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ABSTRACT

A temporal point process (TPP) is a stochastic process where its realization is a
sequence of discrete events in time. Recent work in TPPs model the process using
a neural network in a supervised learning framework, where a training set is a
collection of all the sequences. In this work, we propose to train TPPs in a meta
learning framework, where each sequence is treated as a different task, via a novel
framing of TPPs as neural processes (NPs). We introduce context sets to model
TPPs as an instantiation of NPs. Motivated by attentive NP, we also introduce
local history matching to help learn more informative features. We demonstrate
the potential of the proposed method on popular public benchmark datasets and
tasks, and compare with state-of-the-art TPP methods.

1 INTRODUCTION

With the advancement of deep learning, there has been growing interest in modeling temporal point
processes (TPPs) using neural networks. Although the community has developed many innovations
in how neural TPPs encode the history of past events (Biloš et al., 2021) or how they decode these
representations into predictions of the next event (Shchur et al., 2020; Lin et al., 2022), the general
training framework for TPPs has been supervised learning where a model is trained on a collection
of all the available sequences. However, supervised learning is susceptible to overfitting, especially
in high noise environments, and generalization to new tasks can be challenging.

In recent years, meta learning has emerged as an alternative to supervised learning as it aims to
adapt or generalize well on new tasks, which resembles how humans can learn new skills from a
few examples. Inspired by this, we propose to train TPPs in a meta learning framework. To this
end, we treat each sequence as a “task”, since it is a realization of a stochastic process with its
own characteristics. For instance, consider the pickup times of taxis in a city. The dynamics of
these event sequences are governed by many factors such as location, weather and the routine of
a taxi driver, which implies the pattern of each sequence can be significantly different from each
other. Under the supervised learning framework, a trained model tends to capture the patterns seen
in training sequences well, but it easily breaks on unseen patterns.

As the goal of modeling TPPs is to estimate the true probability distribution of the next event time
given the previous event times, we employ Neural Processes (NPs), a family of the model-based
meta learning with stochasticity, to explain TPPs. In this work, we formulate neural TPPs as NPs
by satisfying some conditions of NPs, and term it as Meta TPP. Inspired by the literature in NP, we
further propose the Meta TPP with a cross-attention module, which we refer to as Attentive TPP. We
demonstrate the strong potential of the proposed method through extensive experiments.

Our contributions can be summarized as follows,

• To the best of our knowledge, this is the first work that formulates the TPP problem in a
meta learning framework, opening up a new research direction in neural TPPs.

• Inspired by the NP literature, we present a conditional meta TPP formulation, followed by
a latent path extension, culminating with our proposed Attentive TPP model.

• The experimental results show that our proposed Attentive TPP model achieves state-of-
the-art results on four widely used TPP benchmark datasets, and is more successful in
capturing periodic patterns on three additional datasets compared to previous methods.

• We demonstrate that our meta learning TPP approach can be more robust in practical de-
ployment scenarios such as noisy sequences and distribution drift.
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2 PRELIMINARIES

Neural processes. A general form of optimization objective in supervised learning is defined as
follows,

θ∗ = argmax
θ

EB∼p(D)

 ∑
(x,y)∈B

log pθ(y |x)

 (1)

where D := {(x(i), y(i))}|D|
i=1 for an input x and label y, and B denotes a mini-batch set of (x, y)

data pairs. Here, the goal is to learn a model f parameterized by θ that maps x to y as fθ : x → y.

In recent years, meta learning has emerged as an alternative to supervised learning as it aims to
adapt or generalize well on new tasks (Santoro et al., 2016), which resembles how humans learn
new skills from few examples. In meta learning, we define a meta dataset, a set of different tasks,
as M := {D(i)}|M|

i=1 . Here, D(i) is a dataset of i-th task consisting of a context and target set as
D := C ∪ T . The objective of meta learning is then defined as,

θ∗ = argmax
θ

EBD∼p(M)

 ∑
(C,T )∈BD

log pθ(YT | XT , C)

 (2)

where BD denotes a mini-batch set of tasks. Also, XT and YT represent inputs and labels of a
target set, respectively. Unlike supervised learning, the goal is to learn a mapping from x to y given
C: more formally, fθ(·, C) : x → y. Although meta learning is a powerful framework to learn
fast adaption to new tasks given a context set, it does not provide uncertainty for its predictions,
which is becoming more important in modern machine learning literature as a metric to measure the
reliability of a model.

To take the uncertainty into account for meta learning, Neural processes (NPs) have been proposed
(Garnelo et al., 2018b;a). Instead of finding point estimators as done in regular meta learning models,
NPs learn a probability distribution of a label y given an input x and context set C: pθ(y|x, C). In
this work, we frame TPPs as meta learning instead of supervised learning, for the first time. To
this end, we employ NPs to incorporate the stochastic nature of TPPs. In Section 3.1, we propose
a simple modification of TPPs to connect them to NPs, which enables us to employ a rich line of
works in NPs to TPPs as described in Section 3.2 and Section 3.3.

Neural temporal point processes. TPPs are stochastic processes where their realizations are se-
quences of discrete events in time. In notations, a collection of (inter-)event time sequences is
defined as D := {s(i)}|D|

i=1 where s(i) = (τ
(i)
1 , τ

(i)
2 , . . . , τ

(i)
Li

) and Li denotes the length of i-th se-
quence. The history of studying TPPs started decades ago (Daley & Vere-Jones, 2003), but in this
work, we focus on neural TPPs where TPPs are modeled using neural network architectures (Shchur
et al., 2021). As described in Figure 1a, a general form of neural TPPs consists of an encoder, which
takes a sequence of previous event times and outputs a history embedding, and a decoder which
takes the history embedding and outputs probability distribution of the time when the next event
happens.

Previous works of neural TPPs are auto-regressively modeled in a supervised learning framework.
More formally, the objective of neural TPPs are defined as,

θ∗ = argmax
θ

EB∼p(D)

 |B|∑
i=l

Li−1∑
l=1

log pθ(τ
(i)
l+1 | τ

(i)
≤l )

 (3)

To frame TPPs as NPs, we need to define a target input and context set shown in Equation (2), from
an event time history τ≤l, which will be described in the following section.

3 META TEMPORAL POINT PROCESS AND ITS VARIANTS

3.1 TEMPORAL POINT PROCESSES AS NEURAL PROCESSES

To frame TPPs as NPs, we treat each event time sequence s as a task for meta learning, which
intuitively makes sense since each sequence is a realization of a stochastic process. For instance, the
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Figure 1: Overall architectures of TPP models.

transaction times of different account holders are very different from each other due to many factors
including an account holder’s financial status and characteristics.

In addition to the new definition of tasks, we also need to define a target input and context set
for a conditional probability distribution of meta learning shown in Equation (2), using previous
event times τ≤l. There are many ways to define them but a target input and context set need to
be semantically aligned since the target input will be an element of the context set for the next
event time prediction. Hence, we define a target input for τl+1 as the latest “local history” τl−k+1:l

where k is the window size of the local history. Similarly, a context set for τl+1 is defined as Cl :=
{τt−k+1:t}l−1

t=1. Note that if t − k ≤ 0, we include event (inter-)times from τ1. With Transformer
structure, it is easy to efficiently compute the feature embeddings for the context set C. Figure 1b
shows a schematic of the Conditional Meta TPP with a mask (shaded) used for an example case of
5 event times with a local history window size of k = 3. Then, the feature embedding rl contains
information of τl−k+1:l.

With the notations for target inputs and context sets, we propose the objective of TPPs in a meta
learning framework as,

θ∗ = argmax
θ

EB∼p(D)

 |B|∑
i=l

Li−1∑
l=1

log pθ(τ
(i)
l+1 | τ

(i)
l−k+1:l, C

(i)
l )

 (4)

Note that we have only one target label τ (i)l+1 to predict per event unlike the general meta learning
objective in Equation (2) where usually |T | > 1. It is because TPP models in general are trained
to predict the next event time. Modeling TPPs to predict multiple future event times would be an
interesting future work, but it is out of scope of this work.

Requirements for neural processes. Let XT := {xi}|T |
i=1 and YT := {yi}|T |

i=1 be a set of target
inputs and labels, respectively, and π be an arbitrary permutation of a set. To design NP models, it
is required to satisfy the following two conditions.

Condition 3.1 (Consistency over a target set). A probability distribution pθ is consistent if it
is consistent under permutation: pθ(YT | XT , C) = pθ(π(YT ) |π(XT ), C), and marginalization:
pθ(y1:m | XT , C) =

∫
pθ(y1:n | XT , C) dym+1:n for any positive integer m < n.

Condition 3.2 (Permutation invariance over a context set). pθ(YT | XT , C) = pθ(YT | XT , π(C))
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According to the Kolmogorov extension theorem (Oksendal, 2013), a collection of finite-
dimensional distributions is defined as a stochastic process if condition 3.1 is satisfied. In NP
literature, condition 3.1 is satisfied through factorization: it assumes target labels are independent
to each other given a target input and feature representation of a context set G, in other words,
pθ(YT | XT , G) = Π

|T |
i=1pθ(yi |xi, x<i, y<i, G) ≈ Π

|T |
i=1pθ(yi |xi, G) (Dubois et al., 2020). This

assumption can be unrealistic if target labels are strongly dependent to the previous target inputs
and labels even after context representations are observed. It is, however, not necessary to assume
factorization to make TPPs as NPs. As previously mentioned, we only care about predicting the
next event time, which means |YT | = 1. When a set contains only one element, its permutation is
always itself.

Recall that NP models learn a probability distribution of a target label pθ given a target input and
context set. For computational efficiency (to make inference O(|C| + |T |) time), the feature repre-
sentation of C should be invariant to the size of the context set, for which Condition 3.2 is required.
To satisfy Condition 3.2, we average-pool all the context features r1, r2, . . . rl−1 to generate the
global feature for a task G as shown in Figure 1b, and term it as conditional Meta TPP following the
terminology used in the NP literature. This modification not only satisfies Condition 3.2, but also
lets the decoder approximate the probability distribution of a target label given both a target input
and context set instead of just a target input. Now that we satisfy both requirements with a new
architectural design, we can treat TPPs as NPs.

Implementation. It can be expensive to compute the individual context feature rt for all 1 ≤ t < l,
from each element of the context set τt−k:t−1 ∈ Cl: the time complexity of computing all the
context features for a sequence is O(L2). Instead of passing each element of a context set, using
the Transformer architecture (Vaswani et al., 2017), we can simply pass the event times to obtain
all the context features at once, of which time complexity is O(kL) where k is the window size
of a local history. To take the advantage of the Transformer architecture, we employ Transformer
Hawkes Processes (THP) as the encoder. Please refer to (Zuo et al., 2020) for detailed explanation
about THP.

3.2 META TEMPORAL POINT PROCESS

In the NP literature, NPs are generally modeled as latent variable models. Instead of using the
deterministic global feature G as an input to the decoder (Garnelo et al., 2018a), a latent variable z is
sampled from a probability distribution e.g. multi-variate Gaussian, using parameters inferred from
the global feature G (Garnelo et al., 2018b). As it is intractable to compute the log-likelihood for
a latent variable model, amortized variational inference (VI) can be used to approximate inference.
In the setting of TPPs, the evidence lower bound (ELBO) of variational inference with an inference
network pθ(z | CL) can be derived as,

log pθ(τl | τl−k:l−1, Cl) = log

∫
pθ(τl | τl−k:l−1, z)pθ(z | Cl)dz (5)

≥ Ez∼pθ(z | CL) [log pθ(τl | τl−k:l−1, z)]−KL(pθ(z | CL) | pθ(z | Cl)) (6)

≈ 1

N

N∑
n=1

log pθ(τl | τl−k:l−1, zn)−KL(pθ(z | CL) | pθ(z | Cl)) (7)

where N denotes the number of samples of z for Monte-Carlo approximation. Here, pθ(z | CL) is the
posterior distribution given the context at the last (L-th) event, which contains all the event times of
the sequence s (it is accessible in training time). Minimizing KL-divergence between pθ(z | CL) and
pθ(z | Cl) is to make the global latent variable z inferred from Cl to be similar to the “actual” latent
variable of a task (or sequence) z from CL, in training time. In inference, as we do not have access
to CL at l-th event when l < L, we use z from pθ(z | Cl). To sample z, we use the reparameterization
trick as z = µ+ σ ⊙ ϵ where ϵ ∼ N (0, I) as described in the latent path of Figure 1c.

An advantage of a latent variable model is that it can capture stochasticity of functions, which can
be particularly beneficial to model TPPs since TPPs are stochastic processes. Some previous works
have reported that latent variable models do not necessarily help to improve performance due to
high variance, but our experiments in Section 5.4 demonstrate that it helps to model TPPs over the
deterministic case. In particular, it is robust to the cases with higher noise (Section 5.2). We term
the latent variable model as Meta TPP throughout the experiments.

4



Under review as a conference paper at ICLR 2023

Discussion. Previous TPP models squeeze event time history τ≤l into one feature embedding, from
which the next event times are predicted. Although Meta TPP does not utilize additional information
(it just splits the time history into a target input and context set), it generalizes better by extracting
additional global latent features for a task (or sequence). Also, Meta TPP uses the local history as a
target input, which contains only small subset of event time history. Hence, it can be more robust to
the dynamic sequence length compared to the previous methods where varying length of sequences
are all encoded into a fixed length of feature embeddings.

It is also computationally more efficient: the time complexity of computing the regular self-attention
is O(L2) whereas it requires O(kL) to compute the self-attention for local histories where k is the
size of local history window, usually k << L.

3.3 ATTENTIVE TEMPORAL POINT PROCESS

Early works in NPs suffered from the underfitting problem. To alleviate this, Kim et al. (2019)
proposed AttentiveNP, which explicitly attends the elements in a context set to obtain a better fea-
ture for target inputs. Inspired by this, we add a cross-attention module that considers the sim-
ilarity between the feature of a target input and previous event times as described in Figure 1c.
Given the local history (context) features r1, r2, . . . rl−1 at l-th time step, the key-query-value pairs
K ∈ Rl−1×D, q ∈ R1×D, and V ∈ Rl−1×D for the cross-attention, are computed using their
corresponding projection weights WK ∈ RD×D, WQ ∈ RD×D as,

K = R ·WK , q = rl
T ·WQ, V = R where R = [r1, r2, . . . , rl−1]

T . (8)

Here, K corresponds to [k1, k2, . . . , kl−1]
T in Figure 1c. The feature of i-th attention head hi are

then computed as follows,

hi = Softmax(q ·KT /
√
D) · V. (9)

With W ∈ RHD×D and some fully connected layers denoted as FC, r′l ∈ R1×D is computed as,

r′l = FC( [h1, h2, . . . , hH ] ·W ). (10)

Finally, the decoder takes the concatenated feature of z, rl, and r′l as an input to infer a distribution.

In the TPP setting, it is common that there are multiple periodic patterns in the underlying stochastic
process. The cross-attention module provides an inductive bias to a model that the repeating event
subsequences should have similar features. Our experiments in Section 5.2 demonstrate that the
explicit attention helps to model TPPs in general, especially when there are periodic patterns.

4 RELATED WORK

Neural temporal point processes. Neural temporal point processes (NTPPs) have been proposed
to capture complex dynamics of stochastic processes in time. They are derived from traditional
temporal point processes (Hawkes, 1971; Isham & Westcott, 1979; Daley & Vere-Jones, 2003).
Models based on RNNs are proposed by (Du et al., 2016) and (Mei & Eisner, 2017) to improve
NTPPs by constructing continuous-time RNNs. More recent works use Transformers to capture
long-term dependency (Kumar et al., 2019; Zhang et al., 2020; Zuo et al., 2020; Yang et al., 2022;
Zhang et al., 2022). (Omi et al., 2019; Shchur et al., 2020; Sharma et al., 2021) propose intensity-free
NTPPs to directly model the conditional distribution of (inter-)event times.

Omi et al. (2019) propose to model the cumulative intensity function with a feed forward neural
network. Nevertheless, it suffers from problems related to the probability density function not being
normalised and negative event times receiving non-zero probabilities. Alternatively, Shchur et al.
(2020) suggest modelling the conditional probability density distribution by a log-normal mixture
model. Transformer Hawkes Process (THP) models like Zuo et al. (2020); Zhang et al. (2020) pro-
pose to leverages the self-attention mechanism to capture long-term dependencies, acting as a better
mechanism to model point processes. Another class of TPP methods called Neural Flows (Biloš
et al., 2021), are proposed to model temporal dynamics with Ordinary Differential Equations (ODEs)
learned by neural networks. Unlike the previous TPP methods, we frame TPPs as meta learning (not
supervised learning) for the first time.
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Neural processes. Meta learning is a learning framework that aims to adapt or generalize well on
new tasks. There are three approaches in meta learning: metric-based (Koch et al., 2015; Vinyals
et al., 2016; Sung et al., 2018; Snell et al., 2017), model-based (Santoro et al., 2016; Munkhdalai &
Yu, 2017; Grant et al., 2018) and optimization-based (Finn et al., 2017; 2018; Nichol et al., 2018).
A family of neural processes is the model-based meta learning with stochasticity. Garnelo et al.
(2018a) propose a (conditional) neural process as a new formulation to approximate a stochastic
process using neural network architecture. It succeeds the advantage of Gaussian Processes (GP)
in that it can estimate the uncertainty of its predictions, without having expensive inference time
by transferring workload from inference to training time using neural networks. In a follow-up
work, Garnelo et al. (2018b) generalize a conditional neural process by adding latent variables,
which are approximated using amortized variational inference. Although NPs can adapt to new
tasks quickly without requiring much computational overhead, it suffers from underfitting problem.
To alleviate this problem, Kim et al. (2019) propose a cross-attention module, which explicitly
attends the elements in the context set to obtain better representations for the elements in the target
set. As another way to address the underfitting problem of NPs, Gordon et al. (2020) propose a set
convolutional layer under the assumption of translation equivariance of inputs and outputs, which is
further expanded to the latent variable counterpart in Foong et al. (2020).

The most relevant work to ours in the family of NPs is the transformer NPs proposed by Nguyen
& Grover (2022). Although transformer NPs also model event sequences in the framework of NPs,
they are fundamentally different from our work as it focuses only on modeling regular time series:
discrete and regularly-spaced time inputs with corresponding label values. TPPs are fundamentally
different as they are continuous and irregularly-spaced time sequences not necessarily with corre-
sponding label values.

5 EXPERIMENTS

5.1 EXPERIMENT SETTING

Datasets. To demonstrate the effectiveness of the proposed methods, we conduct experiments on 4
popular benchmark datasets – Stack Overflow, Mooc, Reddit, and Wiki, and 3 datasets we introduce
– Sinusoidal wave, Uber, and NYC Taxi. The datasets we create have strong periodic patterns unlike
the existing ones. For the details about the datasets, please refer to Appendix C.

Metrics. We use the root mean squared error (RMSE) as the main metric along with the negative
log-likelihood (NLL) as a reference since NLL can go arbitrary low if probability density is placed
mostly on the ground truth event time. RMSE may not be a good metric, either, if one ignores
stochastic components of TPPs and directly trains a baseline on the ground truth event times to
obtain point estimations of event times (Shchur et al., 2021). We train all the methods on NLL and
obtain RMSE in test time to not abuse RMSE scores, keeping stochastic components of TPPs.

Baselines. We use intensity-free TPP (Shchur et al., 2020), Neural flow (Biloš et al., 2021), and
Transformer Hawkes Processes (THP) (Zuo et al., 2020) as baselines. For intensity-free TPP and
neural flow, we add the survival time of the last event to NLL and fix some bugs specified in their
public repositories. THP and its variants are originally based on intensity: they predict intensities
from which log-likelihood and expectation of event times are computed. It is, however, computa-
tionally expensive to compute them as it requires to compute integrals: especially, to compute the
expected event times, it requires to compute double integrals, which can be quite expensive and
complex to compute even with thinning algorithms described in Mei & Eisner (2017). To work
around it without losing performance, we add the mixture of log-normal distribution proposed in
(Shchur et al., 2020) as the decoder, and we call it THP+. For fair comparison, we fix the number
of parameters of the models in between 50K and 60K except the last fully-connected layer for class
predictions since it depends on the number of classes.

Hyperparameters. We conduct a grid search on every combination of dataset and method for
learning rate ∈ {0.01, 0.001, 0.0001, 0.00001} and weight decay ∈ {0.01, 0.001, 0.0001, 0.00001}
for fair comparison. Then, we bootstrap for 200 times on the test set to approximate the mean
and standard deviation (in parentheses) for the metrics in Figure 2a, Table 1, Table 2, and Table 3,
following Yang et al. (2022). For the other experiments, we execute one run on the same fixed seed.
All the other hyperparameters are fixed throughout the experiments, and are reported in Appendix D.
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Methods
Stack Overflow Mooc Reddit Wiki

RMSE NLL Acc RMSE NLL Acc RMSE NLL Acc RMSE NLL Acc

Intensity-free
3.64 3.66 0.43 0.31 0.94 0.40 0.18 1.09 0.60 0.60 7.76 0.26

(0.26) (0.02) (0.005) (0.006) (0.03) (0.004) (0.006) (0.04) (0.008) (0.05) (0.40) (0.03)

Neural flow
– – – 0.47 0.43 0.30 0.32 1.30 0.60 0.56 11.55 0.05
– – – (0.006) (0.02) (0.04) (0.04) (0.33) (0.07) (0.05) (2.22) (0.01)

THP+
1.68 3.28 0.46 0.18 0.13 0.38 0.26 1.20 0.60 0.17 6.25 0.23

(0.16) (0.02) (0.004) (0.005) (0.02) (0.004) (0.005) (0.04) (0.007) (0.02) (0.39) (0.03)

Attentive TPP
1.15 2.64 0.46 0.16 -0.72 0.36 0.11 0.03 0.60 0.15 6.25 0.25

(0.02) (0.02) (0.004) (0.004) (0.02) (0.003) (0.002) (0.04) (0.007) (0.01) (0.38) (0.03)

Table 1: Comparison of the Attentive TPP to the state-of-the-art methods.
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Figure 2: Experiment results on imputation and distribution drift.

5.2 EXPERIMENT RESULTS

In this section, we begin by comparing our attentive meta temporal point process (which we denote
as Attentive TPP) with state-of-the-art supervised TPP methods on four popular public benchmarks.
We then take a closer look at how Attentive TPP captures periodic patterns. Next, we show how
Attentive TPP can be used to impute missing events in noisy sequences. Finally, we consider ro-
bustness under distribution drift.

Comparison with state-of-the-art methods. Table 1 summarizes our comparison of Attentive
TPP with state-of-the-art baselines – intensity-free (Shchur et al., 2020), neural flow (Biloš et al.,
2021)1, and THP+ (Zuo et al., 2020) on the widely used Stack Overflow, Mooc, Reddit, and Wiki
benchmarks. THP+ generally performs better than the intensity-free and neural flow baselines.
Attentive TPP further improves over THP+ on all datasets and metrics except for mark accuracy on
Mooc and Wiki.

Periodic patterns. As previously mentioned in Section 3.3, the cross-attention module is designed
to capture periodic patterns by matching the local history of the current event to the local histories
of the previous event times, in addition to alleviating the underfitting problem. To validate the
effectiveness of the cross-attention, we conduct experiments on the datasets with strong periodicity –
Sinusoidal wave, Uber, and NYC Taxi. Note that these datasets contain much longer event sequences
compared to the other datasets with clear periodic patterns (please refer to Appendix C for details).
Table 2 shows that the Attentive TPP generally outperforms the state-of-the-art methods, except for
RMSE on Sinusoidal.

1Neural flow results on Uber, NYC Taxi and Stack Overflow (in Table 1) datasets are missing because the
official implementation runs into NaN values for long event sequences in inversion step.
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Methods
Sinusoidal Uber NYC Taxi

RMSE NLL RMSE NLL RMSE NLL

Intensity-free 1.29 (0.08) 0.88 (0.02) 51.23 (2.89) 4.46 (0.02) 46.59 (26.16) 2.06 (0.07)
Neural flow 1.13 (0.07) 0.99 (0.02) – – – –

THP+ 1.72 (0.10) 0.84 (0.02) 90.25 (4.53) 3.63 (0.03) 10.31 (0.47) 2.00 (0.01)
Attentive TPP (Ours) 1.45 (0.11) 0.66 (0.02) 22.11 (1.94) 2.89 (0.04) 8.92 (0.42) 2.00 (0.009)

Table 2: Experiment results on datasets with strong periodic patterns.

Attention Latent
Reddit Uber

RMSE NLL Acc RMSE NLL

✗ ✗ 0.16 0.92 0.59 63.71 3.68

✗ ✓ 0.13 -0.39 0.61 63.35 3.25

✓ ✗ 0.12 0.29 0.61 47.91 3.72

✓ ✓ 0.12 0.07 0.60 21.87 2.98

Table 3: Comparison of the variants of Meta TPPs

Reddit

Methods # Params RMSE NLL Acc

THP+ 113K 0.26 1.19 0.60
170K 0.29 0.79 0.59

226K 0.28 1.44 0.57

AttnTPP 222K 0.12 0.07 0.60

Table 4: Comparison of diff. model size

To further demonstrate the behavior of the cross-attention, we provide an example in Figure 3a where
we highlight 15 (out of 64) the most attended local history indices (in red) to predict the target event
(in green) in a sequence from the Sinusoidal wave dataset. The dotted vertical grey lines represent
the start and end of periods. We can observe that the cross-attention refers to the local histories with
similar patterns more than the recent ones.

5.3 APPLICATIONS

Imputation. We study the robustness of Meta and Attentive TPP to noise by randomly dropping
events, simulating partial observability in a noisy environment, and measuring imputation perfor-
mance. For the experiment, we drop n percentage of all the event times drawn independently at
random per sequence on the Sinusoidal wave dataset. In Figure 2a, we report the imputation per-
formance of THP+, Meta TPP, and Attentive TPP, in terms of RMSE. As the drop ratio increases,
RMSE increases for all three models but the gap exponentially increases. Given that the perfor-
mance gap between three models on ‘next event’ predictions is not as large (mean RMSE – THP+:
1.72, Meta TPP: 1.49, Attentive TPP: 1.45), the results shown in Figure 2a imply that the Meta and
Attentive TPP are significantly more robust to the noise coming from partial observability.

Distribution drift. Distribution drift occurs when the distribution observed during training becomes
misaligned with the distribution during deployment due to changes in the underlying patterns over
time. This is a common deployment challenge in real-world systems. Figure 2b shows how THP+

and Meta TPP models trained on the January-February data of the NYC Taxi dataset generalize
to subsequent months. Both models show a decrease in performance, suggesting the presence of
non-stationary or seasonal patterns in the data that are not captured in the training months; however,
Meta TPP is comparatively more robust across all out-of-domain settings. It is also worth mention-
ing that although the Attentive TPP generally performs better than Meta TPP in the conventional
experimental setting, it is not the case for distribution drifts. We conjecture that this is because the
cross-attention is designed to alleviate the underfitting problem, which results in being less robust to
distribution drift.

5.4 ABLATION STUDIES

Meta TPP and its variants. In Table 3, we compare the proposed Meta TPP and its variants
on Reddit, and Uber datasets. The result shows that both cross-attention and latent variable path
generally help to improve the performance. When they are combined (resulting in the Attentive
TPP), it generally performs the best in terms of both RMSE and NLL.
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Figure 3: Qualitative analysis on the cross-attention and prediction results.

Different model sizes. Both latent path and cross-attention components introduce additional learn-
able parameters (for the Reddit dataset with 984 classes, THP+: 113K, Meta TPP: 126K, and Atten-
tive TPP: 209K parameters). We provide an ablation study with varying number of model parameters
for the THP+ baseline to validate the performance improvement does not come from the increased
number of model parameters. In Table 4, we increase the number of model parameters for THP+

on Reddit dataset along with the result of the Attentive TPP. The result shows that the larger model
does not necessarily help to improve the performance: as the number of parameters increases, NLL
sometimes improves but it may hurt RMSE as in the case of Table 4. The significant improvement
in performance of our proposed method shows the importance of providing an effective inductive
bias to the model.

Parameter sharing. In Attentive NP, the encoders of the latent path and attention path are separated
to provide different features. However, it can significantly increase computational overhead, and for
this reason, we share the weights for the encoders. As an ablation study, we provide the performance
with and without sharing the weights for the encoders of the Attentive TPP on the Stack Overflow
dataset. Although the number of parameters of ‘with sharing’ is 50% less than ‘without sharing’
(‘without sharing’: 86K vs. ‘with sharing’: 136K), it performs better than ‘without sharing’ (RMSE
/ NLL – ‘without sharing’: 1.08 / 3.20 vs. ‘with sharing’: 1.03 / 2.81).

Visualization of event time predictions. In TPP literature, the evaluation relies only on the RMSE
and NLL metrics. It is, however, often hard to measure how practically useful a trained TPP model is.
To qualitatively evaluate TPP models, we convert an event time sequence into time series sequence:
we count the number of event times falling into each bin (in Figure 3b, each bin is a day). Figure 3b
shows how close overall predictions of the Attentive TPP and THP+ (in red) are to the ground truth
event times (in blue). In the figure, we can see that the Attentive TPP’s predictions closely align
with the targets whereas the predictions of the THP+ are off at some regions: around 5th and 70th
days, and after 85th day. Note that as the y-axis represents bin counts, even a slight off from the
ground truth implies large values in terms of RMSE.

6 CONCLUSION

Previous work in neural temporal point processes (TPPs) train neural network models in a super-
vised learning framework. Although performing well on event sequences similar to the training set,
they are susceptible to overfitting, and may not generalize well on sequences with previously un-
seen patterns. To alleviate this issue, we proposed a novel framework for neural TPPs using neural
processes (NPs). We proposed the Meta TPP where TPP is formulated as NP, and further developed
the Attentive TPP using the cross-attention module, which forces a model to use similar features for
repeating local history patterns. Our experiments demonstrate that the proposed models outperform
strong state-of-the-art baselines on several event sequence datasets, effectively capture periodic pat-
terns, and increase robustness to noise and distribution drift. We believe this work opens up a new
research direction to meta learning for neural TPPs.
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REPRODUCIBILITY STATEMENT

Hyperparameters and implementation details are available in Section 5.1 and Appendix D. The code
for the baselines and the proposed method will be released upon acceptance. Our code is based on
publicly available official intensity-free and neural flow code.
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