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Abstract

To build an artificial neural network like the biological intelligence system, recent1

works have unified numerous tasks into a generalist model, which can process vari-2

ous tasks with shared parameters and do not have any task-specific modules. While3

generalist models achieve promising results on various benchmarks, they have4

performance degradation on some tasks compared with task-specialized models.5

In this work, we find that interference among different tasks and modalities is the6

main factor to this phenomenon. To mitigate such interference, we introduce the7

Conditional Mixture-of-Experts (Conditional MoEs) to generalist models. Routing8

strategies under different levels of conditions are proposed to take both the train-9

ing/inference cost and generalization ability into account. By incorporating the10

proposed Conditional MoEs, the recently proposed generalist model Uni-Perceiver11

can effectively mitigate the interference across tasks and modalities, and achieves12

state-of-the-art results on a series of downstream tasks via prompt tuning on 1% of13

downstream data. Moreover, the introduction of Conditional MoEs still holds the14

generalization ability of generalist models to conduct zero-shot inference on new15

tasks, e.g., video-text retrieval and video caption. Code and pre-trained generalist16

models shall be released.17

1 Introduction18

Generalist models that handle multiple modalities and numerous tasks have been long pursued by19

the machine learning community. However, previous researches [65, 90, 71] focus on developing20

specialized models with task-specific modules. When these models are applied to new tasks, the21

specifically-designed components need to be redesigned on demand and fine-tuned on sufficient22

downstream data. As a result, their model size increases with the number of diverse downstream23

tasks, conflicting with the goal of generalist models.24

Recently, some pioneers [94, 80, 3, 85, 87, 62] have made preliminary attempts to build generalist25

models by modeling various tasks into a unified formulation. With the unified modeling, large-scale26

pre-training on various datasets enables the generalist models to process different downstream tasks27

using shared parameters. These generalist models not only achieve competitive performance on28

pre-training tasks [80, 3, 85, 87], but also can perform zero-shot inference on novel tasks without29

introducing additional parameters [94, 62].30

However, compared to specialized models with specific parameters for each task, generalist models31

with shared parameters would suffer from the task-interference issue — different tasks with shared32

parameters may conflict with each other [89]. The same issue is also observed in multilingual NLP33

models [4, 82, 84]. We argue that the task-interference issue is mainly caused by the inconsistent34

optimization in multi-task learning. As shown in Tab. 1, during the training phase of generalist35

models, the gradient directions of different tasks would be inconsistent or even opposite. Thus,36

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



if multiple tasks share parameters, the optimal update direction of the shared parameters will be37

uncertain, resulting in sub-optimal performance.38

Allowing conflicting modalities and tasks to use separate parameters should effectively mitigate the39

interference issue in generalist models. Mixture of Experts (MoEs) [43, 23] provides a potential40

solution, which learns to activate sub-networks dynamically without introducing any task-specific41

modules. Nevertheless, vanilla MoEs [67] select the experts according to token representations,42

which suffers from high training/inference cost and neglects the information of different tasks and43

modalities. In this work, we argue that routing strategies of MoEs require special design when applied44

to generalist models for mitigating the task-interference issue.45

To address the task-interference issue in generalist models, we propose Conditional Mixture-of-46

Experts (Conditional MoEs), which improve vanilla MoEs by introducing information under different47

levels of conditions, including token-level, context-level, modality-level, task-level, and predefined48

token attributes. In this case, vanilla MoEs is a token-level variant of our Conditional MoEs, which49

can be replaced by other-level variants to implement stronger generalist models. We carefully50

discussed the training/inference cost and generalization ability of different variants, and ablated their51

performances in mitigating the interference issue of generalist models. Notably, Conditional MoEs52

with predefined token attributes introduces 8-bit attribute embedding to describe the information of53

currently processed task and modalities, which demonstrate excellent computational and memory54

efficiency and good generalization ability.55

To verify the effectiveness of Conditional MoEs, we incorporated it with the recently proposed56

generic perception model Uni-Perceiver [94] by replacing the linear projection in self-attention57

and FFN blocks with conditional MoE layers. Experiments demonstrate that, by mitigating task58

interference with our proposed Conditional MoEs, Uni-Perceiver can be pre-trained on various tasks59

jointly without performance degradation, while its generalization to other tasks can be maintained60

simultaneously. Our main contributions are as follows:61

• We carefully analyze the task-interference issue in generalist models, and provide an explanation62

from the gradient direction perspective as well as a metric to quantify the issue.63

• We propose Conditional MoEs to address the task-interference issue in generalist models. By intro-64

ducing the information of currently processed task and modalities, Conditional MoEs effectively65

mitigate the interference issue, while keeping low computational and memory cost.66

• Compared with previous SOTAs, our generalist model with 1% downstream data prompt tuning67

achieves competitive performance, while only <5% training data and <10% training cost are used.68

We hope this work can serve as a solid baseline for generalist models and motivate further research.69

2 Related Works70

Specialized Models. Previous research focuses on building specialized models for specific tasks.71

CNNs [47, 26, 70] and ViTs [20, 53, 76, 81] are developed for image classification. Subsequent72

works re-design them to adapt to diverse downstream visual tasks, e.g., object detection [63] and73

segmentation [15, 48]. In NLP, different architectures are specifically designed for neural machine74

translation [78], natural language understanding [19], and natural language generation [51]. As for75

vision-language tasks, previous works usually combined modality-specific encoders and representa-76

tion fusion modules together [13, 54]. Recently, [90, 65, 71] integrate several specialized models into77

a single one to handle diverse tasks. Such integrated specialized models are equipped with multiple78

task-specific modules to adapt to as many downstream tasks as possible. However, these methods79

still follow the task-specific paradigm, which conflicts with the objective of generalist models.80

Vanilla Generalist Models. Vanilla generalist models handle different tasks and modalities with81

shared parameters. Uni-Perceiver [94] formulates various perception tasks as finding the maxi-82

mum likelihood target for each input through the similarity of their representations. OFA [80],83

Flamingo [3] and SimVLM [85] attempt to unify different tasks into sequence-to-sequence genera-84

tion. UniCORN [87] and Gato [62] further incorporate bounding box and reinforcement learning85

tasks into the unified formulation, respectively. These generalist models not only achieve competitive86

performance on pre-training tasks with shared parameters, but also can perform zero-shot inference87

on new tasks [62, 94]. However, these methods rarely investigate the potential interference among88

different modalities and tasks, which could result in the performance degradation of generalist models.89
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Figure 1: Comparisons of fully-shared standard encoder block, task-specific encoder block with
task-dedicated parameters, and encoder block with efficient MoE parameterization.

Multi-Task Learning. Multi-task learning [8, 17] has been widely studied in the community90

of vision [27, 74, 72], language [25, 16, 50] and vision-language learning [10, 55, 29]. While91

multi-task training enables collaboration between tasks, it may also introduce the task interference92

problem [82, 84, 28, 36, 72]. To mitigate the task-interference issue, some works[14, 24, 38] propose93

to dynamically adjust the loss weight for each task, while others [91, 49, 36] instead use task-dedicated94

parameters. However, methods with task-specific parameters are difficult to generalize to new tasks95

and do not meet the requirements of generalist models.96

Mixture of Experts (MoEs). MoEs has shown its remarkable ability to scale neural networks [67, 43,97

23, 64, 21]. [67] first proves the effectiveness of MoEs by stacking MoE layers in the LSTM models.98

[68, 43] further introduce this approach to Transformer architectures. [23, 40] train language models99

with trillion parameters successfully by utilizing simplified MoE routing strategy and efficient training100

techniques. There are also some works applying MoEs to CNNs for computer vision tasks [1, 86, 83].101

Recently, V-MoE [64] successfully employs MoEs to ViTs, showing promising performance on102

many visual tasks. Task-MoE [42] focuses on applying MoEs for multilingual translation to mitigate103

the interference among different languages. In this work, we aim to explore MoEs under different104

conditions for general models.105

3 Methodology106

In this section, we first analyze the task-interference problem from the gradient direction perspective.107

Based on the analysis, we propose Conditional Mixture-of-Experts (Conditional MoEs) for generalist108

models, which introduces parameters conditioned by information of different levels to mitigate the109

task-interference issue with negligible overhead.110

3.1 Task Interference111

To quantify the interference of the j-th task on the i-th task, we estimate the change in loss Li of the112

i-th task, when optimizing the shared parameters θ according to the j-th task Lj as:113

∆jLi(xi)
.
= Exj

(
Li(xi; θ)− Li(xi; θ − λ

∇θLj(xj)

∥∇θLj(xj)∥
)

)
≈ λExj

(
∇θLj(xj)

∥∇θLj(xj)∥

T

∇θLi(xi)

)
, (1)

where xi and xj are the sampled training batches of the i-th and j-th tasks, respectively. Without loss114

of generality, we only consider the update direction ignoring the update norm. Then, the interference115

of the j-th task on the i-th task can be quantified as:116

Ii,j = Exi

(
∆jLi(xi)

∆iLi(xi)

)
, (2)

where the denominator is used to normalize the loss change scale. As reported in Tab. 1, we sample117

100 batches for each tasks, and record the gradients to calculate the average interference metric Ii,j of118

the j-th task on the i-th task at the 4-th/12-nd FFN blocks. We see that, at shallow layers, the image119
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Table 1: The average interference metric Ii,j of the task j on the task i at the 4-th/12-nd FFN blocks.
To calculate the interference metric, we sample 100 batches for each tasks, and record the gradients
based on the pre-trained Uni-Perceriver-Ti. The red value indicates that the task j has a negative
impact on the task i, and the green value indicates a positive impact.

(a) The 4-th FFN Block

Task i
Task j

ImgCLS (Img) MLM (Text) Caption (Img-Text)

ImgCLS (Img) 1.00 -0.57 1.29
MLM (Text) 0.07 1.00 0.68

Caption (Img-Text) 0.01 0.01 1.00

(b) The 12-nd FFN Block

Task i
Task j

ImgCLS (Img) MLM (Text) Caption (Img-Text)

ImgCLS (Img) 1.00 -2.91 -2.45
MLM (Text) -1.65 1.00 -1.05

Caption (Img-Text) -0.11 0.19 1.00

caption task has positive impacts on image classification and masked language modeling, suggesting120

that cooperation between different tasks exists. While at deep layers, tasks with different optimization121

objectives hardly enhance each other, and the gradient directions may even opposite.122

Fig. 1 summarizes three mainstream architectures for multi-task models. The first is the standard123

architecture [94, 31, 32] with parameters fully shared by different tasks, which suffers from task124

interference problem as analyzed above. The second is task-specific parameterized architecture [90,125

65, 29, 71] equipped with dedicated parameters for each task. Although this architecture address the126

interference problem by task-specific parameters, it is difficult to generalize to new tasks that did127

not emerge in the training phase. Unlike the above two architectures, the Mixture-of-Experts (MoE)128

architecture [67, 43, 23, 40, 64] activates models sparsely according to different given inputs by129

selectively utilizing different subset of the model parameters. The sparse routing mechanism makes it130

possible to train very large generalist models, which maximizes the collaboration and meanwhile131

mitigates the interference problem. In this work, we focus on exploring Conditional MoEs for general132

models, whose experts are gated by conditions from different levels.133

3.2 Conditional Mixture-of-Experts (Conditional MoEs)134

We first describe the prototype of Conditional MoEs, and then provide its specific instantiations under135

different conditions, as well as the application to generalist models.136

Prototype. Given any token xi in the input sequence X = {xi}Li=1, conditional MoEs with E137

experts firstly introduces a gate decision vector G ∈ RE that dispatches different input tokens to138

different experts, which is calculated as:139

G = topk (softmax (Wg ·R(xi) + ϵ)) . (3)

where R(·) defines a general routing strategy for gate decision, which is alternative under different140

conditions. Wg is the trainable weights in gate decision and ϵ is the noise term. The topk(·) operator141

sets all values to be zero except the largest k values. Since G only has k ≪ E non-zero values, the142

token xi is routed to only a small number of experts. After getting the gate decision vector G, the143

corresponding output yi is the weighted combination of each expert’s computation on xi as:144

yi =

E∑
e=1

Ge ·We · xi, (4)

where We is the linear projection weights of the e-th expert and gate decision Ge determines how145

much the e-th expert contributes to the output yi. Note that, experts with Ge = 0 does not need to be146

computed for saving computation.147

In Conditional MoEs, the routing strategy R(·) plays an important role in the multi-modality and148

multi-task training of generalist models. By sparsely activating experts according to different149

conditions, Conditional MoEs can mitigate the interference issue while maintaining the generality150

of the pretrained model. Next, we introduce variants with specific routing strategies under different151

conditions, as shown in Fig. 2.152

Token-Level Routing. Similar to vanilla MoEs [67, 43, 23, 40, 64], the token-Level MoEs directly153

use the token representation for the routing strategy, which can be written as:154

Rtoken(xi) = xi. (5)

The routing strategy of token-level MoEs is an identical function, where the gate decision only155

depends on each token’s own representation.156

4



Task1 input tokens

Task1 target tokens

Task2 input tokens

Task2 target tokens

Expert1

Expert2

Expert3

Expert4

Token level routing Context level routing Modality level routing Task level routing Attribute routing

Token feature Context feature Modality ID Task ID Attribute

routing routing routing routing routing

Different modalities

Figure 2: Comparisons of routing strategies with the top-1 gate decisions under 2-task training.

Table 2: The 8-dimensional binary embedding used for attribute-level routing strategy. The attribute
embedding is assigned to a token by checking whether the statements of the eight descriptions match
the current token. For example, the attribute embedding for any token from the input sequences of
image classification task should be [1, 0, 0, 1, 1, 0, 0, 1]. Please refer to the Appendix for detailed
look-up table of attribute embeddings for all tasks in our work.

Index Descriptions Yes No

0 Visual modality exists in the inputs of the current task. 1 0
1 Text modality exists in the inputs of the current task. 1 0
2 Visual modality exists in the targets of the current task. 1 0
3 Text modality exists in the targets of the current task. 1 0
4 The modality of current token is visual. 1 0
5 The modality of current token is text. 1 0
6 The attention mask of the current token is causal. 1 0
7 The current token comes from the inputs, not the targets. 1 0

Context-Level Routing. Tokens with similar representations may appear in conflicting tasks, whose157

optimal expert decisions should be different to mitigate the task interference. Therefore, to help gate158

function making more reliable decisions, we explore the combination of global context and local159

token representation. The routing strategy utilizing global context can be expressed as:160

Rcontext(xi) = concat(xi, attnpool(X)), (6)

where concat(·) indicates the concatenation operation, X = {xi}Li=1 is sequence of all tokens in the161

current sample, and attnpool(·) indicates the attention pooling operator [61].162

Modality-Level Routing. Most current practice uses modality-specific encoders with independent163

parameters for different modality inputs. Inspired by this, we also explore to leverage the modality of164

the current token as a routing strategy:165

Rmodal(xi) = embed(idmodal(xi)) (7)

Here, embed(·) represent the embedding layer, and idmodal(·) indicates the modality index of current166

token xi. The routing function will assign this token to experts according to its modality embedding.167

Task-Level Routing. In addition to modality information, task information can also be used to guide168

gate functions to make reliable decisions for mitigating the task interference. Similar to Eqn. (7), the169

routing strategy can be formulated as:170

Rtask(xi) = embed(idtask(xi)), (8)

where idtask(·) is the task index of current token xi. The task embedding for this task will be used171

to compute gate decision. Since all tokens from one task have the same task embedding, all tokens172

corresponding to this task will be routed to the same set of experts.173

Attribute Routing. Among the aforementioned variants, token-level, context-level, and modality-174

level routing strategies only focus on input tokens but omit information about the currently processed175
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task. While task-level routing strategy relies on task-specific ids, it limits the generalization ability176

to new downstream tasks. To introduce the information of currently processed task and modalities177

without losing the generalization ability of generalist models, we propose to introduce token attributes178

to assist the gate decision.179

As described in Tab. 2, the attributes of the current token are represented as an 8-dimensional binary180

embedding, whose attributes include the modalities of current task and token (index 0∼5), the181

causation type of the model (index 6), and the token source (index 7). As a result, the designed token182

attributes provide comprehensive information of currently processed task meanwhile keeping the task183

generalization ability. Based on the attribute embedding, the routing strategy is expressed as:184

Rattr(xi) = layernorm (Wattr · attr(xi)) . (9)

Here, attr(xi) is the 8-dimensional binary attribute embedding of the current token xi as described185

in Tab. 2. Wattr is the learnable weights to transform the attribute embedding to latent representation,186

and layernorm(·) denotes the layer normalization [6] for training stabilization.187

Application to Generalist Models. Without loss of generality, we explore the application of188

Conditional MoEs to the generalist model Uni-Perceiver [94], which uses Transformers to handle189

various modalities and tasks with shared parameters. We replace linear projection layers in both190

self-attention and FFN blocks with Conditional-MoE layers (see Fig. 1).191

3.3 Comparison of Conditional-MoE Variants192

As illustrated in Fig. 2, among the variants of Conditional MoEs, token-level and context-level MoEs193

are data-dependent, while modality-level, task-level, and attribute MoEs are data-independent.194

Training and Inference Cost. Compared to dense models with the same number of parameters, all195

Conditional MoE variants can significantly reduce the computational cost benefiting from the sparse196

routing mechanism. Due to the dependence of input data, the memory consumption of token-level197

and context-level MoEs is relatively high during model training, and model parallelism is required to198

relieve memory cost by partitioning experts across multiple devices, leading to heavy inter-device199

communication overhead. This problem persists when using pre-trained models for task-specific200

inference, where all experts need to be loaded into memory and might be activated by any token.201

Different from data-dependent Conditional MoEs, data-independent variants such as modality-level,202

task-level, and attribute MoEs have excellent memory efficiency, since only top-k experts need to203

be activated for all tokens with the same modality/task/attributes. Moreover, in both training and204

inference phase, the experts in a data-independent MoE layer can be merged into a single linear205

projection using reparameterization techniques. In this case, the computation cost of the network206

with data-independent Conditional MoEs will be equivalent to a dense model without MoEs.207

Generalization Ability. We hope to mitigate the task-interference issue in generalist models, while208

keeping their generalization ability to new downstream tasks. While token-level, context-level, and209

modality-level MoEs without task-specific designs do not harm the generalization ability, they ignore210

the task-level information which is essential to resolve the task interference. Conversely, task-level211

routing strategy is tied to a specific task id, which is difficult to generalize to new downstream tasks.212

Attribute MoEs introduce predefined token attributes to comprehensively describe the information of213

currently processed task and modalities, which can be transferred to new downstream tasks without214

any task-specific modifications. This gives attribute MoEs the potential to mitigate task interference215

without losing generalization ability.216

4 Experiments217

In this section, we first describe our experimental setup. Then, we confirm the task-interference issue218

in the generalist model Uni-Perceiver [94] and ablate the the ability of different Conditional MoEs to219

mitigate task interference. Finally, large-scale training is conducted to verify the effectiveness of our220

proposed Conditional-MoEs and its generalization ability to novel tasks.221
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Table 3: The performance of different routing strategies for Conditional MoEs. The base model
is Uni-Perceiver with BERTtiny. We also illustrate the task-specific variant where each task has its
own specialized parameters. The training and validation performance reported on three tasks: image
classification on ImageNet-1K [18], image caption on COCO Caption [12], and Masked Language
Modeling(MLM) on Books&Wiki. The best results within a tolerance of 1% are in bold.

model task-specific
parameterization

training
time

inference
time

ImageNet-1k COCO Caption MLM
↑acctrain ↑accval ↑acctrain ↑B@4val ↑acctrain ↓pplval

Uni-Perceiver-Ti [94] 1.0× 1.0× 47.3 68.3 49.2 18.2 54.5 5.86
✓ 1.1× 1.0× 53.3 73.5 52.6 20.4 60.5 4.48

+ Conditional MoEs token 1.8× 2.2× 53.1 72.7 52.9 20.9 58.3 4.96
+ Conditional MoEs context 2.2× 2.6× 52.5 73.1 52.8 21.5 58.6 4.86
+ Conditional MoEs modality 1.4× 1.0× 51.7 72.6 52.1 21.8 57.5 5.06
+ Conditional MoEs task 1.4× 1.0× 52.9 73.2 52.7 21.2 59.9 4.56
+ Conditional MoEs attribute 1.4× 1.0× 52.8 73.3 53.1 23.0 60.0 4.56

4.1 Datasets222

We use the same datasets in Uni-Perceiver [94] to pre-train our models1. Specifically, ImageNet-223

21k [18] is used for image classification pre-training. Kinetics-700 [37] and Moments in Time [57]224

are used for video classification pre-training. Language modeling task is trained on BookCorpus [95]225

& English Wikipedia (Books&Wiki). For language modeling with image clues and image-text226

retrieval, we use a combination of image-text-pair datasets: SBU Captions (SBU) [58], Visual227

Genome [41], COCO Caption [12], CC3M [66], CC12M [9] and YFCC [35]. Following Uni-228

Perceiver, Imagenet1K [18], Kinetics-400 [37], COCO Caption [12], and Flickr30k [59] are utilized229

to evaluate the performance of generalist models on downstream tasks. We also use two datasets230

that evaluate the generalization ability to novel tasks: MSVD [11] and GLUE [79]. Additionally, all231

dataset licenses are included in Appendix.232

4.2 Implementation Details233

We incorporate the vanilla generalist model Uni-Perceiver with Conditional MoEs for experiments234

with three different variants: Uni-Perceiver-Ti (Tiny), Uni-Perceiver-B (Base), and Uni-Perceiver-L235

(Large). Please refer to Appendix for architecture hyperparameters. If not specified, the input image236

resolution is set to 224×224. In each training iteration, each GPU independently samples a single task237

and dataset. The gradients of different GPUs are synchronized after the gradient back-propagation.238

We use the AdamW optimizer with a base learning rate of 0.0005 and a weight decay of 0.05. Similar239

to [52, 61], we find setting β2 = 0.98 and ϵ = 10−6 helps improve stability when large-scale training.240

Besides, gradient clipping with 0.5 is used to stabilize training.241

Uni-Perceiver-B and Uni-Perceiver-L are equipped with Conditional-MoEs layer for every other242

layers while Uni-Perception-Ti use Conditional MoEs in all layers. A normal noise is also used on243

the gate logits following [64] for a better exploration for new potential experts. If not specialized,244

top-2 gate function is used. For other hyper-parameters of MoE layers, please refer to Appendix.245

4.3 Ablation Studies246

This part explores whether Conditional MoEs can effectively mitigate task interference in generalist247

models and compares different routing strategies. Tab. 3 summarizes the performance of Uni-Perceiver248

and its variants on three typical tasks. Compared with task-specific parameterization, the performance249

degradation of Uni-Perceiver confirms the existence of task interference. Incorporating Conditional250

MoEs with any routing strategy can mitigate the task-interference issue and significantly improve251

the performance. Among these five routing strategies, token-level, context-level, and modality-level252

MoEs deliver slightly worse performance. We argue the missed task information is critical for253

resolving the task interference. Besides, the data-dependent MoEs, i.e., token-level and context-level,254

have relatively higher training and inference cost, while the other three MoEs have excellent efficiency255

by using reparameterization techniques. Although both task-level and attribute MoEs achieve good256

performance, the specialized task-id design in task-level MoEs makes it difficult to generalize to new257

tasks. Therefore, the Conditional MoEs with attribute routing strategy will be used.258

1As far as we konw, all datasets do not contain any personally identifiable information or offensive content.
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Table 4: The performance of incorporating Conditional MoEs with Uni-Perceiver on image classi-
fication, video classification and image-text retrieval. “#param” is the parameters required during
model deployment. “#data” is the amount of visual training samples involved. “WT”, “PT”, and
“FT” indicate w/o tuning, prompt tuning, and fine-tuning, respectively. “1%” and “100%” indicate
the proportion of downstream data used for tuning. “FT100%↑” means fine-tuning with larger image
size. The subscript number next to score indicates that a different image resolution than 224 is used.
† These methods use > 20× training data size and > 10× training cost than ours.

(a) Image Classification accuracy on ImageNet-1k.

method #param #data WT PT1% FT100% FT100%↑

DeiT-B [77] 86M 1.28M - - 81.8 83.1384

ViT-B [73] 86M 15.5M - - 84.0 85.5384

ViT-L [73] 307M 15.5M - - 84.0 85.6384

OFA [80] 472M 60.6M - - - 84.9480

CLIP [61] 307M 400M 76.2336 - - -
†ALIGN [33] 480M 1.8B 76.4289 - - 88.6289
†Florence [90] 637M 900M 83.7384 - - 90.0≥384
†CoCa-B [88] 86M 4.8B 82.6576 - - 88.3576
†CoCa-L [88] 303M 4.8B 84.8576 - - 90.2576
†Flamingo-3B [3] 3.2B 2.3B - 71.0320 - -

Uni-Perceiver-B 124M 44.1M 79.2 80.9 84.0 85.2384

+ Conditional MoEs 124M 44.1M 80.3 82.0 84.5 85.8384

Uni-Perceiver-L 354M 44.1M 82.7 84.2 86.2 87.0384

+ Conditional MoEs 354M 44.1M 83.4 84.9 86.4 87.0384

(b) Video classification accuracy on Kinetics-400.

method #param #data WT PT1% FT100%

TimeSformer-B [7] 121.4M 14.2M - - 80.7
VATT-B [2] 87.9M 238M - - 79.6320

VATT-L [2] 306.1M 238M - - 82.1320

ViViT-L [5] >307M 14.2M - - 81.7
ViViT-L [5] >307M 300M - - 84.9
†Florence [90] 647M 900M - - 86.5384
†CoCa [88] 2.1B 4.8B - - 88.9576

Uni-Perceiver-B 124M 44.1M 73.5 74.8 77.7
+ Conditional MoEs 124M 44.1M 76.8 77.2 79.3
Uni-Perceiver-L 354M 44.1M 79.5 80.0 81.9
+ Conditional MoEs 354M 44.1M 82.1 83.0 84.2

(c) Image-text retrieval R@1 performance.

Method
Flickr30K MSCOCO Caption

Image → Text Text → Image Image → Text Text → Image
#param #data WT PT1% FT100% WT PT1% FT100% WT PT1% FT100% WT PT1% FT100%

ImageBERT [60] 170M 10M 70.7 - 87.0 54.3 - 73.1 44.0 - 66.4 32.3 - 50.5
UNITER-B [13] 146M 9.6M 80.7 - 85.9 66.2 72.5 - - 64.4 - - 50.3
UNITER-L [13] 363M 9.6M 83.6 - 87.3 68.7 - 75.6 - - 65.7 - - 52.9
ViLT [39] 87M 9.7M 73.2 - 74.8 56.5 - 61.5 55.0 - 64.4 40.4 - 42.7
FLAVA [71] 215M 70M 67.7 - - 65.2 - - 42.7 - - 38.4 - -
CLIP [61] 417M 400M 88.0336 - - 68.7336 - - 58.4336 - - 37.8336 - -
†ALIGN 820M 1.8B 88.6289 - 95.3289 75.7289 - 84.9289 58.6289 - 77.0289 45.6289 - 59.9289
†Florence [90] 893M 900M 90.9384 - 97.2384 76.7384 - 87.9384 64.7384 - - 47.2384 - -
†CoCa-B [88] 383M 4.8B 89.8576 - - 76.8576 - - 63.8576 - - 47.5576 - -
†CoCa-L [88] 787M 4.8B 92.5576 - - 80.4576 - - 66.3576 - - 51.2576 - -
†Flamingo-3B [3] 3.2B 2.3B 89.3320 - - 79.5320 - - 65.9320 - - 48.0320 - -

Uni-Perceiver-B 124M 44.1M 74.8 91.0 92.7 65.8 76.0 77.5 57.7 68.4 69.8 46.3 51.9 53.9
+ Conditional MoEs 124M 44.1M 82.1 91.3 93.6 72.4 78.5 79.8 64.6 68.9 70.5 51.6 52.6 54.1
Uni-Perceiver-L 354M 44.1M 83.7 92.1 94.7 74.2 80.0 82.1 67.8 73.3 74.4 54.1 56.2 57.9
+ Conditional MoEs 354M 44.1M 83.6 92.4 94.1 75.9 80.6 83.7 67.9 73.3 74.7 55.3 57.1 58.3

4.4 Evaluation on Pre-training tasks259

Large-scale training is conducted to verify the effectiveness of our method, we first evaluate it on tasks260

involved in pre-training. Specifically, we use widely-used Imagenet-1k [18] and Kinetics-400 [37]261

to evaluate image and video classification respectively, and use popular Flickr30k [59] and COCO262

Caption [12] to evaluate image caption and image-text retrieval.263

Tab. 4 and Tab. 5a show the results on the four pre-training tasks. We see that Uni-perceiver with our264

Conditional MoEs consistently outperforms vanilla Uni-perceiver by a large margin. Without any265

tuning, our models achieve comparable performance with task-specific SOTAs trained with similar266

model size and training data size. Note that, our approach is a generalist model pretrained on a unified267

task formulation, while task-specific approaches are trained specifically for the target task.268

When prompt tuned on only 1% downstream data, the performance of our models are boosted to a269

level close to counterparts that use >50× training data sizes and >10× training cost. For the prompt270

tuning of our models, only a small amount of parameters are tuned, and the encoder is still fixed and271

shared among different tasks, indicating that generalist models with Conditional MoEs can handle272

different tasks with significant low cost than counterparts.273

We further fine-tune our models with 100% of the downstream data. In this case, our model achieves274

performance on-par with or better than the SOTAs trained with similar data size on all these tasks,275

which proves generalist models with Conditional MoEs has learned high-quality representations.276
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Table 5: The performance of incorporating Conditional MoEs with Uni-Perceiver on image caption,
natural language understanding, video-text retrieval and video caption, where the last three tasks are
not involved in pre-training.
(a) Image caption BLEU@4 performance. * means meth-
ods use region features as network inputs. ‡ indicates that
Cider optimization is used.

Method MSCOCO Caption Flickr30k
#param data WT PT1% FT100% WT PT1% FT100%

*Unified VLP [93] 86M 3.0M - - 36.5 - - 30.1
*OSCAR-B [46] 154M 6.5M - - 36.5 - - -
*OSCAR-L [46] 384M 6.5M - - 37.4 - - -
UNICORN [87] 198M 200k - - 35.8 - - -
BLIP-B [44] 252M 129M - - 39.7384 - - -
BLIP-L [44] 473M 129M - - 40.4384 - - -
CLIP-VIL [69] > 459M 400M - - 40.2 - - -
SimVLM [85] 632M 1.8B 11.2480 - 40.6480 - - -
*‡OSCAR-L [46] 384M 6.5M - - 41.7 - - -
‡OFA [80] 472M 60.6M - - 43.5480 - - -
†CoCa [88] 2.1B 4.8B 40.9576 - - -

Uni-Perceiver-B 124M 44.1M 32.0 35.5 36.4 14.7 30.2 31.2
+ Conditional MoEs 124M 44.1M 33.2 36.8 37.3 15.9 30.7 32.4
Uni-Perceiver-L 354M 44.1M 35.3 38.6 39.2 15.1 32.9 35.5
+ Conditional MoEs 354M 44.1M 35.5 39.3 40.5 15.8 33.7 36.2

(b) Natural language understanding (novel task) fine-
tuned on GLUE. BERTBASE records from [34]. Visu-
alBERT and LXMERT record from [30]. *RoBERTa
uses 10× training text tokens than ours.

Method MNLI QNLI QQP RTE SST-2 MRPC CoLA
(Acc) (Acc) (F1) (Acc) (Acc) (F1) (Mcc)

LXMERT [75] 80.4 84.2 75.3 57.2 90.2 80.4 39.0
VisualBERT [45] 81.6 87.0 86.0 56.6 89.4 82.1 38.6
SimVLM-B [85] 83.4 88.6 87.2 63.9 90.9 84.4 46.7
BERT-B [79] 84.5 88.4 88.3 63.5 92.9 89.0 54.7
BERT-L [79] 86.6 92.3 91.3 70.4 93.2 88.0 60.6
OFA-B [80] 84.3 91.1 88.4 70.8 92.7 90.6 52.3
OFA-L [80] 86.6 92.8 88.9 73.6 94.7 91.4 53.1
*RoBERTa-B [52] 87.6 92.8 91.9 78.7 94.8 90.2 63.6
*RoBERTa-L [52] 90.2 94.7 92.2 86.6 96.4 90.9 68.0

Uni-Perceiver-B 79.7 87.3 86.7 71.1 89.3 86.0 43.1
+ Conditional MoEs 81.5 88.2 87.8 75.8 90.9 87.1 52.2
Uni-Perceiver-L 82.5 89.2 87.7 73.7 91.2 90.2 52.0
+ Conditional MoEs 85.7 91.9 89.5 78.4 93.4 91.2 57.4

(c) Video-text retrieval (novel task) Recall@1 and video caption (novel task) BLEU@4 performance on MSVD.

Method Video → Text Text → Video Video Caption
#param #data WT PT1% FT100% WT PT1% FT100% WT PT1% FT100%

CLIP2video [22] 132M 400M - - 58.7 - - 47.0 - - -
HunYuan_tvr [56] 364M 400M - - 68.0 - - 52.7 - - -
ORG-TRL [92] 86M 2.0M - - - - - - - - 54.3

Uni-Perceiver-B 124M 44.1M 50.3 62.7 62.8 38.7 43.8 45.8 22.6 59.5 63.3
+ Conditional MoEs 124M 44.1M 52.8 65.6 65.0 40.0 45.3 47.8 23.4 60.0 65.4
Uni-Perceiver-L 354M 44.1M 45.4 65.5 65.2 34.2 48.6 50.8 24.7 67.2 68.3
+ Conditional MoEs 354M 44.1M 45.7 66.4 67.6 41.9 50.3 52.3 24.6 67.6 68.9

4.5 Generalization to Novel Tasks277

The generalization ability is the most attractive aspect of generalist models, while the dynamic278

sub-networks activation of Conditional MoEs should maintain this ability while mitigating task279

interference. To verify this, we conduct experiments on video caption, video-text retrieval, and280

natural language understanding tasks, which did not appear in pre-training. As shown in Tab. 5c, our281

Uni-Perceiver equipped with Conditional MoEs could generalize to video-related tasks very well.282

They can obtain reasonable zero-shot performance on those tasks and also perform better than vanilla283

Uni-Perceiver with a great margin. Moreover, Uni-Perceiver-MoEs can achieve comparable results to284

SOTA methods with similar training cost by further conducting prompt tuning with only 1% data.285

Beyond that, Conditional MoEs can significantly boost the performance of Uni-Perceiver on GLUE286

benchmarks (Tab. 5b), owing to its excellent ability to resolve task interference in generalist models.287

5 Conclusion288

In this paper, we propose Conditional to address the task-interference issue in generalist models.289

By sparsely activate sub-networks without introducing any task-specific designs, generalist models290

can be pre-trained on multiple tasks jointly without performance degradation, while keeping the291

generalization ablity to noval tasks. We incorporate Conditional MoEs with the recently proposed292

generalist model Uni-Perceiver. With prompt tuning on 1% downstream data, the proposed sparse293

generalist model achieves competitive performance with previous SOTAs using only <5% training294

data and <10% training cost. We hope this work can motivate further research in generalist models.295

Limitations. Our method is currently verified on generalist models with millions of parameters. For296

generalist models with billions of parameters, whether the task-interference issue exists and whether297

our method is still effective are questionable, which we leave them to future work.298

Potential Negative Societal Impact. This work shares the common negative impacts of large-scale299

training, which may consume lots of electricity and result in increased carbon emissions. This method300

also learns from a large number of datasets that may contain data biases.301
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