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Abstract

Contrastive learning is a method of learning visual representations by training Deep1

Neural Networks (DNNs) to increase the similarity between representations of2

positive pairs and reduce the similarity between representations of negative pairs.3

Unfortunately, contrastive methods usually require large datasets with significant4

number of negative pairs per iteration to achieve reasonable performance on down-5

stream tasks. To address this problem, here we explore Energy-Based Contrastive6

Learning (EBCLR) that combines contrastive learning with Energy-Based Mod-7

els (EBMs) and can be theoretically interpreted as learning the joint distribution8

of positive pairs. EBCLR shows promising results on small and medium-scale9

datasets such as MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100. Specifi-10

cally, EBCLR demonstrates from ×4 up to ×20 acceleration compared to SimCLR11

and MoCo v2 in terms of training epochs. Furthermore, in contrast to SimCLR,12

EBCLR achieves nearly the same performance with 254 negative pairs (batch size13

128) and 30 negative pairs (batch size 16) per positive pair, demonstrating the14

robustness of EBCLR to small number of negative pairs.15

1 Introduction16

In computer vision, supervised learning requires a large-scale human-annotated dataset of images to17

train accurate deep neural networks (DNNs). However, acquiring labels for millions of images can be18

difficult or impossible in practice. This has led to the rise of self-supervised learning, which learns19

useful visual representations by forcing DNNs to be invariant or equivariant to image transformations.20

Among self-supervised learning algorithms, contrastive methods are rapidly gaining popularity for21

their superb performance.22

Specifically, contrastive learning methods [1, 2, 3, 4, 5] train DNNs by increasing the similarity23

between representations of positive pairs (transformations of the same image) and decreasing the24

similarity between representations of negative pairs (transformations of different images). The25

negative pairs prevent DNNs from collapsing to the trivial solution, i.e., the constant function. There26

are numerous variants of contrastive learning methods, such as SimCLR [4], Momentum Contrast27

(MoCo) [5], etc.28

Despite this flurry of research in contrastive learning, contrastive methods require large datasets and29

a large number of negative pairs per positive pair to achieve reasonable performance on downstream30

tasks. Although there are recently proposed non-contrastive methods such as BYOL [6] and SimSiam31

[7] that do not rely on negative pairs, they require heuristic techniques such as stop-gradient to avert32

collapsing to the trivial solution. There has been an effort to explain the dynamics of non-contrastive33

methods with linear neural networks [3], but it is unclear how the analyses generalize to DNNs.34
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Figure 1: Left: An illustration of EBCLR. We use p(v, v′), the joint distribution of positive pairs,
as a measure of semantic similarity of images. A DNN fθ is trained such that the squared distance
between its outputs projected onto the unit sphere approximates τ log 1/p(v, v′) up to a constant.
Right: Comparison of EBCLR, SimCLR, and MoCo v2 on CIFAR10 in terms of linear evaluation
accuracy. EBCLR at epoch 10 beats MoCo v2 at epoch 100, and EBCLR at epoch 20 beats SimCLR
and MoCo v2 at epoch 100. Moreover, EBCLR shows identical performance regardless of whether
we use 254 negative pairs (batch size 128) or 30 negative pairs (batch size 16) per positive pair.

In this paper, we approach this issue by proposing Energy-Based Contrastive Learning (EBCLR)35

which combines contrastive learning with energy-based models (EBMs). EBCLR complements36

the contrastive learning loss with a generative loss, and it can be interpreted as learning the joint37

distribution of positive pairs. In fact, we demonstrate that the existing contrastive loss is a special38

case of the EBCLR loss if the generative term is not used. Although EBMs are notorious for being39

difficult to train due to its reliance on Stochastic Gradient Langevin Dynamics (SGLD) [8], another40

important contribution of this work is that we overcome this by appropriate modifications to SGLD.41

Extensive experiments on a variety of small and medium-scale datasets demonstrate that EBCLR is42

robust to small number of negative pairs, and it outperforms SimCLR and MoCo v2 [9] in terms of43

sample efficiency and linear evaluation accuracy.44

Our contributions can be summarized as follows:45

• A novel contrastive learning method called EBCLR is proposed by learning the joint46

distribution of positive pairs. We show that EBCLR loss is equivalent to a combination of a47

contrastive term and a generative term. To the best of our knowledge, this is the first work to48

apply EBMs to contrastive learning of visual representations.49

• To accelerate the training of EBCLR, we show that it is necessary to use an appropriate50

variance schedule in SGLD.51

• By exploring the sensitivity of EBCLR to the generative term, we propose a further improve-52

ment by appropriately weighing the generative term.53

• EBCLR is several times more sample-efficient than contrastive and non-contrastive methods.54

This leads to a large performance advantage for EBCLR given the same number of training55

epochs.56

• Unlike SimCLR, EBCLR is shown to be robust to small number of negative pairs. Empiri-57

cally, we observe little difference between linear evaluation accuracies for EBCLR with 25458

negative pairs (batch size 128) and 30 negative pairs (batch size 16) per positive pair.59

2 Related Works60

2.1 Contrastive Learning61

For a given batch of images {xn}Nn=1 and two image transformations t, t′, contrastive learning62

methods first create two views vn = t(xn), v′n = t′(xn) of each instance xn. Here, the pair (vn, v′m)63

is called a positive pair if n = m and a negative pair if n ̸= m. Given a DNN fθ, the views are then64

embedded into the projection space by passing the views through fθ and normalizing.65
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Contrastive methods train fθ to increase agreement between projections of positive pairs, and decrease66

agreement between projections of negative pairs. Specifically, fθ is trained to maximize the InfoNCE67

objective [1]. After training, outputs from the final layer or an intermediate layer of fθ are used for68

downstream tasks.69

There are numerous variants of contrastive methods. For instance, SimCLR [4] uses a composition70

of random cropping, random flipping, color jittering, color dropping, and blurring as the image71

transformation. Negative pairs are created by transforming different images within a batch. On the72

other hand, MoCo [9] maintains a queue of negative samples, so negative samples are not limited to73

views of images from the same batch.74

2.2 Energy-Based Models75

Given a scalar-valued energy function Eθ(v) with parameter θ, an energy-based model (EBM) [10]76

defines a distribution by the formula77

qθ(v) :=
1

Z(θ)
exp{−Eθ(v)} (1)

where Z(θ) is the partition function which guarantees qθ integrates to 1. Since there are essentially78

no restrictions on the choice of the energy function, EBMs have great flexibility in modeling79

distributions. Hence, EBMs have been applied to a wide variety of machine learning tasks such80

as learning generative classifiers [11, 12], generating images [13], and training regression models81

[14, 15]. However, to the best of our knowledge, this paper is the first work to combine EBMs with82

contrastive learning.83

Given a target distribution, an EBM can be used to estimate its density p when we can only sample84

from p. One way of achieving this is by minimizing the Kullback-Leiber (KL) divergence between85

qθ and p that maximizes the expected log-likelihood of qθ under p [16]:86

max
θ

Ep[log qθ(v)]. (2)

Stochastic gradient ascent can be used to solve (2) [16]. Specifically, the gradient of the expected87

log-likelihood with respect to the parameters θ can be shown to be88

∇θEp[log qθ(v)] = Eqθ [∇θEθ(v)]− Ep[∇θEθ(v)]. (3)

Hence, updating θ with (3) amounts to pushing up on the energy for samples from qθ and pushing89

down on the energy for samples from p.90

While the second term in (3) can be easily calculated as we have access to samples from p, the first91

term requires sampling from qθ. Previous works [13, 17, 11, 12] have used Stochastic Gradient92

Langevin Dynamics (SGLD) [8] to generate samples from qθ. Specifically, given a sample v0 from93

some proposal distribution q0, the iteration94

vt+1 = vt −
αt

2
∇vtEθ(vt) + ϵt, ϵt ∼ N (0, αt) (4)

guarantees that the sequence {vt} converges to a sample from qθ assuming {αt} decays at a polyno-95

mial rate [8].96

However, SGLD requires an infinite number of steps until samples from the proposal distribution97

converge to samples from the target distribution. This is unfeasible, so in practice, only a finite98

number of steps along with constant step size, i.e. αt = α and constant noise variance σt = σ2 are99

used [13, 17, 11, 12]. Moreover, Yang and Ji [12] noted SGLD often generates samples with extreme100

pixel values that cause EBMs to diverge during training. Hence, they have proposed proximal SGLD101

which clamps gradient values into an interval [−δ, δ] for a threshold δ > 0. Then, the update equation102

becomes103

vt+1 = vt − α · clamp{∇vtEθ(vt), δ}+ ϵ (5)

for t = 0, . . . , T − 1, where ϵ ∼ N (0, σ2) and clamp{·, δ} clamps each element of the input vector104

into [−δ, δ]. In our work, we introduce additional modifications to SGLD which accelerate the105

convergence of EBCLR.106
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Figure 2: An illustration of the learning process of EBCLR.

3 Theory107

3.1 Energy-Based Contrastive Learning108

Let D be a distribution of images and T a distribution of stochastic image transformations. Given
x ∼ D and i.i.d. t, t′ ∼ T , our goal is to approximate the joint distribution of the views

p(v, v′), where v = t(x), v′ = t′(x)

using the model distribution109

qθ(v, v
′) :=

1

Z(θ)
exp{−∥z − z′∥2/τ}. (6)

where Z(θ) is a normalization constant, τ is a temperature hyper-parameter, and z and z′ are110

projections computed by passing the views v and v′ through the DNN fθ and then normalizing.111

Our key idea is then to use p(v, v′) as a measure of semantic similarity of v and v′. Specifically,112

p(v, v′) will be high when v and v′ are semantically similar and low otherwise. Thus, if qθ successfully113

approximates p, by the definition of qθ in (6), the distance between z and z′ will be controlled by the114

inverse of semantic similarity of v and v′. This idea is illustrated in Figure 1.115

To approximate p using qθ, we train fθ to maximize the expected log-likelihood of qθ under p:116

max
θ

Ep[log qθ(v, v
′)]. (7)

In order to solve this problem with stochastic gradient ascent, we could naively extend (3) to the117

setting of joint distributions to obtain the following result.118

Proposition 1. The the joint distribution (6) can be formulated as an EBM119

qθ(v, v
′) =

1

Z(θ)
exp{−Eθ(z, z

′)}, Eθ(v, v
′) = ∥z − z′∥2/τ (8)

and the gradient of the objective of (7) is given by120

∇θEp[log qθ(v, v
′)] = Eqθ [∇θEθ(v, v

′)]− Ep[∇θEθ(v, v
′)]. (9)

However, computing the first expectation in (9) requires sampling pairs of views (v, v′) from qθ(v, v
′)121

via SGLD, which could be expensive. To avert this problem, we use Bayes’ rule to decompose122

Ep[log qθ(v, v
′)] = Ep[log qθ(v

′ | v)] + Ep[log qθ(v)] where qθ(v) =

∫
qθ(v, v

′) dv′. (10)

In the first equation of (10), the first and second terms at the RHS will be referred to as discriminative123

and generative terms, respectively, throughout the paper. Similar decomposition was used by124

Grathwohl et. al [11] in the setting of learning generative classifiers.125
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Furthermore, we add a hyper-parameter λ to balance the strength of the discriminative term and the126

generative term. The advantage of this modification will be discussed in Section 4.3. This yields our127

Energy-Based Contrastive Learning (EBCLR) objective128

L(θ) := Ep[log qθ(v
′ | v)] + λEp[log qθ(v)]. (11)

The discriminative term can be easily differentiated since the partition function Z(θ) cancels out129

when qθ(v, v
′) is divided by qθ(v). However, the generative term still contains Z(θ). We now present130

our key result which addresses this problem by relating the generative term to EBMs. The proof is131

deferred to Appendix ?? in the Supplementary Material.132

Theorem 2. The marginal distribution in (10) can be formulated as an EBM133

qθ(v) =
1

Z(θ)
exp{−Eθ(v)}, Eθ(v) := − log

∫
e−∥z−z′∥2/τ dv′ (12)

where Z(θ) is the partition function in (6), and the gradient of the generative term is given by134

∇θEp[log qθ(v)] = Eqθ(v)[∇θEθ(v)]− Ep[∇θEθ(v)]. (13)

Thus, the gradient of the EBCLR objective is135

∇θL(θ) = Ep[∇θ log qθ(v
′ | v)] + λEqθ(v)[∇θEθ(v)]− λEp[∇θEθ(v)] (14)

Theorem 2 suggests that the EBM for the joint distribution can be learned by computing the gradients136

of the discriminative term and the EBM for the marginal distribution. Moreover, we only need to137

sample v from qθ(v) to compute the second expectation in (14).138

3.2 Approximating the EBCLR Objective139

To implement EBCLR, we need to approximate expectations in (11) with their empirical means.140

Suppose samples {(vn, v′n)}Nn=1 from p(v, v′) are given, and let {(zn, z′n)}Nn=1 be the corresponding141

projections. As the learning goal is to make qθ(vn, v
′
n) approximate the joint probability density142

function p(vn, v
′
n), the empirical mean q̂θ(vn) can be defined as:143

q̂θ(vn) =
1

N ′

∑
v′
m:v′

m ̸=vn

qθ(vn, v
′
m) (15)

where the sum is over the collection of v′m defined as144

{v′m : v′m ̸= vn} := {vk}Nk=1 ∪ {v′k}Nk=1 − {vn} (16)

and N ′ := |{v′m : v′m ̸= vn}| = 2N − 1. One could also use a simpler form of the empirical mean:145

q̂θ(vn) =
1

N

N∑
m=1

qθ(vn, v
′
m) (17)

Similarly, qθ(v′|v) in (11), which should approximate the conditional probability density p(v′|v), can146

be represented in terms of qθ(vn, v′n). Specifically, we have147

qθ(v
′
n | vn) ≃

qθ(vn, v
′
n)

q̂θ(vn)
=

qθ(vn, v
′
n)

1
N ′

∑
v′
m:v′

m ̸=vn
qθ(vn, v′m)

=
e−∥zn−z′

n∥
2/τ

1
N ′

∑
v′
m:v′

m ̸=vn
e−∥zn−z′

m∥2/τ
(18)

It is then immediate that the empirical form of the discriminative term using (18) is a particular148

instance of the contrastive learning objective such as InfoNCE and SimCLR. Hence, EBCLR can149

be interpreted as complementing contrastive learning with a generative term defined by an EBM.150

We will demonstrate in Section 4.1 that the generative term offers significant advantages over other151

contrastive learning methods.152

For the second term, we use the simpler form of empirical mean in (17):153

q̂θ(vn) =
1

N

N∑
m=1

qθ(vn, v
′
m) =

1

Z(θ)
· 1
N

N∑
m=1

exp{−∥zn − z′m∥2/τ} (19)

5



We could use (15) as for the empirical mean, but either choice showed identical performance (c.f.154

Appendix D.3). So, we have found (15) to be not worth the additional complexity, and have resorted155

to the simpler approximation (17) instead.156

If we compare (19) with (12), we can see that this approximation of qθ(v) yields the energy function157

(after ignoring the irrelevant constant logN )158

Eθ(v; {v′m}Nm=1) := − log

(
N∑

m=1

e−∥z−z′
m∥2/τ

)
. (20)

3.3 Modifications to SGLD159

According to Theorem 2, we need samples from the marginal qθ(v) to calculate the second expectation160

in (14). Hence, we apply proximal SGLD (5) with the energy function (20) to sample from qθ(v) as161

follows:162

ṽ ← ṽ − α · clamp{∇ṽEθ(ṽ; {v′m}Nm=1), δ}+ ϵ (21)

where ϵ ∼ N (0, σ2) and the update is repeated T times. We make three additional modifications to163

proximal SGLD to expedite the training process. From here on, we will be referring to proximal164

SGLD in (5) when we say SGLD.165

First, we initialize SGLD from generated samples from previous iterations, and with probability166

ρ, we reinitialize SGLD chains from samples from a proposal distribution q0. This is achieved by167

keeping a replay buffer B of SGLD samples from previous iterations. This technique of maintaining168

a replay buffer has also been used in previous works and has proven to be crucial for stabilizing and169

accelerating the convergence of EBMs [13, 11, 12].170

Second, the proposal distribution q0 is set to be the data distribution p(v). This choice differs from171

those of previous works [13, 11, 12] which have either used the uniform distribution or a mixture of172

Gaussians as the proposal distribution.173

Finally, we use multi-stage SGLD (MSGLD), which adaptively controls the magnitude of noise added174

in SGLD. For each sample ṽ in the replay buffer B, we keep a count κṽ of number of times it has175

been used as the initial point of SGLD. For samples with a low count, we use noise of high variance,176

and for samples with a high count, we use noise of low variance. Specifically, in (5), we set177

σ = σmin + (σmax − σmin) · [1− κṽ/K]+. (22)

where [·]+ := max{0, ·}, σ2
max and σ2

min are the upper and lower bounds on the noise variance,178

respectively, and K controls the decay rate of noise variance. The purpose of this technique is to179

facilitate quick exploration of the modes of qθ and still guarantee SGLD generates samples with180

sufficiently low energy. The pseudocodes for MSGLD and EBCLR are given in given in Algorithms181

1 and 2, respectively, in the Supplementary Material, and the overall learning flow of EBCLR is182

described in Figure 2.183

4 Experiments184

We now describe the experiment settings. A complete description is deferred to Appendix C.185

Baseline methods and datasets. The baseline methods are SimCLR, MoCo v2, SimSiam, and186

BYOL. The hyper-parameters are chosen closely following the original works [4, 9, 7, 6]. We use187

four datasets: MNIST [18], Fashion MNIST (FMNIST) [19], CIFAR10, and CIFAR100 [20].188

DNN architecture. We decompose fθ = πθ ◦ ϕθ where ϕθ is the encoder network and πθ is the189

projection network. Rather than directly using the output of fθ for downstream tasks, we follow190

previous works [4, 5, 1, 2, 3, 6, 7] and use the output of ϕθ instead.191

In our experiments, we set ϕθ to be a ResNet-18 [21] up to the global average pooling layer. The192

architecture of πθ and πθ to be a 2-layer MLP with output dimension 128. However, we remove193

batch normalization because batch normalization hurts SGLD [13]. We also replace ReLU activations194

with leaky ReLU to expedite the convergence of SGLD. For the baseline methods, we use settings195

proposed in the original works while keeping the backbone fixed to be ResNet-18.196
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Dataset MNIST FMNIST CIFAR10 CIFAR100
Statistic Accuracy Rel. Eff. Accuracy Rel. Eff. Accuracy Rel. Eff. Accuracy Rel. Eff.

SimSiam 98.6 0.1 87.4 0.1 70.4 0.25 38.3 0.1
BYOL 99.3 0.4 89.0 0.2 70.9 0.25 41.7 0.2

SimCLR 99.0 0.1 88.5 0.15 68.0 0.15 43.1 0.25
MoCo v2 98.1 0.05 87.8 0.1 64.0 0.1 38.2 0.1

EBCLR 99.3 – 90.1 – 77.3 – 49.1 –

Table 1: Linear evaluation accuracy and efficiency relative to EBCLR. Efficiency of a method relative
to EBCLR is calculated by the following formula: (number of epochs used by EBCLR to reach the
final accuracy of the method) / (total number of training epochs).

Evaluation. We assess the quality of the representations by training a linear classifier on top of frozen197

ϕθ. The linear classifier is trained with Adam for 200 epochs with batch size 512. The learning rate η198

is found by grid search for log10 η in [−4,−1].199

4.1 Comparison with Baselines200

Direction M→ FM FM→M C10→ C100 C100→ C10
SimSiam 86.9 97.2 39.5 64.0
BYOL 87.3 97.8 42.3 70.2

SimCLR 86.9 97.4 39.9 67.3
MoCo v2 85.3 97.1 36.2 62.9

EBCLR 87.4 98.5 46.9 72.4

Table 2: Comparison of transfer learning results in
the linear evaluation setting. Left side of the arrow
is the dataset than the encoder was pre-trained on,
and right side of the arrow is the dataset that linear
evaluation was performed on. We use the following
abbreviations. M : MNIST, FM : FMNIST, C10 :
CIFAR10, C100 : CIFAR100.

We use batch size 128 for EBCLR and batch size201

256 for the baseline methods following Wang202

et. al [22] and train each method for 100 epochs.203

Table 1 shows the result of training each method204

for 100 epochs. Observe that EBCLR consis-205

tently outperforms all baseline methods in terms206

of linear evaluation accuracy. Moreover, relative207

efficiency indicates EBCLR is capable of achiev-208

ing the same level of performance as the baseline209

methods with much fewer training epochs. Con-210

cretely, we observe at least ×4 acceleration in211

terms of epochs compared to contrastive meth-212

ods. Hence, EBCLR is a much more desirable213

choice than SimCLR or MoCo v2 for learning214

visual representations when we have a small215

number of training samples.216

We also investigate the transfer learning perfor-217

mance of EBCLR. Table 2 compares the transfer learning accuracies. EBCLR always outperforms218

the baseline methods, and the performance gap is especially large on CIFAR10 and CIFAR100. This219

indicates EBCLR learns visual representations that generalize well across datasets. Repeating the220

above experiments with longer training led to similar conclusions (c.f. Supplementary Material221

Section D.1).222

4.2 Effect of Reducing Negative Pairs223

We compared the performances of EBCLR and SimCLR as we reduced the number of negative224

pairs per positive pair. For MoCo v2, the negative samples are provided by a queue updated by a225

momentum encoder. On the other hand, for EBCLR and SimCLR, negative samples come from the226

same batch as the positive pair. So, we did not have a way of fairly comparing EBCLR and SimCLR227

with MoCo v2. Hence, we excluded MoCo v2 from this experiment.228

We note that according to (18), given a batch of size N , we obtain 2N − 2 negative pairs for229

each positive pair. SimCLR also has 2N − 2 negative pairs for each positive pair. Hence, we can230

conveniently compare the sensitivity of EBCLR and SimCLR to the number of negative pairs by231

varying the batch size.232

Table 3 shows the result of training each method for 100 epochs with batch sizes in {16, 64, 128}.233

We make three important observations. First, EBCLR consistently beats SimCLR in terms of linear234

evaluation accuracy for every batch size. Second, EBCLR is invariant to the choice of batch size.235

This contrasts with SimCLR whose performance degrades as batch size decreases. Consequently,236

EBCLR with batch size 16 beats SimCLR with batch size 128. Finally, as a byproduct of the second237
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Dataset MNIST FMNIST CIFAR10 CIFAR100
Batch Size 16 64 128 16 64 128 16 64 128 16 64 128

SimCLR 98.7 99.1 99.1 87.1 88.0 88.2 65.2 67.6 69.0 36.9 39.1 43.0
EBCLR 99.4 99.3 99.3 89.6 90.4 90.1 77.6 78.2 77.3 48.8 49.8 49.1

Rel. Eff. 0.05 0.1 0.15 0.05 0.15 0.1 0.1 0.15 0.2 0.1 0.15 0.25

Table 3: Linear evaluation accuracies and efficiencies relative to EBCLR with various batch sizes.
Efficiency of SimCLR relative to EBCLR is calculated by the following formula: (number of epochs
used by EBCLR with the same batch size to reach the final accuracy of SimCLR) / (total number of
training epochs).

observation, the efficiency of EBCLR relative to SimCLR increases as batch size decreases. These238

properties make EBCLR suitable for situations where we cannot use large batch sizes, e.g., when we239

have a small number of GPUs. Repeating the experiments with longer training again led to similar240

conclusions (c.f. Supplementary Material Section D.2).241

4.3 Effect of λ and Projection Dimension242

(a) Effect of λ. (b) Effect of proj. dim.

Figure 3: Effect of λ and projection dimension
(output dimension of πθ, demonstrated on CI-
FAR10.

We explored the effect of changing the hyper-243

parameter λ which controls the importance of244

the generative term relative to the discriminative245

term (c.f. Equation (11)). Figure 3a shows the246

performance of EBCLR with various values of λ247

as training progresses. We observe that naively248

using λ = 1.0 leads to poor results. The perfor-249

mance peaks at λ = 0.1, and then degrades as250

we further decrease λ.251

This result has two crucial implications. First,252

the generative term plays a non-trivial role in253

EBCLR. Second, we need to strike a right bal-254

ance between the discriminative term and the255

generative term to achieve good performance on256

downstream tasks.257

We also investigated the effect of varying the output dimension of πθ. Figure 3b shows linear258

evaluation results for projection dimensions in {128, 256, 512}. We observe that the projection259

dimension has essentially no influence on the training process. In this respect, EBCLR resembles260

SimCLR which is also invariant to the output dimension (c.f. Figure 8 in the work by Chen et. al [4]).261

4.4 Effect of SGLD Modifications262

We now study the roles of the three SGLD modifications proposed in Section 3.3. Figure 4 shows the263

results of varying one parameter of MSGLD while keeping others fixed.264

Effect of reintialization frequency ρ. Figure 4a displays linear evaluation results for ρ ∈265

{0.0, 0.2, 1.0}. We note that setting ρ = 1.0 is equivalent to removing the replay buffer. Also,266

setting ρ = 0.0 is equivalent to never reinitializing SGLD chains.267

Initially, ρ = 0.0 shows the best performance, as SGLD quickly reaches samples of lower energy.268

However, learning then slows down because of the lack of diversity of samples in the replay buffer B.269

This implies it is necessary to set ρ > 0 in order to learn good representations.270

On the other hand, ρ = 1.0 shows slow convergence in the beginning because samples in the replay271

buffer are not given enough iterations to reach low energy. Although it does beat ρ = 0.0 at latter272

epochs, it still often performs worse than ρ = 0.2. Moreover, it is not sample-efficient compared to273

ρ = 0.2 since we have to provide an entire batch of new samples for reinitializing SGLD chains at274

each iteration.275
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Given the above observations, it is clear why the intermediate value 0.2 is the best choice out of276

ρ ∈ {0.0, 0.2, 1.0}. ρ = 0.2 allows enough time for samples in the replay buffer to reach low energy277

while still maintaining diversity of samples in B. Also, it is sample-efficient compared to ρ = 1.0.278

Effect of proposal distribution q0. Figure 4b compares linear evaluation accuracies with q0 as279

the uniform distribution and q0 = p(v). We observe prominent acceleration in the initial epochs280

for q0 = p(v). Hence, we can conclude that this choice of proposal distribution is crucial for high281

efficiency of EBCLR compared to the baseline methods in Tables 1 and 3.282

(a) Effect of varying ρ. (b) Effect of varying q0.

(c) SGLD with σ ∈ {0.01, 0.05} and MSGLD.

Figure 4: Ablation study of SGLD modifica-
tions on CIFAR10.

We believe this acceleration effect can be explained283

through the work of Hinton [23]. Specifically, let284

us observe that the EBM update equation (3) pushes285

up the energy on the model distribution qθ. In the286

implementation of EBCLR with q0 = p(v), however,287

qθ is replaced by the distribution of samples created288

by a finite number of (noisy) gradient steps on real289

data points (c.f. Section 3.3). Hence, the modified290

EMB update equation contains the curvature informa-291

tion of the data manifold. This curvature information292

may expedite the training process of EBCLR. For a293

detailed discussion on this, we refer the readers to294

Section 3 of the work by Hinton [23].295

Comparison of SGLD and MSGLD. Figure 4c296

shows results with SGLD with σ ∈ {0.01, 0.05} and297

MSGLD with σmin = 0.01 and σmax = 0.05. We298

note that setting σmin = σmax reduces MSGLD to299

SGLD. We observe σ = 0.01 initially shows fast con-300

vergence but then saturates due to the lack of diversity301

of generated samples. On the other hand, σ = 0.05302

initially has the worst performance but eventually303

beats σ = 0.01 since σ = 0.05 quickly explores the304

modes of qθ. MSGLD inherits the best of both set-305

tings. Specifically, MSGLD is as fast as σ = 0.01 in306

the beginning, and it does not suffer from the saturation problem.307

5 Limitations and Societal Impacts308

Limitations. The main limitation of our work is of scale. While EBCLR demonstrates superior309

sample efficiency, it requires inner SGLD iterations (which cannot be parallelized) and a replay buffer310

B. These two components increase the computational burden of EBCLR. So, we found it difficult to311

apply EBCLR to large-scale data such as ImageNet. However, we note that inner SGLD iterations312

and the replay buffer are not particular limitations of EBCLR, but are limitations of EBMs in general.313

Given the increasing efforts to overcome these limitations such as Proximal-YOPO-SGLD, we believe314

EBCLR will eventually be applicable to larger data.315

Social Impacts. We generally expect positive outcomes from this research. Further development316

of EBCLR can mitigate the need for large amount of data and large batch sizes to learn good317

representations, and ultimately lead to reduction of resource consumption.318

6 Conclusion319

In this work, we proposed EBCLR which combines contrastive learning with EBMs. This amal-320

gamation of ideas have led to both theoretical and practical contributions. Theoretically, EBCLR321

associates distance on the projection space with the density of positive samples. Since the distribution322

of positive samples reflects semantic similarity of images, EBCLR is capable of learning good323

visual representations. Practically, EBCLR is several times more sample-efficient than conventional324

contrastive and non-contrastive learning approaches and robust to small number of negative pairs.325

Hence, EBCLR is applicable even in the scenario with limited data or devices. We believe that326

EBCLR makes representation learning available to a wider range of machine learning practitioners.327
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