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NORMFORMER: IMPROVED TRANSFORMER
PRE-TRAINING WITH EXTRA NORMALIZATION

ABSTRACT

During pre-training, the Pre-LayerNorm transformer suffers from a gradient mag-
nitude mismatch: gradients at early layers are much larger than at later layers.
The mismatch can be alleviated by the addition of normalization operations at 3
positions inside each layer. This extra normalization incurs negligible compute
cost (+0.4% parameter increase), but improves pre-training perplexity and down-
stream task performance for both causal and masked language models of multiple
sizes. Adding NormFormer on top of the GPT3-Medium architecture can reach
the SOTA perplexity 40% faster, or converge 0.45 perplexity better in the same
amount of time. For masked language modeling, NormFormer improves fine-
tuned GLUE performance by 1.9% on average.

1 INTRODUCTION

There has been considerable recent interest in improving the speed and performance of transformer
(Vaswani et al.,2017) model pre-training. One such innovation is Layer Normalization (“LN”). LN
was originally positioned after the residual connection in each layer to reduce the variance in the
magnitude of the inputs to each attention layer. One effect of this (“Post-LN”) positioning is much
larger magnitude gradients at later layers than at earlier layers. Moving the LN operation before
the residual connection, (“Pre-LN”), allows larger learning rates and shorter learning rate warmup
without sacrificing performance (Xiong et al., 2020). For this reason, most recent large pre-trained
language models use Pre-LN (Raffel et al.|[2020; Brown et al.,|2020; [Lieber et al., 2021} Baevski &
Auli, 2019; Radford et al., [2019). In this work we show that, while Pre-LN improves stability over
Post-LN, it has the opposite side effect: gradients at earlier layers are now much larger than at later
layers. We propose NormFormer, which alleviates the gradient magnitude mismatch by adding 3
extra normalization operations to each layer. These operations reduce gradients to early layers and
increase gradients to later layers, bringing their magnitudes closer together. Compared to well-tuned
Pre-LN baselines, NormFormer models reach target pre-training perplexities faster and converge
to better pre-training perplexities and downstream task performance.

Section [2] describes the proposed modifications, Section [3] shows pre-training and downstream task
performance for fully trained NormFormer models against well-tuned baselines. Section 4] shows
the gradient mismatch introduced by Pre-LN and how NormFormer partially alleviates it. Sec-
tion [5] shows that NormFormer improves over the baseline at a wide range of hyperparameter
configurations and model sizes, and that removing any of the 3 added operations degrades perfor-
mance.

2 APPROACH

LayerNorm In the initial transformer “Post-LN” formulation , one Layer Normalization (“LN")
was placed outside each residual block, to improve training efficiency (Vaswani et al., 2017; Ba
et al.,[2016). LN normalizes its inputs and scales them element wise:

x — E[z]

. 1
Var[z] + € TP M

LayerNorm(z) =

where v and (3 are trainable parameters, and € is a small constant.
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Figure 1: Description of proposed architecture changes. The left block shows the baseline, a
Pre-LayerNorm transformer layer. The center block shows NormFormer, with the three additions
we propose in bold. The right block zooms in on on a single attention head, with the proposed
HeadScale.

2.1 NORMFORMER

We add three operations to each transformer layer: (1) head-wise scaling inside the attention module,
(2) LN after the attention module, and (3) LN after the first fully connected layer. The changes are
visualized in Figure[T]and described mathematically below.

Scaling Attention Heads The HeadScale operation scales the outputs of each attention head
linearly.

A multi-head attention module (Vaswani et al.,[2017)) is originally formulated as:
MultiHeadAttention(Q, K, V') = Concat(hy, ..., h,)W®
h; = Attention(QW2, KW/, VWwY), 2)

where n is the number of heads, ¢ is the index of an attention head, and the projection matrices
WO W& WK WY are used for output, query, key and value.

At each layer, we introduce a set of n scalar coefficients ;.

h; = 7; - Attention(QWS, KWK, vwY). 3)

2 LNs The two added LNs and follow the attention module. The first LN is inserted after the Scaled
Multihead Attention Module, and the second between the two fully connected layers.

In the Pre-LN transformer, our baseline, each layer can be described as

Layer(z) = FCo(FC1(MHA(LN(x)))) 4)

where the FC operations are fully connected (linear) layers with GELU activation ( d &

2016) and LN is Layer Norm.

Each layer of NormFormer, our proposed modification, can be described as

NormFormer Layer(z) = FCo(LN(FC1(LN((ScaledM HA(LN(x)))) (5)
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where bolded operations are newly introduced.

All three additions introduce new 7 parameters, which provide a cost-effective way to offer each
layer an opportunity to change the magnitude of its features, and therefore the magnitude of the
gradients to subsequent components.

2.2 EXPERIMENTS

Causal Language Models We pre-train causal LMs (“CLM”) that roughly match GPT-3 125M
and GPT3-355M proposed in [Brown et al.| (2020). We show that the conclusions hold for larger
models in Section[3

We differ from Brown et al.| (2020) in three ways: (1) we use only dense attention, while they
alternate between dense and locally banded sparse attention; (2) we train our models with sinusoidal
positional embeddings, following Shortformer [Press et al.| (2020b)), since early experiments found
this to produce comparable results with fewer learned parameters; (3) we train on sequences of
length 1,024 instead of 2,048 to reduce computational cost, and show that this choice does not
change our conclusions in Section 3}

For both the baseline and NormFormer, we test six different learning rates 6e-5, 3e-4,
6e-4, le-3, 3e-3, 6e-3 for 100,000 updates and pick the best by validation perplexity.
Otherwise, we use the same hyperparameters as GPT3-Small and GPT3-Medium, with the linear
decay learning rate scheduler. We train the baseline for 300 billion tokens and NormFormer for 282
billion tokens.

Zero Shot Evaluation In addition to validation perplexity, we evaluate CLMs on a subset of the
tasks that GPT3 evaluated on in a zero-shot setting (Brown et al.,[2020), with the same prompts. We
select WinoGrande (Sakaguchi et al., 2020), StoryCloze (?), OpenBookQA (?), HellaSwag (?) and
PIQA (Bisk et al.,2020) because GPT3 showed strong performance on these tasks at small scale, as
well as consistently improving performance with scale.

Masked Language Models We adopt the Roberta Base, Pre-LN architecture proposed in|Liu et al.
(2019) without modifying any hyper-parameters. For the baseline, we pre-train for 2 million batches
of 1 million tokens, about i of the training budget of the original roberta-base. NormFormer
runs through 192 batches in the same amount of time.

Fine-Tuning We fine-tune both the baseline MLM and NormFormer with learning rates [1e-5,
le-4, 3e-4, le-3, 3e-3, 6e-3, and pick the best performing on the validation set for
each GLUE task (Wang et al.;[2019). Other fine-tuning hyper-parameters follow roberta-base.

Pretraining data We pre-train all models on a combination of BOOKCORPUS (Zhu et al.,|2019),
English Wikipedia, and the English section of CC100 (Conneau et al., |2020) which totals around
300GB of uncompressed text. Pretraining perplexity is computed on the validation subset of this
dataset.

Complexity Although the parameter increase is less than 0.07% compared to the baseline, Norm-
Former introduces 2-6% extra memory and speed cost, with more of a difference for smaller models.
80% of this increase results from the FFN LN, which also accounts for the bulk of the parameter
increase. For this reason, subsequent tables compare NormFormer to baseline models trained for the
same amount of time on the same hardware, rather than the same number of steps.

3 RESULTS

Figure [2 shows pre-training perplexity curves for CLMs and MLMs, respectively. The green stars,
which mark the first validation step where NormFormer crosses the baseline’s eventual perplexity,
show that NormFormer reaches this target with only 60% and 57% the cost of the baseline, for CLM
and MLM respectively.
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Figure 2: Pre-Training Perplexity Curves for Causal and Masked Language Models. The green star
shows the first validation step where NormFormer crosses the baseline’s eventual perplexity, which
takes 60% and 57% the wall time for CLM and MLM respectively.
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Table 1: Zero-Shot Accuracy for Causal LMs. GPT-3 (paper) results taken from Brown et al.|(2020).
HS: HellaSwag, PI: PIQA, WG: WinoGrande, SC: StoryCloze, OB: OpenBookQA. Replicated mod-
els are pretrained and evaluated using fairseq (Ott et al., 2019). PPL is validation perplexity
during pre-training.

Model Size‘ PPL ‘ HS PI WG SC OB ‘Avg
Random Baseline - | - |25.0 50.0 50.0 50.0 25.0]40.0

GPT3 (paper) 125.00 - 133.7 64.6 52.0 63.3 35.6(49.8
GPT3 (replicated) 124.38 |21.11{33.7 65.2 52.2 66.0 35.4|50.5
NormFormer 124.47 120.24|34.9 67.1 52.3 66.3 38.0|51.7
GPT3 (paper) 355.00 - 143.6 70.2 52.1 68.5 43.2(55.5
GPT3 (replicated) 354.74 |15.41]45.7 71.1 53.4 72.3 40.8(56.7
NormFormer 35498 (14.90|47.6 71.0 54.1 71.9 41.8|57.3

Table [T] zero shot accuracy for causal LMs on a subset of the tasks evaluated by GPT3, using the
prompts proposed in Brown et al|(2020). NormFormer outperforms the baseline at both the 125M
parameter and 355M parameter sizes. Table [2] shows fine-tuned accuracy for MLMs on the GLUE
tasks.

4  ANALYSIS

We observe a mismatch in the magnitude of the updates to fully connected parameters in the baseline,
similar to that which Pre-LN was introduced to alleviate. Figure[3]shows the average L1 norm of the

Table 2: Masked LM: Pre-training validation perplexity (PPL) and fine-tuned performance on GLUE
Tasks for equally trained roberta-base variants.

Model Size|PPL|CoLA MNLI MRPC QNLI QQP RTE SST-2|Avg
Baseline 125.42 3.42‘ 743 859 84.6 91.6 90.7 66.4 929 (83.8

NormFormer 125.50 [3.32| 82.6 86.3 86.0 919 913 67.9 93.8 |85.7
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Figure 3: Average L1 Norm of gradient to second fully connected weight for layers 0,1,6 and 11,
early in training.

gradient for second fully connected weight in various layers. Each line represents a different layer
in a 12 layer, 125M parameter CLM and each sub plot shows a different architecture. For Post-LN,
the gradients to later layers are large and the gradients to early layers vanish. Pre-LN changes this,
increasing the grad norm to early layers. The introduction of more normalization, most notably
LN between fully connected layers alleviates this problem, bringing the average norm for the layers
closer together. Figure[d]shows the distribution of the y parameters introduced in all three operations.
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Figure 4: Distribution of v parameters in each added operation. For FFN LN, earlier layers receive
downscaled inputs, keeping their gradients in the same range as the gradients of later layers. This
plot is discussed in detail in Section El

For the FFN LN, the parameters are smaller for earlier layers, reducing the magnitude of the inputs
to early fully connected parameters, and thereby decreasing the magnitude of their gradients. The
pattern for the post attention LN, in the middle of Figure [] is only visible at layer 0, but all layers
have coefficients below 1, indicating downscaling|| The HeadScale parameters, shown in the
rightmost plot in Figure ] vary more than the others, and have no relationship with depth in the
network. We interpret this as evidence that the HeadScale parameters dynamically increase the
importance of well initialized attention heads, as suggested in|Chen et al.| (2021).

One result of reducing the gradient mismatch, besides better perplexities and downstream task per-
formance, is the ability to train at higher learning rates without loss explosion. To measure the
stability of an architecture, we train it on a learning rate schedule with a very large peak learning
rate and very long warmup, so that the learning rate increases a little each step until the loss explodes.
Table 3] shows that NormFormer models last 150 steps longer and reach a higher peak learning rate
than the baseline. For the baseline, loss explodes because the activations produced by multiplying
the query and key features at layer O are too large to be represented in 16 bits. The down scaling of
the attention outputs allows NormFormer to avoid this issue and last a bit longer.

"The downscaling is more apparent in Figurein the Appendix, which plots the change in grad norm for
each operation at each layer. It shows that adding extra normalization reduces the gradient norm for all attention
parameters at every layer and that only FFN parameters at later layers, have increased gradient norms.
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Baseline NormFormer

Peak LR 0.02 0.0275
Last Step 400 550
Failed Operation ¢@k  Output Projection
Failed Layer 0 12

Table 3: LR Stability Test

5 ABLATIONS

This section provides evidence that removing any of our additions to the transformer block degrades
performance on language modeling tasks, and that our additions improve language modeling per-
formance across a wide range of hyperparameter settings and model sizes. Experiments are run
with the default hyperparameters in Table [ for 470 V100 Hours (100,000 updates for the baseline)
unless otherwise mentioned.

Learning Rate 0.003
Batch Size 524K Tokens
Parameters 124M+

Layers 12
Layer Dimension 768
Dropout 0
LR Warmup Updates 500
LR Scheduler Linear Decay
Sequence Length 1024

Train Budget 470 V100 Hours

Table 4: Hyperparameters for ablation runs. This train budget allows the baseline model to run for
100,000 updates.

Scaling More Or Less Frequently Degrades Performance Table [5|shows that none of the three
introduced operations can be removed without degrading performance. Rows 2, 3 and 4 remove
each operation one at a time. In all cases perplexity increases, with the removal of HeadScale
being the most damaging. In Row 5, ”+ 3 LN” we try to introduce more normalization inside self
attention, applying LN to the query, key and value features in addition to our 3 other operations, for
a total of 6 new operations. In this setting, every non LN operation inside the transformer layer is
followed by an LN. We find that this does not change perplexities at a fixed number of updates, but
reduces training speed by another 5%. This result suggests that there is not much upside to adding
even more normalization after our three additions.

Architecture Valid PPL

NormFormer 15.98
- Post-Attn LN 16.04
-FFN LN 16.19

- Head Scale 16.31
+ 3 More LN 15.99

Baseline 16.37

Table 5: Language Modeling Validation perplexities after 470 V100 Hours of pre-training. Remov-
ing any of our proposed additions degrades performance (Rows 2-4). Adding more normalization
inside the Multi Headed Attention (Row 5). Does not impact perplexity at a fixed number of updates,
but reduces throughput such that the model can only complete 87,500 updates vs. 92,500 for Rows
1-4 and 100,000 for Row 6.
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Model Size We see similar improvement from the addition of extra normalization as we scale
model size. At 125M parameters (row 5 of Table @) , we show a run where we add attention and
fully connected parameters instead of LN parameters by increasing the hidden dimension from 768
to 780. This result shows that the improvement from extra normalization is a more efficient way to
add parameters, outpacing normal scaling laws.

Parameters Num Updates Valid PPL HParams

NormFormer 124,471,296 475,000 14.87 -
Baseline 124,379,136 520,000 15.18 -

NormFormer 124,425,216 92,500 15.92 GPT3
Baseline 124,379,136 100,000 16.36 GPT3
Baseline 127,670,400 85,000 16.29 GPT3

NormFormer 354,988,032 177,000 11.85 -
Baseline 354,742,272 200,000 12.04 -

NormFormer 1,313,710,080 85,000 10.25 -
Baseline 1,313,460,224 95,000 10.48 -

Table 6: Varied Sizes. Groups separated by vertical lines have comparable training budgets.

Other Hyperparameter Settings Table [/| shows language modeling perplexities for 7 different
hyperparameter configurations, separated by horizontal lines. NormFormer outperforms the base-
line in all settings.

Learning Rate Setting Changes Valid PPL

Baseline 0.001 - 16.80
NormFormer 0.001 - 16.43
Baseline 0.003 - 16.37
NormFormer 0.003 - 15.98
Baseline 0.006 - 16.58
NormFormer 0.006 - 16.26
Baseline 0.003 Longer Warmup 16.50
NormFormer 0.003 Longer Warmup 16.12
Baseline 0.003 GPT3 16.29
NormFormer 0.003 GPT3 15.92
Baseline 0.003 Clip Grad Norms at 0.1  16.46

NormFormer 0.003 Clip Grad Norms at 0.1  16.20

Table 7: Longer Warmup: increase LR Warmup to 6,000 steps (from 500). GPT3: increase sequence
length to 2048, increase dropout to 0.1, increase training budget to 1,000 V100 hours. Grad Clip:
clip gradient norms at 0.1. NormFormer outperforms the baseline in all settings.

6 RELATED WORK

Xiong et al|(2020) shows that for Post-LN: gradients are too big for later layers and solves this
problem with Pre-LN. We build on the Pre-LN architecture to make it even more stable and efficient.

Press et al.|(2020a) proposes an architecture where instead of interleaving attention and feed forward
sublayers, the attention all happens first. This increases the number of late FFN parameters, rather
than increasing their importance and gradient norm, as our FFN LN does, and does not impact
stability.
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Our HeadScale operation is similar to |Chen et al.| (2021)), but used differently. Whereas that
work prunes attention heads with low  parameters, we use the v parameters to improve pretraining
performance.

Replacing the FFN LN with the FFNGeGlu proposed in [Shazeer| (2020), which includes scaling but
no normalization, degraded performance in our setting.

We also find that the LN variant proposed in |Raffel et al.| (2020), which removes the bias and the
mean substraction from the normalization, performs equally well to our LN and has fewer trainable
parameters, but is about 2x slower than the FusedLayerNorm implementation we use.

7 CONCLUSION

We identify a mismatch in the gradients of Pre-LN transformer weights: earlier layers receive much
larger gradients than later layers. We propose NormFormer, which alleviates the mismatch by
adding 3 extra normalization operations to each transformer layer These modifications alleviate
the gradient mismatch for fully connected parameters and improve validation perplexity and down-
stream task performance for both causal and masked language models. None can be removed with-
out degrading performance back towards the baseline, and adding more normalization does not
improve performance. Since NormFormer primarily addresses the gradient mismatch by increas-
ing the gradients to the last FFN layers while decreasing the gradient magnitudes in other parts of
the network, future work could examine whether all 3 operations need to be added to every layer.
Additionally, the small computational increase associated with NormFormer could be alleviated by
fusing the FFN LN with the preceding fully connected layer, with or without the mean centering and
bias, which do not appear to improve pre-training perplexity.

8 APPENDIX
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Figure 5: Change in grad scale norm for each operation of NormFormer compared to the baseline.
Norms are the average between step 950 and 1000, normalized to control for different losses. 2.0
on the Y axis means the gradient to a parameter is twice as large, on average. The NormFormer
increases the norm to fully connected parameters in later layers, while reducing the gradient norm
to attention parameters at all layers. The results are discussed in detail in Section El

Wikitext103 Table [§] shows that NormFormer can also provide gains on top of a well tuned lan-
guage model with much less data. We simply add our three normalization steps to the architecture
and hyperparameters of |Baevski & Auli| (2019), and find that (a) convergence perplexity improves
modestly, (b) the normalized model does not learn anything in the last 20% of steps, indicating that
if hyperparameters were re-tuned NormFormer might outperform the baseline by more.
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Steps to Final PPL PPL

Baseline 100% 18.70
NormFormer 80% 18.65

Table 8: Wikitext 103 results following Baevski & Auli[(2019). Steps to Final PPL: at what
percentage of the 280K steps did the model reach its final perplexity. PPL: Best Perplexity
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