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Abstract
The Observation — Hypothesis — Prediction —
Experimentation loop paradigm for scientific re-
search has been practiced by researchers for years
towards scientific discoveries. However, with data
explosion in both mega-scale and milli-scale re-
search, it has been sometimes very difficult to
manually analyze the data and propose new hy-
potheses to drive the cycle for scientific discovery.

In this paper, we discuss the role of Explainable
AI in scientific discovery process by demonstrat-
ing an Explainable AI-based paradigm for science
discovery. The key is to use Explainable AI to
help derive data or model interpretations, hypothe-
ses, as well as scientific discoveries or insights.
We show how computational and data-intensive
methodology—together with experimental and
theoretical methodology—can be seamlessly in-
tegrated for scientific research. To demonstrate
the AI-based science discovery process, and to
pay our respect to some of the greatest minds in
human history, we show how Kepler’s laws of
planetary motion and Newton’s law of universal
gravitation can be rediscovered by (Explainable)
AI based on Tycho Brahe’s astronomical observa-
tion data, whose works were leading the scientific
revolution in the 16-17th century. This work also
highlights the important role of Explainable AI
(as compared to Blackbox AI) in science discov-
ery to help humans prevent or better prepare for
the possible technological singularity that may
happen in the future, since science is not only
about the know how, but also the know why.

1. Introduction
A frequently used paradigm for scientific research is the
Hypothetico-Deductive paradigm (Figure 1(a)), which has
been practiced by researchers for years (1; 2; 3). In this
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paradigm, researchers first make observations which is usu-
ally a data collection process, and then raise a question. To
get answers to the question, researchers will then propose a
hypothesis as a possible explanation to the observation, usu-
ally through an abductive reasoning process. The hypothesis
may come in the form of a theory, a model, an equation,
an algorithm, or any other form depending on the research
problem and research area. The hypothesis is used to make
verifiable predictions, and then experimental tests or data
analyses are conducted to verify or falsify the hypothesis.
The above process may repeat as a loop, i.e., if the hypoth-
esis is falsified, we may need to make new observations,
propose new hypotheses, and even ask a new question.

An excellent example of science discovery is the works of
Tycho Brahe, Johannes Kepler and Isaac Newton (Figure
2), who are some of the greatest minds in human history
and their work were leading the scientific revolution in the
16-17th century. Tycho Brahe was an astronomer known for
his accurate and comprehensive astronomical observations.
During his career in the 16th century, though as a naked-eye
astronomer, his observations of the planets orbiting the Sun
were so accurate that it became possible for later researchers
to build insightful discoveries based on his observational
data. One notable name, of course, is Johannes Kepler, who
discovered what was later known as the Kepler’s laws of
planetary motion. During the science discovery process, Ke-
pler hypothesized that the orbit of a planet is an ellipse with
the Sun at one of the two foci, and he was able to fit the or-
bital equation of Mars based on Tycho’s observational data.
Finally, the equation turns out to be surprisingly accurate
in predicting the future position of planets, which verifies
his first law of planetary motion. Later, Kepler further dis-
covered the second and third laws through his insightful
analyses of the data. Isaac Newton, one of the most notable
figures in the human history of science, was not only inter-
ested in how planets orbit the Sun, but also why they orbit
in such a way, which means that his goal is to explain the
underlying mechanism of planetary motions. In conquest
of this goal, he made several innovate discoveries which are
later known as the Newton’s law of universal gravitation
and the Newton’s laws of motion.

It is very interesting to see that Tycho, Kepler and Newton—
though their works span over a hundred years of history—
actually play different but closely related roles in the science
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Figure 1. The Hypothetico-Deductive paradigm for science dis-
covery and the Explainable AI-based (hypothesis-free) paradigm
for science discovery. The new paradigm uses Explainable AI to
generate verifiable hypothesis.

discovery process, which are observation, analyzation, and
explanation. Tycho’s key contribution is on observation and
his accurate data lays foundation for insightful analyses and
innovative discoveries in the future. Kepler analyzed the
data and discovered meaningful patterns hidden in the data.
Finally, Newton examined the underlying mechanism of
such patterns and provided insightful explanations to show
why planets move in such patterns rather than other patterns.
Using more computer science language, Tycho’s work is
on data collection, Kepler’s work is on model learning, i.e.,
he manually (instead of using modern computers) fit the
data and learned predictive models based on the data, and
finally, Newton’s work is on model interpretation, i.e., he
(also manually) provided conceptual and mathematical ex-
planations for Kepler’s results and Kepler’s laws can be
naturally derived from Newton’s laws.

In modern scientific research, with the help of various me-
chanical, electrical and biological equipment, many com-
ponents of the research pipeline have been automated. The
most notable component is observation and data collection—
modern equipment such as telescopes, sensors and colliders
automatically and continuously collect data to support re-
search and discoveries, and such observational data usually
comes in massive scale. For example, the Hubble Space
Telescope (HST) generates up to 150 GB of spatial data per
week (4), and the Large Hadron Collider (LHC) experiments
produce about 90 PB of data per year (5). Such abundant
and accurate observational data helps to push the frontier of
scientific research, but it also brings great challenges to pro-
cess the data and build insightful hypotheses from the data.
However, building insightful hypotheses is vitally important
to drive the research cycle for new scientific discoveries.

To indicate how the above challenges can be alleviated with
the help of modern AI and machine learning technologies,
we show an Explainable AI-based hypothesis-free paradigm
for science discovery (Figure 1(b)). The key is to replace
manual hypothesis development with an AI-driven model
learning and model interpretation process. More specifically,
the model learning component adopts black-box AI tools

such as deep learning for data analysis, data augmentation
and building accurate prediction models, while the model
interpretation component adopts Explainable AI tools such
as symbolic regression to translate the black-box model into
human-understandable forms for understanding the scien-
tific meanings and deriving scientific insights. Working
together, the two components turn manual hypothesis de-
velopment into automatic hypothesis development, saving
efforts of building insightful hypotheses from data.

As a demonstration to the Explainable AI-based paradigm,
we show how the Kepler’s laws of planetary motion and the
Newton’s law of universal gravitation can be rediscovered by
explainable AI based on Tycho’s astronomical observation
data. At Kepler’s time, there were three main hypotheses
on planetary motion—the Tychonic system, the Ptolemaic
system and the Copernican system. These three hypotheses
can give good predictions in the short term, but diverge from
the observational data in the long term. Kepler spent several
years on calculations and finally rejected the three models.
Meanwhile, he proposed his elliptical orbit hypothesis and
verified that it had better predictions than previous models.
This process follows the observation–hypothesis–prediction
paradigm of science discovery. Our experiments imagine
that AI and machine learning techniques existed in Kepler’s
time and show how Kepler would have been able to derive
his first and second laws using Explainable AI-based science
discovery based on the observational data of Mars, without
manually making hypotheses. Besides, Explainable AI not
only helps to find the first and second laws of planetary
motion, but also helps the discovery process of Kepler’s
third law: the ratio between the square of a planet’s orbital
period and the cube of the length of the semi-major axis of
its orbit, is a constant for all planets. It seems impossible
to find the third law since that needs the observational data
of other planets, but our experiment will show that by only
using Mars data, Explainable AI is able to find the numerical
relationship between the angular speed and the distance
from the Sun with very high accuracy, which provides a
clear direction towards the discovery of the third law.

Throughout Kepler’s research career in the first 30 years of
the 17th century, especially after his three laws of planetary
motion have been discovered, Kepler has been constantly
seeking for a kinetic explanation for the laws. He tried
to explain the laws based on magnetic force, which from
modern perspective turned out to be incorrect (6). However,
it demonstrates humans’ eager for explanations so as to not
only know how and but also know why. This is also the
reason why we emphasize the importance of Explainable
AI in the science discovery process.

History assigned the duty of finding the explanation to Issac
Newton. If we would like to dig out the secret behind
the motion of planets, we need to leverage the concepts
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Figure 2. Tycho Brahe, Johannes Kepler, Isaac Newton and their
roles in the science discovery process.

of force and acceleration. During Kepler’s time, scientists
have established the concept of force, but they still do not
know the exact function of force. They thought force was
proportional to distance and thus speed. Newton’s greatness
lies in that he creatively linked the relationship between
force and acceleration (instead of speed) and proposed the
inverse square law of force and thus acceleration. Based
on these concepts, Kepler’s laws can be naturally derived
from Newton’s laws based on mathematical deviations, thus
providing an explanation for the underlying mechanism of
Kepler’s laws of planetary motion (7).

On the other hand, as Newton stated in his groundbreaking
work the Principia, he considered forces from a mathemat-
ical point of view, not a physical view, and thus taking an
instrumentalist view of his methods (7). As a result, it is
the job of the readers to assign “meanings” to the many
variables such as the force in his mathematical framework.
Though contemporary scientists believe that Newton must
have his own insightful understanding of the meanings of
the variables, and his statement was just making room for
flexibility to accommodate different views of his readers,
his cautiousness inspires us to think about what is the exact
role of (Explainable) AI in science discovery. In the context
of Explainable AI-based science discovery, the AI machines
could indeed be able to learn black-box neural models for
prediction and learn symbolic equations to explain the pre-
dictions, however, machines do not possess “meaning” of
the variables or the combination of variables in the equa-
tions. For machines, the variables are just symbols used for
data exploration, data fitting and prediction, while it is the
job of humans to assign meanings to the variables and to
build understandings of the universe based on the discover-
ies made by AI machines.1 The role of (Explainable) AI in
the science discovery process is to produce valid hypotheses
or to narrow down the search space of hypotheses so as to
speed up the discovery, but the role of assigning “meanings”
to the discoveries is the job of humans (especially domain
experts) which cannot be replaced by AI. In the experiments,

1In this discuss we limit ourselves to the sense of “meaning” in
terms of human’s perspective. It is possible that machines would
build their own internal “meaning” of the variables and calculations
that is not understandable to humans, but that is beyond the scope
of discussion in this work.

we will demonstrate the importance of human during sci-
ence discovery by showing how the representation of force
is discovered by AI when explaining the elliptical orbit and
how human needs to intervene so as to assign an appropriate
meaning to force.

This work also highlights the importance of Explainable
AI (as compared to black-box AI) in science discovery. In
particular, Explainable AI helps human beings to prevent
or better prepare for the possible technological singularity
(or simply singularity) that may happen in the future. The
possibility of technology advancements leading to a singu-
larity has been discussed by public figures from many fields
such as John von Neumann (8), Irving John Good (9) and
Stephen Hawking (10). For example, I. J. Good speculated
in 1965 that the advancement of artificial intelligence may
bring about an intelligence explosion, where intelligent ma-
chines can solve problems and even build new machines
using incomprehensible ways for humans and thus the intel-
ligence of human would be left far behind (11). Under the
context of science discovery, if we develop and allow black-
box AI to make discoveries and represent such discoveries
using black-box models such as complex neural networks
that are incomprehensible for humans (though these models
may indeed provide accurate predictions), it may lead to the
situation that machines will accumulate knowledge that are
more and more incomprehensible for humans and eventually
the human knowledge will be left far behind by machine’s
knowledge, leading to the singularity and even making ma-
chines out of control for humans. As a result, we need to
make sure that AI explains its model and discoveries to hu-
mans using human understandable methods, so that humans
can always keep track of the new discoveries and knowledge
created by machines during the science discovery process.

In the following part of this paper, we first introduce some
related work in Section 2, and then we will use Kepler’s and
Newton’s works as examples to demonstrate the Explainable
AI-based science discovery process. More specifically, in
Section 3, we will first introduce the data and Explainable AI
models to be used in this work, and then we will rediscover
Kepler’s and Newton’s laws under the Explainable AI-based
paradigm in Section 4 and Section 5, respectively. We
conclude the work together with discussions and future
directions in Section 6.

2. Related Work
2.1. Explainable AI

Explainability has been an important perspective to consider
in many AI systems, leading to the research on Explainable
AI (XAI). For example, recommender system needs to ex-
plain its recommendations or decisions to users so as to gain
trust and help users make informed decisions, leading to
the research on explainable recommendation (12; 13; 14);
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many prediction or classification algorithms need to pro-
vide explanations for the model designers to help them
understand how the model works for better debugging and
detecting potential bias in models (15; 16; 17). Explainable
AI methods can be generally classified to model-intrinsic
methods and model-agnostic methods (12). For model-
intrinsic methods, the decision and explanation are both
produced by the same model, which means that the work-
ing mechanism of the model itself is transparent so that
any decision produced by the model are naturally accompa-
nied with explanations. The decision and explanation are
usually produced concurrently in model-intrinsic methods.
Notable examples of model-intrinsic methods include linear
regression (18), decision tree (19; 20) and attention mech-
anism (13; 21; 22; 23), whose explanations are regression
coefficients, decision paths and attention weights, respec-
tively. For model-agnostic methods, the decision model and
explanation model are usually two separate models. The
decision model is responsible for prediction and decision
making, while the explanation model is responsible for ex-
plaining the results produced by the decision model. In
model-agnostic methods, the explanations are usually pro-
duced in a post-hoc manner, i.e., the model decisions are
produced first and then explanations are generated for the
decisions. Notable examples for model-agnostic methods
include counterfactual explanations (14), local approxima-
tions (16), and Shapley values (15; 17).

It is worth noting that there exist explanation methods that
may not be simply classified as either model-agnostic or
model-intrinsic but actually in between agnostic and intrin-
sic because they can be implemented in either way. One
such example is symbolic regression (24; 25). Symbolic
regression is a type of regression analysis to find a function
f(x1, x2, ..., xn) = y consisting of designated base func-
tions that best fits the given dataset (24). The base functions
could be basic number operations such as addition, sub-
traction, multiplication, division, exponentiation, logarithm,
etc., or trigonometric functions such as sine, cosine, tangent,
etc., or any other designated base functions. Symbolic re-
gression can be done in an intrinsic way by directly learning
the symbolic function that best regresses the data, or can be
done in an agnostic/post-hoc way by first learning a black-
box model such as neural network to fit the data and then
using symbolic function to regress the black-box model.
Symbolic regression is an NP-hard optimization problem
(25; 26), but some effective and efficient heuristic meth-
ods have been developed, including genetic programming
(27; 28), Bayesian methods (29), and continuous optimiza-
tion methods (30; 31). Besides, due to the high demand
of solving symbolic regression problems in industry and
research, many packages and tool-kits have been developed,
such as Eureqa (32) which is based on genetic programming
and TuringBot (33) which is based on simulated annealing.

2.2. AI for Science Discovery

AI for science discovery has been an important direction
and is especially trending in recent years. For example,
many efforts have been devoted to explore machine learning
for drug discovery (34; 35; 36), material design (37), and
chemistry or physics problems (38; 39; 40), though many of
the works are conducted on synthesized data such as particle
interaction rather than real observational data. A notable
recent advance on AI for molecular biology is AlphaFold
(41), which develops deep learning models to predict the
folding structure of proteins. Most existing research on AI
for science discovery focus on the AI utility instead of the
AI explainability, i.e., they focus on developing advanced
AI models for more accurate prediction, classification or
regression of scientific data, but less effort is put on explain-
ing the AI models or the AI-based discoveries. However,
we believe that enabling AI to provide insightful explana-
tions for science discovery is critically important, since it
helps researchers to better understand the underlying mech-
anism of the AI models and better understand the scientific
insight implied by the AI models, which is important to
enhance human-beings’ understanding of the AI-discovered
knowledge and advance science progress in the community.

3. Research Setting and Background
3.1. Research Data

Modern research facilities such as advanced telescopes have
been able to collect very accurate and abundant data for
planets orbiting the Sun. However, to fully restore the re-
search situation at Kepler’s and Newton’s time, and to show
how Kepler’s and Newton’s laws can be rediscovered by
Explainable AI based on the (limited) data and knowledge at
their time, we do not use any of the modern data of planetary
motion. Instead, throughout the research, we only use the
data and knowledge that were available to and used by Ke-
pler, which was mostly collected by Tycho Brahe and partly
collected or refined by Kepler 400 years ago. In particular,
we use the observation data of Mars orbiting the Sun by
Tycho and Kepler as summarized in Table 1, which comes
from Kepler’s epoch-making book Astronomia Nova (6).

In Table 1, the date is written in old style used by Kepler.2

To obtain Gregorian style dates, we just need to add 10 days
on top of Kepler’s dates (6). The “Mars’ Angular Position”
from Sun is the Mars’ longitudes in heliocentric ecliptic
coordinates computed by Kepler. The “Sun-Mars Distance”

2This old style is based on Julian calendar which was used by
Kepler. To fix the calendar drift of spring equinox due to the excess
leap days introduced by the Julian algorithm, a calendar reform
was introduced in 1582 which slightly adjusted the number of days
per year and advanced the date by 10 days: October 4, 1582 was
followed by October 15, 1582 (42; 43), leading to what is now
known as the Gregorian calendar.
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is in units of Astronomical Unit (AU). A note here is that
at Kepler’s time, humans were still unable to measure the
distance between planets in miles (44; 45). Instead, they
recorded distances in the ratio of Sun-Earth distance, and set
the average of Sun-Earth distance as 100, 000, similar to the
definition of AU. Thus, we use AU as the unit.3 “Difference”
is the difference between the computed and the observed
Mars’ positions in geocentric ecliptic longitudes. Since the
average measurement error of Tycho’s observations is just
several arc-minutes and the largest difference is less than
six arc-minutes, thus, we take the data as the top-accurate
data at Tycho’s and Kepler’s time.

3.2. AI and Explainable AI Models

In this research, we aim to show what AI is able and unable
to do in science discovery. In particular, we will highlight
that learning black-box models could indeed give us accu-
rate predictions of the physical phenomena, but may not help
in advancing human understandings of the nature and uni-
verse. To really transform data into knowledge rather than
just prediction tools, we not only need black-box prediction
models learned from data, but also need explanation models
that can reveal the physical insights underlying the data and
model in human understandable ways, so that human beings
can keep up with the pace of AI’s discoveries.

Our experiments involve two types of models. One is
a black-box model implemented as neural network (NN)
which is learned from observational data. The black-box
model is responsible for making accurate predictions such
as predicting the position of Mars at certain time, as well
as data augmentation to turn limited observational data into
large scale data for science discovery. The black-box model
would have already been very helpful to human-beings, for
example, it may help to develop calendars and to guide
agricultural production by making accurate predictions of
the future, but its black-box nature makes it difficult for hu-
mans to understand the underlying physical mechanism of
such predictions. As a result, we involve the second type of
model for explanation, which is implemented based on sym-
bolic regression that transforms the black-box model into a
symbolic function to express the interpretable physical rules.
The symbolic regression process also discovers meaningful
physical variables to inspire insightful understandings of the
underlying physical mechanism behind the data.

For the implementation details, we use three layers of multi-
layer perceptron (MLP) as the NN model with the hidden

3Actually, computing Mars’ position and distance relative to
Sun is one of Kepler’s most genius innovations. He smartly used
the fact that the Mars’ period is 687 days, and thus should appear
at the same position in universe once every 687 days. This makes
it possible to compute the Sun-Mars distance and direction relative
to the Sun-Earth distance (which is 1 AU) based on trigonometric
calculations (6).

size as 100. As a black-box, we will not change the internal
structure of NN throughout the experiments, i.e., we will not
purposely design unique NN structures to fit different data,
instead, we always use the same and simple three-layer MLP
as the black-box and we only designate the input and output
data for the black-box to learn different prediction models.
We use TuringBot (33) for model explanation based on sym-
bolic regression, which is a widely used symbolic regression
algorithm based on simulated annealing and performed well
on a variety of physics-inspired learning problems (46).

4. Rediscover Kepler’s Laws based on
Explainable AI

Let us first review the process of Kepler’s discovery of his
first law. In Kepler’s time, there were three models of plane-
tary motion: the Ptolemaic, Copernican and Tychonic sys-
tems. In his book Astronomia Nova (6), Kepler mentioned
that these three systems all had high prediction accuracy in
the near term, but diverged and failed to fit historical and
future observations in the long term. The first step of his re-
search was to check the accuracy of the observation data. If
a theory is based on inaccurate observations, then the theory
could be misleading. Therefore, Kepler went through the
calculation with at least seventy rounds of verification, at a
very great loss of time (47). Nowadays, data collection and
inspection are still important and necessary but are relatively
mature, and most part of them can be done automatically
with minimal manual intervention.

After multiple rounds of recalculation, Kepler chose to be-
lieve the observation data from Tycho. However, he was not
satisfied with the measurement error of the existing plane-
tary motion models (48), which led him to propose a new
hypothesis that the orbit of a planet is an ellipse with the
Sun at one of the two foci, which is known as Kepler’s first
law of planetary motion, and then he used the observation
data to verify his hypothesis. This process practiced the
traditional Hypothetico-Deductive paradigm of science dis-
covery, where a hypothesis is first manually proposed and
then experiments are conducted to verify or falsify the hy-
pothesis. In the following, we will show the hypothesis-free
science discovery process based on (Explainable) AI which
directly starts from data to rediscover the Kepler’s laws.

4.1. Black-box Model for Prediction and Data
Augmentation

First, we use the neural network model as a black-box model
for data fitting, prediction, and data augmentation. An ad-
vantage of deep neural network is its ability to smoothly fit
the data so as to augment the small amount of observation
data into large amount of data samples to facilitate AI-based
science discovery. We plot the observation data points in
Table 1 as Figure 3. Since the amount of original observa-
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tion data is small, we only use three samples for validation
and use the remaining 25 samples for training. We set the
number of training epochs as 200,000 for NN-based data
fitting to learn a regression function r = NN(θ), where NN
is the learned neural network function, r is the Sun-Mars
distance and θ is the Mars’ angular position relative to the
Sun (column 2 and column 3 of Table 1). The final mean
square loss (MSE) of the NN on the training data and vali-
dation data is 4× 10−11 and 7× 10−8, respectively, which
means the neural network function is able to provide quite
accurate predictions. For data augmentation, we uniformly
sample 1,000 random numbers between 0 and 1 as input to
the NN, which is in the same input number range of the NN
model. We then use the sampled inputs and the correspond-
ing outputs of the NN model to generate augmented data
samples and to approximate the function. The augmented
data samples are shown as the Figure 4.

4.2. White-box Model for Explanation

Our next step is to interpret the neural network function
r = NN(θ) into a human understandable symbolic function
based on symbolic regression so as to gain physical insights
from the black-box model. From Figure 4, we can see
that the NN model has a good ability of smooth function
approximation and we can see the periodicity of data from
the figure. However, even though our 3-layer MLP model is
very simple from the AI perspective, it is still a very complex
non-linear nested matrix multiplication formula, which is
difficult to understand its physical insights. This is why we
use symbolic regression as Explainable AI to transform the
black-box model into simple and intuitive physical rules.
In particular, we hope to turn the neural network function
r = NN(θ) into an explicit symbolic function r = f(θ). We
use the cosine function (cos) due to periodicity alongside
with three other basic operations for symbolic regression:
addition (+), multiplication (·) and division (/) (subtraction
can be expressed by adding a negative sign). The symbolic
regression results are shown in Table 2.

In Table 2, the error means the root mean square er-
ror (RMSE) between the output of the black-box model
and the output of the white-box model, i.e., RMSE =√∑

θ(NN(θ)− f(θ))2. The size stands for the complexity
of the generated function, which is calculated by adding up
the size of each base function used by the generated func-
tion, and the size of each base function is shown in Table
3. The symbolic regression process selects the simple and
effective functions, i.e., if a simpler (smaller size) function
is more accurate (smaller error) than a complex (larger size)
function, then the complex function will be eliminated from
the results. We plot the relation between the function size
and the negative log error in Figure 5, which shows that
the size 14 candidate function has the sharpest increase in
accuracy (in terms of negative log error) while maintaining

a smaller size, which indicates that this function has the best
chance to achieve a good balance between accuracy and
complexity to reveal the physical rule behind the data (30).
We write down and simplify this function as Eq.(1):

r = f(θ) =
1.51977

1.00625 + 0.0932972 · cos(θ + 0.544536)

=
1.51033

1 + 0.0927177 · cos(θ + 0.544536)
(1)

If we have basic knowledge of elliptic equations, we know
Eq.(1) implies a standard elliptical orbit, which can be rep-
resented as the following function in polar coordinates:

r = f(θ) =
l

1 + ε · cos(θ)
(2)

where r stands for the distance between the Sun and Mars,
and θ is Mars’ longitude in heliocentric ecliptic coordinate.
This clearly shows that the orbit of Mars is an ellipse with
Sun at the focus, leading to Kepler’s first law. We will
further interpret the meaning of the numbers in Eq.(1) in the
following subsection.

4.3. Physical Interpretation of the Results

Besides the elliptical orbit, we can obtain more insightful in-
formation from Eq.(1). In Kepler’s book Astronomia Nova
(6) (Chapter 41, Page 321), he calculated the eccentricity
of Mars as 0.09264 based on complex and meticulously
designed geometric calculations. By comparing the two
equations, Eq.(1) and Eq.(2), we can directly learn that the
Mars eccentricity ε = 0.0927177, which tends to be consis-
tent with Kepler’s result with relative error less than 0.1%. If
we compare our Explainable AI-based result with the Mars
eccentricity from modern science observations (as shown in
Table 4), we can see the relative error is about 0.7%, which
is larger than that comparing with Kepler’s result, most
likely due to the observational errors in Tycho and Kepler’s
data that was collected 400 years ago, but the relative error
is still small and the result is reasonable because we used
the same data as Kepler did, and thus no surprisingly our
result would be closer to Kepler’s.

Another difference between Eq.(1) and the standard oval
equation is the declination in the cosine function. For stan-
dard oval equation, rmin = f(θ = 0), while in our equation,
rmin = f [θ = −0.544536 (about − 31.2◦)]. This is consis-
tent with and can be explained by the series of closest Mars
Oppositions in history. Mars Oppositions are phenomena
when Earth passes in between Sun and Mars. Table 5 (from
(49)) shows all of the closest Mars Oppositions with dis-
tance between Mars and Earth less than 0.375 AU from the
1500s (Kepler’s time) to nowadays. We see that all of these
closest Mars Oppositions happen around August, which is
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about one month before the fall equinox (around September
23)—the time when Sun reaches the celestial longitude of
180◦, i.e., θEarth = 0. Since the orbit of Earth is very close
to a circle (scientists at Kepler’s time knew this according
to their observations (6)[p.271-272]), therefore, the distance
between Mars and Earth on Mars Oppositions is mainly
decided by the position of Mars, and Mars is most likely at
perihelion around August according to the historical obser-
vations of closest Mars Oppositions (e.g., Table 5). This is
consistent with the results shown by Explainable-AI model,
since Eq.(1) also shows August as the Mars perihelion when
θEarth = θMars = −0.544536 ≈ −31.2◦, which is about
31.2
360 × 365 ≈ 32 days ahead of the fall equinox, i.e., in

August. In the following, we will also show how Kepler’s
other laws can be discovered in the process of pursuing for
Newton’s laws based on Explainable AI.

5. Rediscover Newton’s Laws based on
Explainable AI

We have shown how Kepler’s first law and certain attributes
of Mars can be extracted by Explainable AI from data. But
one may not be satisfied with this, because one may natu-
rally want to know why Mars orbits in oval and what “power”
drives this elliptical orbit. In history, with limited informa-
tion and tools, Kepler thought that the variable distance
between Sun and Mars was due to the magnetic attraction
and repulsion of Mars by Sun (50), which was inspired from
the proposal that Earth is a magnet by English physician
and physicist William Gilbert in his groundbreaking book
De Magnete published in early 1600s (51). Though we now
know that this explanation is not the true reason, we cannot
help imaging whether Explainable AI can help to answer
this question based on ancient data that Kepler used.

5.1. Black-box Model for Time-Sensitive Prediction and
Data Augmentation

Eq.(1) describes the position of Mars relative to Sun as
r = f(θ). An intuitive and interesting idea is to construct
the relationship between the Mars position and time, since
we have not used the time information in Table 1. More
specifically, we naturally hope to have the θ-as-t relationship
θ = g(t), so that combined with the r = f(θ) function, we
will be able to predict the Mars position for any given time in
the future, which was an important problem for astronomy
and calendar development at Kepler and Newton’s time,
and making accurate future predictions is also important to
verify if a theory is correct. Kepler and his contemporary
scientists knew that the orbital period of Mars is about 687
days, and the time span of the data in Table 1 is much
longer than that, so we shift all data points into one orbital
period and normalize the time to the range of [0,1] for
better visualization. We show the normalized time t and

Mars’ longitude θ in Figure 6. We can see that the θ-t
relationship is close to linear but with certain non-linearity,
which implies small changes of Mars’ speed when orbiting
the Sun.

Similar to previous experiments, we first feed the data to
a neural network model for black-box prediction and data
augmentation. We use a simple three-layer multi-layer per-
ceptron (MLP) network to train the predictor θ = NN(t),
where the input is the normalized time t and the output is
Mars’ longitude θ in radian. After 200, 000 epochs of train-
ing, the mean square loss (MSE) on training and validation
data is 7×10−8 and 1.5×10−5, respectively. After training,
we uniformly sample 2T points between 0 and 1 as input
for data augmentation, where T = 687 is the orbital period
of Mars, and we plot the augmented data points based on
the trained neural predictor θ = NN(t) in Figure 7.

Actually, the above simple experiment which adopts ma-
chine learning to learn a black-box neural predictor θ =
NN(t) implies a significant role of machine learning (espe-
cially deep learning based on neural networks) in science
discovery. Nowadays, based on advanced mathematical
tools and deeper understandings of planetary motion, we
are able to know that the relationship between t and θ can
be expressed as the following Eq.(3) (52),

2π

T
t = 2 tan−1

(√
1− ϵ

1 + ϵ
tan

(θ
2

))
− ϵ

√
1− ϵ2 sin(θ)

1 + ϵ cos(θ)
(3)

where T and ϵ are constant parameters of Mars. This means
that we can express t as a function of θ, i.e., t = h(θ),
however, we can hardly find a function to express θ as t, i.e.,
θ = g(t), since Eq.(3) is a transcendental equation. As a
result, suppose we did not know Eq.(3), then we possibly
will spend efforts trying to find the θ-t relationship, however,
any attempt to find a θ-t function θ = g(t) would fail no
matter based on manual efforts or automatic tools such as
symbolic regression, which incurs a waste of time. Never-
theless, sometimes we do need a θ-as-t function because
we may want to analyze some important features of Mars
motion such as the angular velocity and acceleration. Deep
learning and neural network models provide a solution to
this problem, because according to the universal approxi-
mation theorem (53; 54; 55), neural networks—when the
structure and weights are properly designed and learned—
are able to approximate a wide scope of functions based
on training data. As a result, even though the functional
form of θ = g(t) is difficult (if at all possible) to find, we
can still learn a fairly good θ-t function as a neural network
θ = NN(t), and because NN is differentiable, we can con-
duct mathematical analysis for the θ-t relationship, such
as angular velocity ω = dNN(t)

dt and angular acceleration

a = d2NN(t)
dt2 . This will enable us to discover the possible

physical relationship between many physical variables that
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are otherwise difficult to calculate. We will further illustrate
on this point in the following subsections.

5.2. White-box Model for Explanation

At Kepler’s time, calculus has not been invented yet, but
scientists have already established the concept of velocity.
As a result, we should not use differentials to derive the
angular velocity, but we can calculate the angular velocity
ω by calculating the change of angle θ within a certain time
interval based on the black-box neural network prediction
model θ = NN(t) that we have learned in the above sub-
section. To show the generalization ability of the neural
network model, we randomly sample the same number (28)
of data points from θ = NN(t) by using different values
between 0.1 and 0.9 as the time in one orbital period of
Mars, denoted as ti (i = 1, 2, · · · , 28). For each ti, we use
the neural model to obtain the angle of Mars θi = NN(ti).
Then, we set the time interval δt = 1

32 day (about 45 min-
utes), and for each time ti, we calculate the corresponding
angular velocity ωi =

NN(ti+δt)−NN(ti−δt)
2δt

. Besides, based
on Eq.(1), we can also obtain the corresponding Sun-Mars
distance at time ti which is ri = f(θi) = f(NN(ti)).

Now, with the augmented data points (ti, θi, ri, ωi), we
would like to find the interpretable symbolic physical re-
lationship among some or all of these physical variables.
Though nowadays even a high school student knows their
relationship, we should assume that we have no knowledge
about the underlying physical rule when using Explainable
AI such as symbolic regression to find their relationship, be-
cause to demonstrate the role and ability of Explainable AI
in this task, we should avoid from introducing prior knowl-
edge into the discovery process. As a result, we augment
as many variables as we can imagine from the existing vari-
ables and then totally rely on symbolic regression to find the
potential relationship underlying some or all of the variables,
including both existing variables and augmented variables.

As a demonstration to this process, we try to find the rela-
tionship between r and ω (we can apply the same process
on other pairs of variables if we want), and to reduce the
complexity of the power operation, we create some aug-
mented variables including r2 = r2, r3 = r3 and ω2 =
ω2, ω3 = ω3. Finally, we use r1 = r, r2 = r2, r3 = r3 as
the input variables to symbolic regress ω1 = ω, ω2 = ω2

and ω3 = ω3, respectively, and then, we repeat the process
the other way around, i.e., use ω1 = ω, ω2 = ω2, ω3 = ω3

as the input variables to symbolic regress r1 = r, r2 = r2,
and r3 = r3, respectively. We still use four basic operations
cosine (cos), addition (+), multiplication (·) and division (/)
for symbolic regression, same as previous experiments. In
this process, the symbolic regression results when finding
function for ω2 = F (r1, r2, r3) are shown as Table 6, and
the relationship between function size and regression error

(in terms of negative log RMSE) is in Figure 8.

From Figure 8 we can see that the function with size 4
has the sharpest increase in accuracy, which indicates that
this function has the best chance to achieve a good balance
between accuracy and complexity to reveal the physical rule
behind data (30). We write down the function as follows
(recall that ω2 = ω2, r3 = r3):

ω2 =
0.000298491

r3
, or r3ω2 = c = 0.000298491AU3day−2

(4)
Based on modern scientific knowledge, we know that
r3ω2 = GM , where G = 6.674 × 10−11m3kg−1s−2

is the gravitational constant and M = 1.989 × 1030kg
is the mass of Sun. Besides, our unit for distance is
1AU = 1.496 × 1011m, so we have r3ω2 = GM =
2.96 × 10−4AU3day−2, and this number is very close to
the constant in Eq.(4), with relative error of about 0.8%,
which is small and reasonable considering that we only used
the ancient data that was collected 400 years ago. This
shows the nice ability of Explainable AI such as symbolic
regression in discovering the physical rules underlying data.

5.3. Physical Interpretation of the Results

Though we have shown that (Explainable) AI is able to
make accurate predictions and generate explainable equa-
tions, we still want to emphasize that AI algorithms and
machines do not “understand” or produce “meaning” for the
physical variables or rules that emerge in the science discov-
ery process.4 From the AI and machines’ perspective, the
variables and rules are just symbols and equations, and AI
algorithms are only responsible for data analyses so as to ex-
tract possibly inspiring variables and rules, while it is human
being’s role to understand them and give meanings to the
extracted variables and rules. For example, AI algorithms
may discover a new combination of variables that as a whole
is particularly useful for predicting and explaining the data
(we will discuss with more details in the following). In this
case, human experts may try to interpret the physical mean-
ing of this combination of variables and leverage it to gain
better understandings of the problem. Sometimes, human
experts may also need to innovatively create new physical
concepts up front or with the assistance of AI during the dis-
covery process so as to better interpret the results, enabling
a human-AI collaborative science discovery process.

In the above experiment, once Explainable AI has generated
the equation r3ω2 = c (c is a constant), we first need to
realize that a = rω2 means the centripetal acceleration in
circular motion. The deduction of centripetal acceleration

4We acknowledge that there exist debates over whether ma-
chines have their own internal “meanings” that are unknown or
not understandable to humans, however, this is not a focus of this
paper since we aim at science discovery for human beings.



From Kepler to Newton: Explainable AI for Science Discovery

a does not need calculus, but acceleration was still a new
concept at Kepler’s time that needs to be created. With this
new concept, r3ω2 = c can be reorganized into ar2 = c,
i.e., a ∝ 1

r2 , which is the centripetal acceleration equation.
The centripetal acceleration equation a ∝ 1

r2 can explain
why the orbit of Mars is elliptical, but to really know what
causes the elliptical orbit, we still need to know what causes
the centripetal acceleration a, i.e., what is the underlying
“force” that drives the Mars orbiting in such a way.

At Kepler’s time, scientists already had the concept of force,
but they did not know the correct function of force, since
they thought force was proportional to distance and thus
speed. It was Newton’s greatness to realize that force is
not the reason of speed but actually the reason of accelera-
tion, and he innovatively connected force with acceleration
by F = ma. Based on this, suppose M is the mass of
Sun, ar2 = c can be reorganized as Mar2 = Mc, thus
Fr2 = Mc, and F ∝ 1

r2 , leading to Newton’s inverse-
square law of universal gravitation. One can see that in
this interpretation process, humans still need to play an im-
portant role in understanding or creating physical concepts.
This is partly because at Kepler and Newton’s time, measur-
ing the force is almost impossible, and thus the observational
data does not include force F as one of the variables. If
force F were one of the variables with observed values,
just like time t and angle θ, then (Explainable) AI methods
might be able to extract the symbolic equation for F from
data, just as we did in the above for other variables, which
can save efforts for human exploration, intervention, inter-
pretation and creation in the discovery process. However,
even if we have observed F values, like in many modern
scientific datasets, we can never fully exclude the possibility
that human experts need to innovatively create other new
concepts that do not yet exist in the observational data.

5.4. Relation with Kepler’s Third Law

The discovered rule r3ω2 = c in Eq.(4) could be mis-
interpreted as the Kepler’s Third Law r̄3

T 2 = c′ if one applies
ω̄ = 2π

T for circular motion. Actually, Eq.(4) should not
be interpreted as the Kepler’s Third Law, because Kepler’s
Third Law talks about a universal rule for all planets circu-
lating Sun, while Eq.(4) only talks about a rule for Mars
since this rule is solely derived from Mars data. More specif-
ically, Eq.(4) is saying that at any time t, the Mars’ angular
velocity ω and its corresponding distance to Sun r satisfy a
constant rule, while Kepler’s Third Law is saying that for
all planets circulating Sun, their mean distance to Sun and
circulating period satisfy a constant rule. To really discov-
ery and justify Kepler’s Third Law, we need to include the
data of more planets. Actually, Kepler himself studied six
planets: Mercury, Venus, Earth, Mars, Jupiter and Saturn.
This example shows that we need to be extremely careful
when trying to interpret the Explainable AI discovered rules

and avoid from over-generalizing the results.

However, Eq.(4) is still useful and may inspire us towards
Kepler’s Third Law. If we look at this equation from a
macro perspective, the period T can be considered as an
integrated effect of the angular velocity ω, which may lead
us to consider whether T and r also exhibit similar rules.
Even though we know that the Kepler’s Third Law r̄3

T 2 = c′

needs information of other planets to justify, Eq.(4) which
is solely derived from the Mars data may point to the right
direction and speed up the discovery process. Actually,
if we take ω̄ = 2π

T into Eq.(4), we have r̄3

T 2 = c
4π2 =

7.56086 × 10−6AU3day−2 .
= c′, which is close Kepler’s

result (7.5×10−6AU3day−2, error within 0.82%) and mod-
ern science result (7.495 × 10−6AU3day−2, error within
0.88%). The ability of associating macro and micro per-
spectives by intuition is uniquely owned by humans instead
of current AI, and this is one of the reasons why humans
still play an indispensable role in modern science discovery
process.

6. Conclusions and Future Work
In this paper, we highlight the role of Explainable AI in sci-
ence discovery by demonstrating an Explainable AI-based
paradigm for science discovery. To demonstrate the idea, we
show how Kepler’s laws of planetary motion and Newton’s
law of universal gravitation can be rediscovered with the
assistance of Explainable AI based on a small amount of
Tycho Brahe’s astronomical observation data, whose works
were leading the scientific revolution in the 16-17th century.
Technically, we use black-box models such as deep neu-
ral networks for prediction and data augmentation, and use
white-box models such as symbolic regression for model
explanation. Insightful discoveries and conclusions can be
derived by interpreting the results under the assistance of
Explainable AI. We also demonstrate the indispensable role
of human beings in the science discovery process on cre-
ating new concepts, assigning meanings to the discovered
variables and rules, and providing insightful intuitions to
supervise the AI-based discovery process.

In the future, we will further refine the Explainable AI-based
paradigm for science discovery by considering a wider scope
of black-box and white-box models as well as applying them
to various different scientific fields. We will also use the
framework for more state-of-the-art scientific problems such
as dark matters based on modern astronomical observation
data and particle physics based on the data collected from
Large Hadron Colliders for discovering new knowledge
that is unknown to human. And probably one day, we can
even improve the performance of Explainable AI through
the knowledge discovered by AI itself while maintaining
complete control of the process by demanding explanations
from AI, since we always stand on the shoulder of giants.
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7. Appendix
In this section, we present all of the tables and figures referenced in the paper.

Time (YYYY/MM/DD) Mars’ Position in Ecliptic Sun-Mars Distance Difference

1582/11/23 16:00 90.70306◦ 1.58852 +1′30′′

1582/12/26 08:30 106.12167◦ 1.62104 +3′49′′

1582/12/30 08:10 107.94222◦ 1.62443 +5′50′′

1583/01/26 06:15 120.10667◦ 1.64421 −2′33′′

1584/12/21 14:00 123.86250◦ 1.64907 +1′04′′

1585/01/24 09:00 138.78556◦ 1.66210 −3′32′′

1585/02/04 06:40 143.56139◦ 1.66400 −3′08′′

1585/03/12 10:30 159.38722◦ 1.66170 −2′29′′

1587/01/25 17:00 158.22778◦ 1.66232 −0′10′′

1587/03/04 13:24 174.94722◦ 1.64737 −0′59′′

1587/03/10 11:30 177.59833◦ 1.64382 0′0′′

1587/04/21 09:30 196.74750◦ 1.61027 +1′30′′

1589/05/08 16:24 196.92056◦ 1.61000 −2′43′′

1589/04/13 11:15 214.03056◦ 1.57141 +1′40′′

1589/04/15 12:05 215.02806◦ 1.56900 +0′37′′

1589/05/06 11:20 225.51000◦ 1.54326 +0′57′′

1591/05/13 14:00 252.12722◦ 1.47891 −4′24′′

1591/06/06 12:20 265.64667◦ 1.44981 −3′15′′

1591/06/10 11:50 267.94694◦ 1.44526 −4′39′′

1591/06/28 10:24 278.49222◦ 1.42608 −5′39′′

1593/07/21 14:00 320.02722◦ 1.38376 −2′31′′

1593/08/22 12:20 340.25694◦ 1.38463 −0′36′′

1593/08/29 10:20 344.62083◦ 1.38682 −2′19′′

1593/10/03 08:00 6.32750◦ 1.40697 −0′16′′

1595/09/17 16:45 22.82194◦ 1.43222 −1′27′′

1595/10/27 12:20 45.59389◦ 1.47890 −0′29′′

1595/11/03 12:00 49.44250◦ 1.48773 +0′03′′

1595/12/18 08:00 73.04139◦ 1.54539 −0′59′′

Table 1. Position of Mars when orbiting the Sun



From Kepler to Newton: Explainable AI for Science Discovery

Size Error Function

1 0.088419 1.54806
5 0.084370 1.54329 + 0.0130577 · θ
7 0.045791 1.45537 + 0.021878 · θ · θ
8 0.038594 1.53256− 0.101048 · cos θ
10 0.031201 1.65411− 0.321963

1.21921+θ·θ
11 0.004519 1.51578− 0.142019 · cos (θ + 0.542453)
13 0.003003 1.51836− 0.141285 · cos (0.979081 · (−0.544189− θ))
14 0.000136 1.51977

1.00625+0.0932972·cos(θ+0.544536)

16 0.000133 1.51975
1.00625+0.0933058·cos(1.00017·θ+0.544619)

18 0.000124 1.5221
1.0078+sin(0.0935495·cos(θ+0.544689))

19 0.000118 1.51016− 0.0794197
0.0536393+ 0.567314

cos(1.00052·(0.544488+θ))

21 0.000060 1.51978
1.00625+0.0932649·cos(θ+0.544414+ 0.000322752

θ−1.48167 )

24 0.000048 1.51031− 0.0793261
0.052716+ 0.56737

cos(0.543701+θ)
− 0.000771507

1.48757−θ

26 0.000034 1.51023− 0.0793521
0.0531939+ 0.56753

cos(0.543898+1.00028·θ)−
0.00067777
1.49235−θ

29 0.000030 1.51032− cos(−0.543588−θ)

7.14743+0.668919·cos(0.55992− 0.00769976
1.58368−θ +θ)

Table 2. Symbolic Regression Results

Size Base functions

Size 1 an input variable, addition (+), subtraction (-), and multiplication (·)
Size 2 division (/)
Size 4 other functions used in this paper

Table 3. Based Functions for Symbolic Regression and their Size

Parameter Description Value

ε Eccentricity 0.093 412 33
a Semi-major axis 1.523 662 31 AU
T Orbital period 686.971 days

Table 4. Orbital Parameters of Mars based on Modern Science

Year (AD) Date Earth-Mars Distance in AU

1561 Aug. 07 0.37325
1640 Aug. 20 0.37347
1687 Aug. 09 0.37434
1719 Aug. 25 0.37401
1766 Aug. 13 0.37326
1845 Aug. 18 0.37302
1924 Aug. 22 0.37285
2003 Aug. 27 0.37272
2050 Aug. 15 0.37405

Table 5. Closest Approaches of Mars Oppositions in History
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Size Error Function

1 0.000022 8.18954× 10−5

4 0.000006 0.000298491
r3

5 0.000004 0.000218591 · (1.92033− r)
6 0.000003 −2.65592× 10−5 + 0.000390417

r3
13 0.000003 −8.50685× 10−5 + 0.000395123

r2− 0.000290053
r−1.48997

16 0.000002 0.000100316
−1.08788−0.0590273·cos(−2147483648·r3)+r2)

22 0.000001 0.000448514
( 0.0460772
r3−3.36628 ·cos(

r3
−3.79879×10−5 )+r3)·r

Table 6. Symbolic Regression Result for r and ω
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Figure 3. Data Visualization before Training
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Figure 4. Data Visualization after Training
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Figure 5. Size and Negative log Error
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Figure 6. Data Visualization before Training
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Figure 7. Data Visualization after Training
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Figure 8. Size and Negative log Error for r and ω
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