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Abstract

Making language models bigger does not inherently make them better at following1

a user’s intent. For example, large language models can generate outputs that are2

untruthful, toxic, or simply not helpful to the user. In other words, these models are3

not aligned with their users. In this paper, we show an avenue for aligning language4

models with user intent on a wide range of tasks by fine-tuning with human5

feedback. Starting with a set of labeler-written prompts and prompts submitted6

through a language model API, we collect a dataset of labeler demonstrations of7

the desired model behavior, which we use to fine-tune GPT-3 using supervised8

learning. We then collect a dataset of rankings of model outputs, which we use to9

further fine-tune this supervised model using reinforcement learning from human10

feedback. We call the resulting models InstructGPT. In human evaluations on11

our prompt distribution, outputs from the 1.3B parameter InstructGPT model are12

preferred to outputs from the 175B GPT-3, despite having 100x fewer parameters.13

Moreover, InstructGPT models show improvements in truthfulness and reductions14

in toxic output generation while having minimal performance regressions on public15

NLP datasets. Even though InstructGPT still makes simple mistakes, our results16

show that fine-tuning with human feedback is a promising direction for aligning17

language models with human intent.18

1 Introduction19

Large language models (LMs) can be prompted to perform a range of natural language process-20

ing (NLP) tasks, given some examples of the task as input. However, these models often express21

unintended behaviors such as making up facts, generating biased or toxic text, or simply not following22

user instructions (Bender et al., 2021; Bommasani et al., 2021; Kenton et al., 2021; Weidinger et al.,23

2021; Tamkin et al., 2021; Gehman et al., 2020). This is because the language modeling objective24

used for many recent large LMs—predicting the next token on a webpage from the internet—is25

different from the objective “follow the user’s instructions helpfully and safely” (Radford et al., 2019;26

Brown et al., 2020; Fedus et al., 2021; Rae et al., 2021; Thoppilan et al., 2022). Thus, we say that27

the language modeling objective is misaligned. Averting these unintended behaviors is especially28

important for language models that are deployed and used in hundreds of applications.29

We make progress on aligning language models by training them to act in accordance with the user’s30

intention (Leike et al., 2018). This encompasses both explicit intentions such as following instructions31

and implicit intentions such as staying truthful, and not being biased, toxic, or otherwise harmful.32

Using the language of Askell et al. (2021), we want language models to be helpful (they should33

help the user solve their task), honest (they shouldn’t fabricate information or mislead the user), and34

harmless (they should not cause physical, psychological, or social harm to people or the environment).35

We elaborate on the evaluation of these criteria in Section 3.5.36
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Figure 1: Human evaluations of various models on the API
prompt distribution, evaluated by how often outputs from
each model were preferred to those from the 175B SFT
model. Our InstructGPT models (PPO-ptx) as well as its
variant trained without pretraining mix (PPO) significantly
outperform the GPT-3 baselines (GPT, GPT prompted).

We focus on fine-tuning approaches37

to aligning language models. Specif-38

ically, we use reinforcement learning39

from human feedback (RLHF; Chris-40

tiano et al., 2017; Stiennon et al.,41

2020) to fine-tune GPT-3 to follow a42

broad class of written instructions (see43

Figure 2). This technique uses hu-44

man preferences as a reward signal45

to fine-tune our models. We first hire46

a team of 40 contractors to label our47

data, based on their performance on a48

screening test (see Section 3.3 and Ap-49

pendix B.1 for more details). We then50

collect a dataset of human-written51

demonstrations of the desired output52

behavior on (mostly English) prompts53

submitted to a language model API54

and some labeler-written prompts, and55

use this to train our supervised learn-56

ing baselines. Next, we collect a57

dataset of human-labeled comparisons between outputs from our models on a larger set of API58

prompts. We then train a reward model (RM) on this dataset to predict which model output our label-59

ers would prefer. Finally, we use this RM as a reward function and fine-tune our supervised learning60

baseline to maximize this reward using the PPO algorithm (Schulman et al., 2017). We illustrate61

this process in Figure 2. This procedure aligns the behavior of GPT-3 to the stated preferences of62

a specific group of people (mostly our labelers and researchers), rather than any broader notion of63

“human values”; we discuss this further in Appendix G.2. We call the resulting models InstructGPT.64

We mainly evaluate our models by having our labelers rate the quality of model outputs on our test65

set, consisting of prompts from held-out users (who are not represented in the training data). We also66

conduct automatic evaluations on a range of public NLP datasets. We train three model sizes (1.3B,67

6B, and 175B parameters), and all of our models use the GPT-3 architecture. Our main findings are:68

Labelers significantly prefer InstructGPT outputs over outputs from GPT-3. Outputs from the69

1.3B parameter InstructGPT model are preferred to outputs from the 175B GPT-3, despite having70

over 100x fewer parameters. These models have the same architecture, and differ only by the fact that71

InstructGPT is fine-tuned on our human data. This result holds true even when we add a few-shot72

prompt to GPT-3 to make it better at following instructions. Outputs from our 175B InstructGPT are73

preferred to 175B GPT-3 outputs 85 ± 3% of the time, and preferred 71 ± 4% of the time to few-shot74

175B GPT-3. InstructGPT also generates more appropriate outputs according to our labelers.75

InstructGPT models show improvements in truthfulness over GPT-3. On the TruthfulQA76

benchmark, InstructGPT generates truthful and informative answers more often than GPT-3. On77

“closed-domain” tasks from our API prompt distribution, where the output should not contain78

information that is not present in the input, InstructGPT models make up information not present in79

the input about half as often as GPT-3 (a 21% vs. 41% hallucination rate, respectively).80

InstructGPT shows small improvements in toxicity over GPT-3, but not bias. To measure81

toxicity, we use the RealToxicityPrompts dataset (Gehman et al., 2020) and conduct both automatic82

and human evaluations. InstructGPT models generate about 25% fewer toxic outputs than GPT-383

when prompted to be respectful. InstructGPT does not significantly improve over GPT-3 on the84

Winogender (Rudinger et al., 2018) and CrowSPairs (Nangia et al., 2020) datasets.85

We can minimize performance regressions on public NLP datasets by modifying our RLHF86

fine-tuning procedure. During RLHF fine-tuning, we observe performance regressions compared87

to GPT-3 on certain public NLP datasets. We can greatly reduce the performance regressions on88

these datasets by mixing PPO updates with updates that increase the log likelihood of the pretraining89

distribution (PPO-ptx), without compromising labeler preference scores.90
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Our models generalize to the preferences of “held-out” labelers that did not produce any91

training data. To test the generalization of our models, we conduct a preliminary experiment with92

held-out labelers, and find that they prefer InstructGPT outputs to outputs from GPT-3 at about the93

same rate as our training labelers. However, more work is needed to study how these models perform94

on broader groups of users, and how they perform on inputs where humans disagree about the desired95

behavior.96

Public NLP datasets are not reflective of how our language models are used. We compare97

GPT-3 fine-tuned on our human preference data (i.e. InstructGPT) to GPT-3 fine-tuned on two98

different compilations of public NLP tasks: the FLAN (Wei et al., 2021) and T0 (Sanh et al., 2021)99

(in particular, the T0++ variant). These datasets consist of a variety of NLP tasks, combined with100

natural language instructions for each task. On our API prompt distribution, our FLAN and T0101

models perform slightly worse than our SFT baseline, and labelers significantly prefer InstructGPT102

to these models.103

InstructGPT models show promising generalization to instructions outside of the RLHF fine-104

tuning distribution. We qualitatively probe InstructGPT’s capabilities, and find that it is able to105

follow instructions for summarizing code, answer questions about code, and sometimes follows106

instructions in different languages, despite these instructions being very rare in the fine-tuning107

distribution. This result is exciting because it suggests that our models are able to generalize the108

notion of “following instructions.” They retain some alignment even on tasks for which they get very109

little direct supervision.110

InstructGPT still makes simple mistakes. For example, InstructGPT can still fail to follow111

instructions, make up facts, give long hedging answers to simple questions, or fail to detect instructions112

with false premises.113

Overall, our results indicate that fine-tuning large language models using human preferences signifi-114

cantly improves their behavior on a wide range of tasks, though much work remains to be done to115

improve their safety and reliability.116

2 Related work117

Research on alignment and learning from human feedback. We build on previous techniques118

to align models with human intentions, particularly reinforcement learning from human feed-119

back (RLHF). Originally developed for training simple robots in simulated environments and Atari120

games (Christiano et al., 2017; Ibarz et al., 2018), it has recently been applied to fine-tuning language121

models to summarize text (Ziegler et al., 2019; Stiennon et al., 2020; Böhm et al., 2019; Wu et al.,122

2021). This work is in turn influenced by similar work using human feedback as a reward in domains123

such as dialogue (Jaques et al., 2019; Yi et al., 2019; Hancock et al., 2019), translation (Kreutzer et al.,124

2018; Bahdanau et al., 2016), semantic parsing (Lawrence and Riezler, 2018), story generation (Zhou125

and Xu, 2020), review generation (Cho et al., 2018), and evidence extraction (Perez et al., 2019). In126

concurrent work, Askell et al. (2021); Bai et al. (2022) propose language assistants as a testbed for127

alignment research, and train models using RLHF. Our work can be seen as a direct application of128

RLHF to aligning language models on a broad distribution of language tasks.129

Training language models to follow instructions. Our work is also related to research on cross-130

task generalization in language models, where LMs are fine-tuned on a broad range of public NLP131

datasets (usually prefixed with an appropriate instruction) and evaluated on a different set of NLP132

tasks. There has been a range of work in this domain (Yi et al., 2019; Mishra et al., 2021; Wei et al.,133

2021; Khashabi et al., 2020; Sanh et al., 2021; Aribandi et al., 2021), which differ in training and134

evaluation data, formatting of instructions, size of pretrained models, and other experimental details.135

Mitigating the harms of language models. A goal of modifying the behavior of language models136

is to mitigate the harms of these models when they’re deployed in the real world. These risks have137

been extensively documented (Bender et al., 2021; Bommasani et al., 2021; Kenton et al., 2021;138

Weidinger et al., 2021; Tamkin et al., 2021). Language models can produce biased outputs (Dhamala139

et al., 2021; Liang et al., 2021; Manela et al., 2021; Caliskan et al., 2017; Kirk et al., 2021), leak140
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Figure 2: A diagram illustrating the three steps of our method: (1) supervised fine-tuning (SFT), (2)
reward model (RM) training, and (3) reinforcement learning via proximal policy optimization (PPO)
on this reward model. Blue arrows indicate that this data is used to train one of our models. In Step 2,
boxes A-D are samples from our models that get ranked by labelers.

private data (Carlini et al., 2021), generate misinformation (Solaiman et al., 2019; Buchanan et al.,141

2021), and be used maliciously; for a thorough review we direct the reader to Weidinger et al.142

(2021). There are many ways to mitigate these harms, including by fine-tuning on a small, value-143

targeted dataset (Solaiman and Dennison, 2021), filtering the pretraining dataset (Ngo et al., 2021),144

or human-in-the-loop data collection (Dinan et al., 2019; Xu et al., 2020).145

3 Methods and experimental details146

3.1 High-level methodology147

Our methodology follows that of Ziegler et al. (2019) and Stiennon et al. (2020), who applied148

it in the stylistic continuation and summarization domains. We start with a pretrained language149

model (Radford et al., 2019; Brown et al., 2020; Fedus et al., 2021; Rae et al., 2021; Thoppilan et al.,150

2022), a distribution of prompts on which we want our model to produce aligned outputs, and a151

team of trained human labelers (see Section 3.3 for details). We then apply the following three steps152

(Figure 2).153

Step 1: Collect demonstration data, and train a supervised policy. Our labelers provide demon-154

strations of the desired behavior on the input prompt distribution (see Section 3.2 for details on this155

distribution). We then fine-tune a pretrained GPT-3 model on this data using supervised learning.156

Step 2: Collect comparison data, and train a reward model. We collect a dataset of comparisons157

between model outputs, where labelers indicate which output they prefer for a given input. We then158

train a reward model to predict the human-preferred output.159

Step 3: Optimize a policy against the reward model using PPO. We use the output of the160

RM as a scalar reward. We fine-tune the supervised policy to optimize this reward using the PPO161

algorithm (Schulman et al., 2017).162

Steps 2 and 3 can be iterated continuously; more comparison data is collected on the current best163

policy, which is used to train a new RM and then a new policy. In practice, most of our comparison164

data comes from our supervised policies, with some coming from our PPO policies.165
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3.2 Dataset166

Our prompt dataset consists primarily of text prompts submitted to a commercial language model API,167

as well as a small number of labeler-written prompts. These prompts are very diverse and include168

generation, question answering, dialog, summarization, extractions, and other natural language169

tasks (see Appendix A). Our dataset is over 96% English. We heuristically deduplicate prompts, and170

ensure that the validation and test sets contain no data from users whose data is in the training set.171

We also filter prompts containing personally identifiable information (PII).172

From these prompts, we produce three different datasets used in our fine-tuning procedure: (1) our173

SFT dataset, with labeler demonstrations used to train our SFT models, (2) our RM dataset, with174

labeler rankings of model outputs used to train our RMs, and (3) our PPO dataset, without any human175

labels, which are used as inputs for RLHF fine-tuning. The SFT dataset contains about 13k training176

prompts (from the API and labeler-written), the RM dataset has 33k training prompts (from the API177

and labeler-written), and the PPO dataset has 31k training prompts (only from the API). More details178

on dataset sizes are provided in Table 3.179

3.3 Human data collection180

To produce our demonstration and comparison data, and to conduct our main evaluations, we hired181

a team of about 40 contractors on Upwork and through ScaleAI. Compared to earlier work that182

collects human preference data on the task of summarization (Ziegler et al., 2019; Stiennon et al.,183

2020; Wu et al., 2021), our inputs span a much broader range of tasks, and can occasionally include184

controversial and sensitive topics. Our aim was to select a group of labelers who were sensitive to the185

preferences of different demographic groups, and who were good at identifying outputs that were186

potentially harmful. Thus, we conducted a screening test designed to measure labeler performance187

on these axes (see Appendix B.1). As an initial study to see how well our model generalizes to the188

preferences of other labelers, we hire a separate set of labelers who do not produce any of the training189

data. These labelers are sourced from the same vendors, but do not undergo a screening test.190

Despite the complexity of the task, we find that inter-annotator agreement rates are quite high:191

training labelers agree with each-other 72.6 ± 1.5% of the time, while for held-out labelers this192

number is 77.3 ± 1.3%. For comparison, in the summarization work of Stiennon et al. (2020)193

researcher-researcher agreement was 73± 4%.194

3.4 Models195

Starting from GPT-3 (Brown et al., 2020), we train models with three different techniques:196

Supervised fine-tuning (SFT). We fine-tune GPT-3 on our labeler demonstrations using supervised197

learning. We trained for 16 epochs, using a cosine learning rate decay, and residual dropout of 0.2.198

We do our final SFT model selection based on the RM score on the validation set. Similarly to Wu199

et al. (2021), we find that our SFT models overfit on validation loss after 1 epoch; however, we find200

that training for more epochs helps both the RM score and human preference ratings.201

Reward modeling (RM). We fine-tune GPT-3 to take in a prompt and response, and output a scalar202

reward. In this paper we only use 6B RMs, as this saves a lot of compute, and we found that 175B203

RM training could be unstable and thus was less suitable to be used as the value function during RL204

(see Appendix D for more details).205

In Stiennon et al. (2020), the RM is trained on a dataset of comparisons between two model outputs206

on the same input. They use a cross-entropy loss, with the comparisons as labels—the difference in207

rewards represents the log odds that one response will be preferred to the other by a human labeler. In208

order to speed up comparison collection, we have labelers rank between K = 4 and K = 9 responses,209

and train on all
(
K
2

)
comparisons from each prompt as a single batch element, for computational210

efficiency (see Appendix D. The loss function for the RM becomes:211

loss (θ) = − 1(
K
2

)E(x,yw,yl)∼D [log (σ (rθ (x, yw)− rθ (x, yl)))] (1)

where rθ(x, y) is the scalar output of the reward model for prompt x and completion y with parameters212

θ, yw is the preferred completion out of the pair of yw and yl, and D is the comparison dataset.213
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Reinforcement learning (RL). Again following Stiennon et al. (2020), we fine-tuned the SFT214

model using PPO (Schulman et al., 2017). The environment is a bandit environment which presents215

a random user prompt and expects a response to the prompt. Given the prompt and response, it216

produces a reward determined by the reward model and ends the episode. In addition, we add a217

per-token KL penalty from the SFT model at each token to mitigate over-optimization of the reward218

model. The value function is initialized from the RM. We call these models “PPO.”219

We also experiment with mixing the pretraining gradients into the PPO gradients, in order to fix220

the performance regressions on public NLP datasets (see Appendix D.4). We call these models221

“PPO-ptx.” Unless otherwise specified, in this paper InstructGPT refers to the PPO-ptx models.222

Baselines. We compare the performance of our PPO models to our SFT models and GPT-3. We also223

compare to GPT-3 when it is provided a few-shot prefix to ‘prompt’ it into an instruction-following224

mode (GPT-3-prompted). This prefix is prepended to the user-specified instruction.225

We additionally compare InstructGPT to fine-tuning 175B GPT-3 on the FLAN (Wei et al., 2021)226

and T0 (Sanh et al., 2021) datasets, which both consist of a variety of NLP tasks, combined with227

natural language instructions for each task (they differ in the NLP datasets included, and the style of228

instructions used). We fine-tune them on approximately 1 million examples and choose the checkpoint229

which obtains the highest RM score on the validation set (see Appendix D for more details).230

3.5 Evaluation231

Following Askell et al. (2021), we say our models are aligned if they are helpful, truthful, and232

harmless (we elaborate in Appendix C.2). We divide our quantitative evaluations into two parts:233

Evaluations on API distribution. Our main metric is human preference ratings on a held out set234

of prompts from the same source as our training distribution. When using prompts from the API235

for evaluation, we only select prompts by users we haven’t included in training. For each model we236

calculate how often its outputs are preferred to a baseline policy; we choose our 175B SFT model237

as the baseline since its performance is near the middle of the pack. Additionally, we ask labelers238

to judge the overall quality of each response on a 1-7 Likert scale and collect a range of metadata239

for each model output (see Table 11). In particular, we collect data that aims to capture different240

aspects of behavior in a deployed model that could end up being harmful: we have labelers evaluate241

whether an output is inappropriate in the context of a customer assistant, denigrates a protected class,242

or contains sexual or violent content.243

Evaluations on public NLP datasets. We evaluate on two types of public datasets: those that244

capture an aspect of language model safety, particularly truthfulness, toxicity, and bias, and those245

that capture zero-shot performance on traditional NLP tasks like question answering, reading com-246

prehension, and summarization. We also conduct human evaluations on the RealToxicityPrompts247

dataset (Gehman et al., 2020).248

4 Results249

4.1 Results on the API distribution250

Labelers significantly prefer InstructGPT outputs over outputs from GPT-3. On our test251

set, our labelers significantly prefer InstructGPT outputs across model sizes (Figure 1). We find252

that GPT-3 outputs perform the worst, and one can obtain significant step-size improvements by253

using a well-crafted few-shot prompt (GPT-3 (prompted)), then by training on demonstrations using254

supervised learning (SFT), and finally by training on comparison data using PPO. Adding updates on255

the pretraining mix during PPO does not lead to large changes in labeler preference. To illustrate the256

magnitude of our gains: when compared directly, 175B InstructGPT outputs are preferred to GPT-3257

outputs 85 ± 3% of the time, and preferred 71 ± 4% of the time to few-shot GPT-3.258

In Figure 4 we show that labelers also rate InstructGPT outputs favorably along several more concrete259

axes. Specifically, compared to GPT-3, InstructGPT outputs are more appropriate in the context of a260

customer assistant, more often follow explicit constraints defined in the instruction (e.g. “Write your261
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Figure 3: Preference results of our models, measured by winrate against the 175B SFT model.
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Figure 4: Metadata results on the API distribution, averaged over model sizes.

answer in 2 paragraphs or less.”), are less likely to fail to follow the correct instruction entirely, and262

make up facts (‘hallucinate’) less often in closed-domain tasks.263

Our models generalize to the preferences of "held-out" labelers that did not produce any train-264

ing data. Held-out labelers have similar ranking preferences as workers who we used to produce265

training data (see Figure 3). In particular, according to held-out workers, all of our InstructGPT266

models still greatly outperform the GPT-3 baselines. Thus, our InstructGPT models aren’t simply267

overfitting to the preferences of our training labelers.268

Public NLP datasets are not reflective of how our language models are used. In Figure 5a,269

we also compare InstructGPT to our 175B GPT-3 baselines fine-tuned on the FLAN (Wei et al.,270

2021) and T0 (Sanh et al., 2021) datasets (see Appendix D for details). We find that these models271

perform better than GPT-3, on par with GPT-3 with a well-chosen prompt, and worse than our SFT272

baseline. This indicates that these datasets are not sufficiently diverse to improve performance on our273

API prompt distribution. We believe this is partly because academic datasets focus on tasks where274

performance is easily measured, like classification and QA, while our API distribution consists of275

mostly (about 57%) open-ended generation tasks.276

4.2 Results on public NLP datasets277

InstructGPT models show improvements in truthfulness over GPT-3. As measured by human278

evaluations on the TruthfulQA dataset, our PPO models show small but significant improvements279

in generating truthful and informative outputs compared to GPT-3 (see Figure 5b). This behavior is280

the default: our models do not have to be specifically instructed to tell the truth to exhibit improved281

truthfulness. Interestingly, the exception is our 1.3B PPO-ptx model, which performs slightly worse282

than a GPT-3 model of the same size. Our improvements in truthfulness are also evidenced by the283

fact that our PPO models hallucinate less often on closed-domain tasks (Figure 4).284

7



GPT GPT
(prompted)

SFT PPO-ptx FLAN T0

Model

2

4

6

Lik
er

t s
co

re

(a) (b) (c)

Figure 5: (a) Comparing our models with GPT-3 fine-tuned on the FLAN and T0 datasets, in terms of
1-7 Likert scores, on our prompt distribution. (b) Human evaluations on the TruthfulQA dataset. Gray
bars indicate ratings of truthfulness; colored bars indicate ratings of truthfulness and informativeness.
(c) Human evaluations on RealToxicityPrompts, with and without "respectful" instructions.

InstructGPT shows small improvements in toxicity over GPT-3, but not bias. We first evaluate285

our models on the RealToxicityPrompts dataset (Gehman et al., 2020) using human evaluations.286

Our results are in Figure 5c. We find that, when instructed to produce a safe and respectful output287

(“respectful prompt”), InstructGPT models generate less toxic outputs than those from GPT-3288

according to the Perspective API. This advantage disappears when the respectful prompt is removed289

(“no prompt”). We see similar results when evaluating using the Perspective API (Appendix F.7).290

We can minimize performance regressions on public NLP datasets by modifying our RLHF291

fine-tuning procedure. In Figure 25 we show that adding pretraining updates to our PPO fine-292

tuning (PPO-ptx) mitigates performance regressions on public NLP datasets, and even surpasses293

GPT-3 on HellaSwag. The performance of the PPO-ptx model still lags behind GPT-3 on DROP,294

SQuADv2, and translation; more work is needed to study and further eliminate these performance295

regressions. We also find that mixing in pretraining updates performs better than the simpler solution296

of increasing the KL coefficient (Figure 36).297

4.3 Qualitative results298

InstructGPT models show promising generalization to instructions outside of the RLHF fine-299

tuning distribution. In particular, we find that InstructGPT shows ability to follow instructions300

in non-English languages, and perform summarization and question-answering for code. This is301

interesting because non-English languages and code form a tiny minority of our fine-tuning data, and302

it suggests that, in some cases, alignment methods could generalize to producing the desired behavior303

on inputs that humans did not directly supervise. We show some qualitative examples in Figure 26.304

InstructGPT still makes simple mistakes. In interacting with our 175B PPO-ptx model, we305

have noticed it can still make simple mistakes, despite its strong performance on many different306

language tasks. To give a few examples: (1) when given an instruction with a false premise, the model307

sometimes incorrectly assumes the premise is true, (2) the model can overly hedge; when given a308

simple question, it can sometimes say that there is no one answer to the question and give multiple309

possible answers, even when there is one fairly clear answer from the context, and (3) the model’s310

performance degrades when instructions contain multiple explicit constraints (e.g. “list 10 movies311

made in the 1930’s set in France”) or when constraints can be challenging for language models (e.g.312

writing a summary in a specified number of sentences).313

We show some examples of these behaviors in Figure 27. We suspect that behavior (2) emerges314

partly because we instruct labelers to reward epistemic humility; thus, they may tend to reward315

outputs that hedge, and this gets picked up by our reward model. We suspect that behavior (1) occurs316

because there are few prompts in the training set that assume false premises, and our models don’t317

generalize well to these examples. We believe both these behaviors could be dramatically reduced318

with adversarial data collection (Dinan et al., 2019).319
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5 Discussion320

5.1 Implications for alignment research321

Our approach to alignment research in this work is iterative: we are improving the alignment of322

current AI systems instead of focusing abstractly on aligning AI systems that don’t yet exist, which323

provides us with a clear empirical feedback loop of what works and what does not. We believe that324

this feedback loop is essential to refine our alignment techniques, and it forces us to keep pace with325

progress in machine learning.326

From this work, we can draw lessons for alignment research more generally. First, the cost of327

increasing model alignment is modest relative to pretraining. Training our 175B SFT model requires328

4.9 petaflops/s-days and training our 175B PPO-ptx model requires 60 petaflops/s-days, compared329

to 3,640 petaflops/s-days for GPT-3 (Brown et al., 2020). At the same time, our results show that330

RLHF is very effective at making language models more helpful to users, more so than a 100x model331

size increase. This suggests that right now increasing investments in alignment of existing language332

models is more cost-effective than training larger models. Second, we’ve seen some evidence that333

InstructGPT generalizes ‘following instructions’ to settings that we don’t supervise it in. This is an334

important property because it’s prohibitively expensive to have humans supervise models on every335

task they perform. Finally, we were able to mitigate most of the performance degradations introduced336

by our fine-tuning. If this was not the case, these performance degradations would constitute an337

alignment tax—an additional cost for aligning the model. Any alignment technique with a high tax338

might not see adoption, and thus such a tax is important to avoid.339

5.2 Limitations340

Methodology. The behavior of our InstructGPT models is determined in part by the human feedback341

obtained from our contractors. Some of the labeling tasks rely on value judgments that may be342

impacted by the identity of our contractors, their beliefs, cultural backgrounds, and personal history.343

We kept our team of contractors small because this facilitates high-bandwidth communication with344

a smaller set of contractors who are doing the task full-time. However, this group is clearly not345

representative of the full spectrum of people affected by these models. As a simple example, our346

labelers are primarily English-speaking and our data consists almost entirely of English instructions.347

Models. Our models are neither fully aligned nor fully safe; they still generate toxic or biased348

outputs, make up facts, and generate sexual and violent content without explicit prompting. They can349

also fail to generate reasonable outputs on some inputs; we show some examples of this in Figure 27.350

Perhaps the greatest limitation of our models is that, in most cases, they follow the user’s instruction,351

even if that could lead to harm in the real world. For example, when prompting the models to be352

maximally biased, InstructGPT generates more toxic outputs than equivalently-sized GPT-3 models.353

5.3 Broader impacts354

This work is motivated by our aim to increase the positive impact of large language models by training355

them to do what a given set of humans want them to do. By default, language models optimize356

the next word prediction objective, which is only a proxy for what we want these models to do.357

Our results indicate that our techniques hold promise for making language models more helpful,358

truthful, and harmless. In the longer term, alignment failures could lead to more severe consequences,359

particularly if these models are deployed in safety-critical situations.360

However, making language models better at following user intentions also makes them easier to361

misuse. It may be easier to use these models to generate convincing misinformation, or hateful or362

abusive content. Alignment techniques are not a panacea for resolving safety issues associated with363

large language models; rather, they should be used as one tool in a broader safety ecosystem. Aside364

from intentional misuse, there are many domains where large language models should be deployed365

only with great care, or not at all. Examples include high-stakes domains such as medical diagnoses,366

classifying people based on protected characteristics, determining eligibility for credit, employment,367

or housing, generating political advertisements, and law enforcement.368

Finally, the question of who these models are aligned to is extremely important, and will significantly369

affect whether the net impact of these models is positive or negative; we discuss this in Appendix G.2.370
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