) phenotypic traits. A genotype36

X(i) is composed of two haplotypes, (H(i)
1 , H

(i)
2 ), inherited from two parents, such that X(i) =37

H
(i)
1 +H

(i)
2 .38

A synthetic haplotype is created by imperfectly copying segments of various lengths from reference39

haplotypes belonging to a certain ancestry group s (Fig. 1a) (alternatively, a weighted combination of40

multiple ancestry groups can be used, but caution must be taken when interpreting admixed samples).41

The segment length ℓ (in centimorgans) is sampled according to a stochastic model that simplifies42

coalescent and recombination processes for two haploid individuals,43

ℓ ∼ Exp(2Tρs), T ∼ Gamma(2, Nref
s /Ne,s), (1)

where T represents coalescence time, ρs is the population-specific recombination rate, Ne,s is the44

population-specific mean effective population size, and Nref
s is the number of reference samples for45

population s. To aid generalizability, segments are imperfectly copied by only copying a genetic46

variant at position j if T ≤ µj , where µj is the variant’s age of mutation (obtained from [5]) (Fig. 1b).47

Individual segments are copied in this manner until all variant positions are filled (Fig. 1c). Overall,48

this results in a scalable algorithm for which we have developed a highly efficient multi-threaded and49

parallelizable implementation in the Julia programming language.50

The populations S = {AFR,AMR,CSA,EAS,EUR,MID} represent 6 major continental an-51

cestry groups typically recognized in human genetics research, for which sufficient reference data was52

available from the publicly accessible 1000 Genomes Project and HGDP datasets [6]. Since genetic53

reference datasets are typically over-represented by European-ancestry individuals, to avoid biases54

against underrepresented groups we model these 6 populations separately using an approximate55

Bayesian computation (ABC) procedure (described in the following section).56

Once the genotypes have been created, HAPNEST assigns phenotypes to each individual using
the liability threshold model. Standardized phenotypic liability for each sample is simulated as a
summation of genetic, covariate and environmental effects, where the genetic effect is generated via
an additive manner from effects of all phenotype causal variants (Fig. 1d). Users can specify the
variance contribution of each liability component. Further, for the genetic component, users can also
define the number of causal variants, or input a list of designated variants to be causal. Effect size β
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of each causal genetic variant i follows a Gaussian mixture distribution:

βi ∼
k∑

j=1

πjN(0, σ2
j ),

k∑
j=1

πj = 1,

where k is the number of components and σ2
j is the distribution variance for the j−th component.57

Each SNP falls into one of the mixture components j with probability πj . All parameters can be58

customized by the user. HAPNEST also allows simultaneous generation of multiple genetically59

correlated phenotypes, and correlated effect sizes across different ancestry groups. Once the liability60

is generated, patient/healthy control statues can subsequently be assigned to an individual based on a61

threshold. Individuals with a liability value above the threshold will be considered patients, whereas62

the rest will be considered as healthy controls.63

3 Results64

3.1 Population-wise parameter tuning using ABC65

We use approximate Bayesian computation (ABC) rejection sampling to estimate the posterior66

distributions of the unknown model parameters, ρs and Ne,s, for each population s. Preference is67

given to synthetic datasets that preserve the linkage disequilibrium (LD) structure of the reference data68

(fidelity objective), while limiting the genetic relatedness between the synthetic data and the real data69

(generalizability objective). This is achieved by giving high probability to parameter configurations70

that minimize the discrepancy d(Q(Dreal), Q(Dsynthetic)), where d is Euclidean distance and Q is71

a vector concatenating LD decay and cross-relatedness (the proportion of first degree and second72

degree relatives, between the real and synthetic datasets for Dsynthetic and between two random73

partitions of the real dataset for Dreal). For computationally expensive simulations of large synthetic74

datasets, HAPNEST trains a Gaussian process regression model using a small number of simulations75

to estimate the remaining simulation results [7].76

Figure 2: Posterior distributions plotted as marginal and bivariate kernel density estimates for the
unknown model parameters, ρs and Ne,s, for each population s. The experiment setup used 500
simulations for 1000 synthetic samples based on a reference of chromosome 21 HapMap3 variants,
with uniform priors and a 20 percent rejection rate.

The posterior distribution of parameters estimated by ABC for each of the six sub populations77

is given in Fig. 2. These parameter configurations preserve LD structure between the real and78

synthetic datasets, which is important for downstream applications, while limiting the degree of79

cross-relatedness to encourage generalization of the synthetic samples.80
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3.2 Evaluation81

To evaluate the quality of data generated by the synthetic data generation algorithm, we consider82

three key aspects of the data for downstream tasks. For each of these aspects, we design and evaluate83

multiple metrics to analyze the robustness of the synthetic data generation algorithm.84

1. Fildelity: Realistic synthetic genetic data should retain the key summary statistics of the85

original genetic data.86

2. Diversity: Synthetic genetic data should be sufficiently different from the real-world genetic87

data, to preserve privacy.88

3. Validity: The synthetic phenotypes should behave similarly to the real-world phenotypes in89

downstream genetics applications.90

We also benchmarked the phenotypes’ heritability and genetic correlation of the synthetic dataset to91

ensure the validity of phenotype generation using widely used genomic analyses tools CGTA-GREML92

[8] and LDSC [9]. We observed high concordance between user-specified parameters and estimates93

from the tools.94

3.2.1 Fidelity of synthetic samples95

We compare four properties of the synthetic dataset against real dataset to understand the reliability96

of synthetic samples in retaining key statistical properties.97

1. Minor Allele Frequency. The discrepancy of Minor Allele Frequency (MAF) from the origi-98

nal dataset is measured using two statistical distances. Considering real data and synthetic99

data as a collection of realized Bernoulli random variables with different parameters, we can100

compute statistical discrepancies between these two random variables.101

2. Population structure Most of the downstream Polygenic Risk Score (PRS) tasks are in-102

terested in analyzing the effect of SNPs at a population level, and it is extremely critical103

to maintain the genetic structure of real population in the synthetic samples. We use the104

popular concept of Principal Component Analysis to ensure that the synthetic samples are105

well aligned with the real samples. We compute the cosine similarity between the principal106

components computed on both real data and synthetic data to understand how well the107

population structure is retained in the synthetic data.108

3. Linkage Disequilibrium While measuring MAF preserves the probability of occurrence on109

each SNP, the co-occurrence of neighboring SNPs are not ensured due to the IID assumption.110

In order to verify the local structure of co-occurrence is maintained in the synthetic dataset,111

we compute the Linkage Disequilibrium correlation matrix and compare them between real112

data and synthetic data.113

4. Nearest Neighbour Adversarial Accuracy A sufficiently good synthetic data sample must be114

indistinguishable from the real data sample. Based on this principle, we use the adversarial115

accuracy AATS [10] of a classifier to quantify the closeness of the synthetic dataset to116

the real dataset. When the synthetic data is very close to real data, we will not be able to117

distinguish real data samples from synthetic samples and hence AATS → 0.5.118

3.2.2 Diversity of synthetic samples119

The main aim of creating synthetic data is to preserve the privacy of individual samples in the original120

dataset yet allowing the scientific community to develop new tools from the vast amount of data121

available. We study the ‘closeness’ of synthetic samples to real samples using two key metrics.122

1. Kinship analysis: For kinship analysis [11], we compute the kinship between samples within123

the generated dataset as well as kinship across the reference dataset and generated dataset.124

Within-dataset kinship analysis is useful in analyzing the diversity in the synthetic samples125

within the cohort and kinship across datasets is useful to address the privacy concerns of126

reference data leaking into synthetic data as well as quantifying the relatedness between127

synthetic and real samples.128
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Figure 3: a. PCA projection plot for 10,000 multi-ancestry synthetic samples generated by the
HAPNEST method, for chromosome 21 HapMap3 variants; b. Comparison of PCA projection plots
and bivariate densities for 1000 European-ancestry synthetic samples.

2. IBS analysis Identical-by-state (IBS) analysis shows samples which share an identical129

sequence at a particular locus and is useful in analyzing the closeness between samples. We130

analyze the distribution of IBS values to compare the real data with generated synthetic data.131

Table 1: Comparison of evaluation metrics for four synthetic data generation tools. Each synthetic
dataset contains 1000 samples, based on a European ancestry reference panel for HapMap3 variants
on chromosome 21. ↓ means lower the better, ↑ means higher the better. For AATS , a value near
0.5 is better. No time is reported for G2P and Sim1000G as they failed to generate 1M samples.
HAPNEST results use the mean of the posterior distribution obtained from ABC.

Metric HAPGEN2 G2P Sim1000G HAPNEST

AATS 0.623 0.505 0.706 0.550
LD decay (Euclidean distance)↓ 0.014 0.013 0.442 0.066
MAF (Wasserstein divergence)↓ 0.019 0.012 0.013 0.014
PC alignment↑ 0.311 0.222 0.043 0.192
Related pairs (Within dataset, < 1st degree)↓ 2602 3 2492 0
Unrelated pairs (Within synthetic dataset)↑ 479613 487249 402587 494944
Related pairs (Between real and synthetic)↓ 2031 7 0 0
Unrelated pairs (Between real and synthetic)↑ 731464 734478 689120 742229
Time required (1M samples, in minutes)↓ 173 - - 45

The results of comparison are given in Fig. 3 and Table 1. We can observe that HAPNEST is able to132

provide a balance between fidelity, diversity of samples and speed.133

4 Application of HAPNEST134

Using synthetic genotype and phenotype data generated by HAPNEST, we performed a number of135

supervised tasks that are common in statistical genetics analyses, including genomewide association136

study (GWAS) and polygenic risk score (PRS) computation. GWAS is widely used to detect variants137

that are associated with the phenotype, and GWAS carried out on synthetic genome data can further138

allow us to compare the association with pre-defined causal variants. As an example, we present139

in figure 4 a GWAS Manhattan plot for a trait with rather low genetic contribution to liability140

(heritability) and relatively small number of causal variants (polygenicity). Due to LD, variants141

that are not causal themselves, but locate nearby the causal ones, are also found associated with the142

phenotype, indicating HAPNEST well captures linkage structures in the genome.143
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Figure 4: Example GWAS Manhattan plots. Typical GWAS results for phenotype with low
genetic contribution (heritability = 0.1) and low number of causal variants (polygenicity = 0.0001,
ie. approximately 0.01% of total number of variants having causal effects on phenotype liability).
Colored in green are dots representing causal variants.

Figure 5: Pearson correlation (squared) between predicted and observed values, for various PRS
methods and two European-ancestry phenotypes with varying genetic architectures. For the best
method in each case, we show the performance across multiple ancestry groups.

One of the most popular downstream applications of GWAS results is computing PRS, which is an144

individual level score that characterizes the genetic risk of one being affected by a phenotype of145

interest. The score is computed as a weighted sum of risky alleles in ones genome. From GWAS,146

we can identify genetic variants that are associated with a phenotype and their estimated effect sizes,147

and those effect sizes can then be used to derive weights for genetic scores computation in another148

cohort. The score, as it in theory captures the genetic risk for an individual, can be viewed as, to149

certain extent, a predictor of one’s phenotype. Its predictive power can by evaluated by regressing150

the score over samples phenotype and examining the Pearson correlation r, r2 or similar statistics151

for fitness. Here, we applied PRSpipe, a pipeline developed to evaluate 7 existing and widely used152

PRS scoring methods, on synthetic genotype and phenotype data generated by HAPNEST. We saw153

similar results as observed previously on real genetic data (Fig. 5), demonstrating the validity of154

HAPNEST’s output.155

5 Concluding Remarks156

In this work we present a new software tool called HAPNEST that efficiently generates and evaluates157

large synthetic datasets for human genetics applications. Despite the limitations of working with158

genetics data, such as privacy concerns, we demonstrate that HAPNEST can generate reliable and159

generalizable synthetic datasets, that are suitable for downstream applications. We hope that the160

machine learning community will find HAPNEST useful as an aid for methods development for161

supervised tasks such as genetic risk scoring.162
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