
Provably Efficient Causal Reinforcement Learning
with Confounded Observational Data

Empowered by neural networks, deep reinforcement learning (DRL) achieves tremendous empirical1

successes. However, DRL requires a large dataset by interacting with the environment, which is un-2

realistic in critical scenarios such as autonomous driving and personalized medicine. In this paper,3

we study how to incorporate the dataset collected in the offline setting to improve the semple effi-4

ciency in the online setting. To incorporate the observational data, we face two challenges. (a) The5

behavior policy that generates the observational data may depend on unobserved random variables6

(confounders), which affect the received rewards and transition dynamics. (b) Exploration in the7

online setting requires quantifying the uncertainty given both the observational and interventional8

data. To tackle such challenges, we propose the deconfounded optimistic value iteration (DOVI)9

algorithm, which incorporates the confounded observational data in a provably efficient manner.10

DOVI explicitly adjusts for the confounding bias in the observational data, where the confounders11

are partially observed or unobserved. In both cases, such adjustments allow us to construct the bonus12

based on a notion of information gain, which takes into account the amount of information acquired13

from the offline setting. In particular, we prove that the regret of DOVI is smaller than the optimal14

regret achievable in the pure online setting when the confounded observational data are informative15

upon the adjustments.16

1 Introduction17

Empowered by the breakthrough in neural networks, deep reinforcement learning (DRL) achieves18

significant empirical successes in various scenarios [19, 34, 23, 35]. Learning an expressive function19

approximator necessitates collecting a large dataset. Specifically, in the online setting, it requires20

the agent to interact with the environment for a large number of steps. For example, to learn a21

human-level policy for playing Atari games, the agent has to interact with a simulator for more22

than 108 steps [13]. However, in most scenarios, we do not have access to a simulator that allows23

for trial and error without any cost. Meanwhile, in critical scenarios, e.g., autonomous driving and24

personalized medicine, trial and error in the real world is unsafe and even unethical. As a result, it25

remains challenging to apply DRL to more scenarios.26

To bypass such a barrier, we study how to incorporate the dataset collected offline, namely the27

observational data, to improve the sample efficiency of RL in the online setting [21]. In contrast28

to the interventional data collected online in possibly expensive ways, observational data are often29

abundantly available in various scenarios. For example, in autonomous driving, we have access30

to trajectories generated by the drivers. As another example, in personalized medicine, we have31

access to electronic health records from doctors. However, to incorporate the observational data in32

a provably efficient way, we have to address two challenges.33

• The observational data are possibly confounded. Specifically, there often exist unobserved random34

variables, namely confounders, that causally affect the agent and the environment at the same35

time. In particular, the policy used to generate the observational data, namely the behavior policy,36

possibly depends on the confounders. Meanwhile, the confounders possibly affect the received37

rewards and the transition dynamics.38

In the example of autonomous driving [9, 22], the drivers may be affected by complicated traffic39

or poor road design, resulting in traffic accidents even without misconduct. The complicated40

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.



traffic and poor road design subsequently affect both the action of the drivers and the outcome.41

Therefore, it is unclear from the observational data whether the accidents are due to the actions42

adopted by the drivers. Agents trained with such observational data may be unwilling to take any43

actions under complicated traffic, jeopardizing the safety of passengers.44

In the example of personalized medicine [28, 8], the patients may not be compliant with pre-45

scriptions and instructions, which subsequently affects both the treatment and the outcome. As46

another example, the doctor may prescribe medicine to patients based on patients’ socioeconomic47

status (which could be inferred by the doctor through interacting with the patients). Meanwhile,48

socioeconomic status affects the patients’ health condition and subsequently plays the role of the49

confounder. In both scenarios, such confounders may be unavailable due to privacy or ethical con-50

cerns. Such a confounding issue makes the observational data uninformative and even misleading51

for identifying and estimating the causal effect, which is crucial for decision-making in the online52

setting. In all the examples, it is unclear from the observational data whether the outcome is due53

to the actions adopted.54

• Even without the confounding issue, it remains unclear how the observational data may facilitate55

exploration in the online setting, which is the key to the sample efficiency of RL. At the core of56

exploration is uncertainty quantification. Specifically, quantifying the uncertainty that remains57

given the dataset collected up to the current step, including the observational data and the inter-58

ventional data, allows us to construct a bonus. When incorporated into the reward, such a bonus59

encourages the agent to explore the less visited state-action pairs with more uncertainty. In par-60

ticular, constructing such a bonus requires quantifying the amount of information carried over by61

the observational data from the offline setting, which also plays a key role in characterizing the62

regret, especially how much the observational data may facilitate reducing the regret.63

Uncertainty quantification becomes even more challenging when the observational data are con-64

founded. Specifically, as the behavior policy depends on the confounders, there is a mismatch65

between the data generating processes in the offline setting and the online setting. As a result,66

it remains challenging to quantify how much information carried over from the offline setting is67

useful for the online setting, as the observational data are uninformative and even misleading due68

to the confounding issue.69

Contribution. To study causal reinforcement learning, we propose a class of Markov decision70

processes (MDPs), namely confounded MDPs, which captures the data generating processes in both71

the offline setting and the online setting as well as their mismatch due to the confounding issue.72

In particular, we study two tractable cases of confounded MDPs in the episodic setting with linear73

function approximation [40, 41, 16, 7].74

• In the first case, the confounders are partially observed in the observational data. Assuming that75

an observed subset of the confounders satisfies the backdoor criterion [30], we propose the decon-76

founded optimistic value iteration (DOVI) algorithm, which explicitly corrects for the confound-77

ing bias in the observational data using the backdoor adjustment.78

• In the second case, the confounders are unobserved in the observational data. Assuming that there79

exists an observed set of intermediate states that satisfies the frontdoor criterion [30], we propose80

an extension of DOVI, namely DOVI+, which explicitly corrects for the confounding bias in the81

observational data using the composition of two backdoor adjustments. We remark that DOVI+82

follows the same principle of design as DOVI and defer the discussion of DOVI+ to §A.83

In both cases, the adjustments allow DOVI and DOVI+ to incorporate the observational data into the84

interventional data while bypassing the confounding issue. It further enables estimating the causal85

effect of a policy on the received rewards and the transition dynamics with enlarged effective sample86

size. Moreover, such adjustments allow us to construct the bonus based on a notion of information87

gain, which takes into account the amount of information carried over from the offline setting.88

In particular, we prove that DOVI and DOVI+ attain the ∆H ·
√
d3H3T -regret up to logarithmic89

factors, where d is the dimension of features, H is the length of each episode, and T = HK90
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is the number of steps taken in the online setting, where K is the number of episodes. Here the91

multiplicative factor ∆H > 0 depends on d, H , and a notion of information gain that quantifies the92

amount of information obtained from the interventional data additionally when given the properly93

adjusted observational data. When the observational data are unavailable or uninformative upon the94

adjustments, ∆H is a logarithmic factor. Correspondingly, DOVI and DOVI+ attain the optimal95 √
T -regret achievable in the pure online setting [40, 41, 16, 7]. When the observational data are96

sufficiently informative upon the adjustments, ∆H decreases towards zero as the effective sample97

size of the observational data increases, which quantifies how much the observational data may98

facilitate exploration in the online setting.99

Related Work. Our work is related to the study of causal bandit [20]. The goal of causal bandit is to100

obtain the optimal intervention in the online setting where the data generating process is described101

by a causal diagram. The previous study establishes causal bandit algorithms in the online setting102

[32, 25], the offline setting [17, 18], and a combination of both settings [11]. In contrast to this line103

of work, we study causal RL in a combination of the online setting and the offline setting. Causal104

RL is more challenging than causal bandit, which corresponds toH = 1, as it involves the transition105

dynamics and is more challenging in exploration. See §B for a detailed literature review on causal106

bandit.107

Our work is related to the study of causal RL considered in various settings. [43] propose a model-108

based RL algorithm that solves dynamic treatment regimes (DTR), which involve a combination109

of the online setting and the offline setting. Their algorithm hinges on the analysis of sensitivity110

[26, 36, 4, 42], which constructs a set of feasible models of the transition dynamics based on the111

confounded observational data. Correspondingly, their algorithm achieves exploration by choosing112

an optimistic model of the transition dynamics from such a feasible set. In contrast, we propose a113

model-free RL algorithm, which achieves exploration through the bonus based on a notion of in-114

formation gain. It is worth mentioning that the assumption of [43] is weaker than ours as theirs115

does not allow for identifying the causal effect. As a result of partial identification, the regret of116

their algorithm is the same as the regret in the pure online setting as T → +∞. In contrast, our117

work instantiates the following framework in handling confounders for reinforcement learning. (a)118

First, we propose the estimation equation based on the observations, which identifies the causal ef-119

fect of actions on the cumulative reward. (b) Second, we conduct point estimation and uncertainty120

quantification based on observations and the estimation equation. (c) Finally, we conduct explo-121

ration based on the uncertainty quantification and achieve the regret reduction in the online setting.122

Consequently, the regret of our algorithm is smaller than the regret in the pure online setting by123

a multiplicative factor for all T . [24] propose a model-based RL algorithm in a combination of124

the online setting and the offline setting. Their algorithm uses a variational autoencoder (VAE) for125

estimating a structural causal model (SCM) based on the confounded observational data. In partic-126

ular, their algorithm utilizes the actor-critic algorithm to obtain the optimal policy in such an SCM.127

However, the regret of their algorithm remains unclear. [6] propose a model-based RL algorithm128

in the pure online setting that learns the optimal policy in a partially observable Markov decision129

process (POMDP). The regret of their algorithm also remains unclear. [33] utilize generative adver-130

sarial reinforcement learning to reconstruct transition dynamics with confounder, and [38] propose a131

model-based approach for POMDP based on adjustment with proxy variables. In contrast, our work132

utilizes backdoor and frontdoor adjustments to handle confounded observation.133

2 Confounded Reinforcement Learning134

Structural Causal Model. We denote a structural causal model (SCM) [30] by a tuple (A,B, F, P ).135

Here A is the set of exogenous (unobserved) variables, B is the set of endogenous (observed) vari-136

ables, F is the set of structural functions capturing the causal relations, which determines an en-137

dogenous variable v ∈ B based on the other exogenous and endogenous variables, and P is the138

distribution of all the exogenous variables. We say that a pair of variables Y and Z are confounded139

by a variable W if they are both caused by W .140
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An intervention on a set of endogenous variables X ⊆ B assigns a value x to X regardless of141

the other exogenous and endogenous variables as well as the structural functions. We denote by142

do(X = x) the intervention on X and write do(x) if it is clear from the context. Similarly, a143

stochastic intervention [27, 10] on a set of endogenous variables X ⊆ B assigns a distribution p to144

X regardless of the other exogenous and endogenous variables as well as the structural functions.145

We denote by do(X ∼ p) the stochastic intervention on X .146

Confounded Markov Decision Process. To characterize a Markov decision process (MDP) in the147

offline setting with observational data, which are possibly confounded, we introduce an SCM, where148

the endogenous variables are the states {sh}h∈[H], actions {ah}h∈[H], and rewards {rh}h∈[H]. Let149

{wh}h∈[H] be the confounders. In §3, we assume that the confounders are partially observed, while150

in §A, we assume that they are unobserved. The set of structural functions F consists of the tran-151

sition of states sh+1 ∼ Ph(· | sh, ah, wh), the transition of confounders wh ∼ P̃h(· | sh), the be-152

havior policy ah ∼ νh(· | sh, wh), which depends on the confounder wh, and the reward function153

rh(sh, ah, wh). See Figure 1 for the causal diagram that describes such an SCM.

sh ah

wh

sh+1

(a) Offline Setting

sh ah

wh

sh+1

(b) Online Setting

Figure 1: Causal diagrams of the h-th step of the confounded MDP (a) in the offline setting and (b) in the online
setting, respectively.

154

Here ah and sh+1 are confounded by wh in addition to sh. We denote such a confounded MDP155

by the tuple (S,A,W, H,P, r), where H is the length of an episode, S, A, andW are the spaces156

of states, actions, and confounders, respectively, r = {rh}h∈[H] is the set of reward functions,157

and P = {Ph, P̃h}h∈H is the set of transition kernels. In the sequel, we assume without loss of158

generality that rh takes value in [0, 1] for all h ∈ [H].159

In the online setting that allows for intervention, we assume that the confounders {wh}h∈[H]160

are unobserved. A policy π = {πh}h∈[H] induces the stochastic intervention do(a1 ∼161

π1(· | s1), . . . , aH ∼ πH(· | sH)), which does not depend on the confounders. In particular, an162

agent interacts with the environment as follows. At the beginning of the k-th episode, the environ-163

ment arbitrarily selects an initial state sk1 and the agent selects a policy πk = {πkh}h∈[H]. At the164

h-th step of the k-th episode, the agent observes the state skh and takes the action akh ∼ πkh(· | skh).165

The environment randomly selects the confounder wkh ∼ P̃h(· | skh), which is unobserved, and the166

agent receives the reward rkh = rh(skh, a
k
h, w

k
h). The environment then transits into the next state167

skh+1 ∼ Ph(· | skh, akh, wkh).168

For a policy π = {πh}h∈H , which does not depend on the confounders {wh}h∈[H], we define the169

value function V π = {V πh }h∈[H] as follows,170

V πh (s) = Eπ
[ H∑
j=h

rj(sj , aj , wj)

∣∣∣∣ sh = s

]
, ∀h ∈ [H], (2.1)

where we denote by Eπ the expectation with respect to the confounders {wj}Hj=h and the trajectory171

{(sj , aj)}Hj=h, starting from the state sj = s and following the policy π. Correspondingly, we define172

the action-value function Qπ = {Qπh}h∈[H] as follows,173

Qπh(s, a) = Eπ
[ H∑
j=h

rj(sj , aj , wj)

∣∣∣∣ sh = s,do(ah = a)

]
, ∀h ∈ [H]. (2.2)
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We assess the performance of an algorithm using the regret against the globally optimal policy174

π∗ = {π∗h}h∈[H] in hindsight after K episodes, which is defined as follows,175

Regret(T ) = max
π

K∑
k=1

(
V π1 (sk1)− V π

k

1 (sk1)
)

=

K∑
k=1

(
V π
∗

1 (sk1)− V π
k

1 (sk1)
)
. (2.3)

Here T = HK is the total number of steps.176

Our goal is to design an algorithm that minimizes the regret defined in (2.3), where π∗ does not177

depend on the confounders {wh}h∈[H]. In the online setting that allows for intervention, it is well178

understood how to minimize such a regret [14, 3, 15, 16]. However, it remains unclear how to effi-179

ciently utilize the observational data obtained in the offline setting, which are possibly confounded.180

In real-world applications, e.g., autonomous driving and personalized medicine, such observational181

data are often abundant, whereas intervention in the online setting is often restricted. We refer to §D182

for a comparison between the confounded MDP and other extensions of MDP, including the dynam-183

ics treatment regime (DTR), partially observable MDP (POMDP), and contextual MDP (CMDP).184

Why is Incorporating Confounded Observational Data Challenging? Straightforwardly incor-185

porating the confounded observational data into an online algorithm possibly leads to an undesirable186

regret due to the mismatch between the online and offline data generating processes. In particular,187

due to the existence of the confounders {wh}h∈[H], which are partially observed (§3) or unobserved188

(§A), the conditional probability P(sh+1 | sh, ah) in the offline setting is different from the causal189

effect P(sh+1 | sh,do(ah)) in the online setting [31]. More specifically, it holds that190

P(sh+1 | sh, ah) =
Ewh∼P̃h(· | sh)

[
Ph(sh+1 | sh, ah, wh) · νh(ah | sh, wh)

]
Ewh∼P̃h(· | sh)

[
νh(ah | sh, wh)

] ,

P
(
sh+1

∣∣ sh,do(ah)
)

= Ewh∼P̃h(· | sh)

[
Ph(· | sh, ah, wh)

]
.

In other words, without proper covariate adjustments [30], the confounded observational data may be191

not informative for estimating the transition dynamics and the associated action-value function in the192

online setting. To this end, we propose an algorithm that incorporates the confounded observational193

data in a provably efficient manner. Moreover, our analysis quantifies the amount of information194

carried over by the confounded observational data from the offline setting and to what extent it helps195

reducing the regret in the online setting.196

3 Algorithm and Theory for Partially Observed Confounder197

In this section, we propose the Deconfounded Optimistic Value Iteration (DOVI) algorithm. DOVI198

handles the case where the confounders are unobserved in the online setting but are partially ob-199

served in the offline setting. We then characterize the regret of DOVI. We defer the extension of200

DOVI, namely DOVI+, to §A which handles the case where the confounders are unobserved in both201

the online setting and the offline setting.202

3.1 Algorithm203

Backdoor Adjustment. In the online setting that allows for intervention, the causal effect of ah on204

sh+1 given sh, that is, P(sh+1 | sh,do(ah)), plays a key role in the estimation of the action-value205

function. Meanwhile, the confounded observational data may not allow us to identify the causal206

effect P(sh+1 | sh,do(ah)) if the confounder wh is unobserved. However, if the confounder wh is207

partially observed in the offline setting, the observed subset uh of wh allows us to identify the causal208

effect P(sh+1 | sh,do(ah)), as long as uh satisfies the following backdoor criterion.209

Assumption 3.1 (Backdoor Criterion [30, 31]). In the SCM defined in §2 and its induced directed210

acyclic graph (DAG), for all h ∈ [H], there exists an observed subset uh of wh that satisfies the211

backdoor criterion, that is,212

• the elements of uh are not the descendants of ah, and213
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• conditioning on sh, the elements of uh d-separate every path between ah and sh+1 that has214

an incoming arrow into ah.215

See Figure 4 for an example that satisfies the backdoor criterion. In particular, we identify the causal216

effect P(sh+1 | sh,do(ah)) as follows.217

Proposition 3.2 (Backdoor Adjustment [30]). Under Assumption 3.1, it holds for all h ∈ [H] that218

P
(
sh+1

∣∣ sh,do(ah)
)

= Euh∼P(· | sh)

[
P(sh+1 | sh, ah, uh)

]
,

E
[
rh(sh, ah, wh)

∣∣ sh,do(ah)
]

= Euh∼P(· | sh)

[
E
[
rh(sh, ah, wh)

∣∣ sh, ah, uh]].
Here (sh+1, sh, ah, uh) follows the SCM defined in §2, which generates the confounded observa-219

tional data.220

Proof. See [30] for a detailed proof.221

With a slight abuse of notation, we write P(sh+1 | sh, ah, uh) as Ph(sh+1 | sh, ah, uh) and222

P(uh | sh) as P̃h(uh | sh), since they are induced by the SCM defined in §2. In the sequel, we223

define U the space of observed state uh and write rh = rh(sh, ah, wh) for notational simplicity.224

Backdoor-Adjusted Bellman Equation. We now formulate the Bellman equation for the con-225

founded MDP. It holds for all (sh, ah) ∈ S ×A that226

Qπh(sh, ah) = Eπ
[ H∑
j=h

rj(sj , aj , uj)

∣∣∣∣ sh,do(ah)

]
= E

[
rh
∣∣ sh,do(ah)

]
+ Esh+1

[
V πh+1(sh+1)

]
,

where Esh+1
denotes the expectation with respect to sh+1 ∼ P(·

∣∣ sh,do(ah)). Here227

E[rh
∣∣ sh,do(ah)] and P(·

∣∣ sh,do(ah)) are characterized in Proposition 3.2. In the sequel, we define228

the following transition operator and counterfactual reward function,229

(PhV )(sh, ah) = Esh+1∼P(· | sh,do(ah))

[
V (sh+1)

]
, ∀V : S 7→ R, (sh, ah) ∈ S ×A, (3.1)

Rh(sh, ah) = E
[
rh
∣∣ sh,do(ah)

]
, ∀(sh, ah) ∈ S ×A. (3.2)

We have the following Bellman equation,230

Qπh(sh, ah) = Rh(sh, ah) + (PhV πh+1)(sh, ah), ∀h ∈ [H], (sh, ah) ∈ S ×A. (3.3)

Correspondingly, the Bellman optimality equation takes the following form,231

Q∗h(sh, ah) = Rh(sh, ah) + (PhV ∗h+1)(sh, ah), V ∗h (sh) = max
ah∈A

Q∗h(sh, ah), (3.4)

which holds for all h ∈ [H] and (sh, ah) ∈ S × A. Such a Bellman optimality equation allows us232

to adapt the least-squares value iteration (LSVI) algorithm [5, 14, 29, 3, 16].233

Linear Function Approximation. We focus on the following setting with linear transition kernels234

and reward functions [40, 41, 16, 7], which corresponds to a linear SCM [31].235

Assumption 3.3 (Linear Confounded MDP). We assume that236

Ph(sh+1 | sh, ah, uh) = 〈φh(sh, ah, uh), µh(sh+1)〉, ∀h ∈ [H], (sh+1, sh, ah) ∈ S × S ×A,

where φh(·, ·, ·) and µh(·) = (µ1,h(·), . . . , µd,h(·))> are Rd-valued functions. We assume that237 ∑d
i=1 ‖µi,h‖21 ≤ d and ‖φh(sh, ah, uh)‖2 ≤ 1 for all h ∈ [H] and (sh, ah, uh) ∈ S × A × U .238

Meanwhile, we assume that239

E[rh | sh, ah, uh] = φh(sh, ah, uh)>θh, ∀h ∈ [H], (sh, ah, uh) ∈ S ×A× U , (3.5)

where θh ∈ Rd and ‖θh‖2 ≤
√
d for all h ∈ [H].240

Such a linear setting generalizes the tabular setting where S , A, and U are finite.241

6



Proposition 3.4. We define the backdoor-adjusted feature as follows,242

ψh(sh, ah) = Euh∼P̃h(· | sh)

[
φh(sh, ah, uh)

]
, ∀h ∈ [H], (sh, ah) ∈ S ×A. (3.6)

Under Assumption 3.1, it holds that243

P(sh+1 | sh,do(ah)) = 〈ψh(sh, ah), µh(sh+1)〉, ∀h ∈ [H], (sh+1, sh, ah) ∈ S × S ×A.

Moreover, the action-value functions Qπh and Q∗h are linear in the backdoor-adjusted feature ψh for244

all π.245

Proof. See §F.1 for a detailed proof.246

Such an observation allows us to estimate the action-value function based on the backdoor-adjusted247

features {ψh}h∈[H] in the online setting. See §E for a detailed discussion. In the sequel, we assume248

that either the density of {P̃h(· | sh)}h∈[H] is known or the backdoor-adjusted feature {ψh}h∈[H] is249

know.250

In the sequel, we introduce the DOVI algorithm (Algorithm 1). Each iteration of DOVI consists of251

two components, namely point estimation, where we estimateQ∗h based on the confounded observa-252

tional data and the interventional data, and uncertainty quantification, where we construct the upper253

confidence bound (UCB) of the point estimator.254

Algorithm 1 Deconfounded Optimistic Value Iteration (DOVI) for Confounded MDP

Require: Observational data {(sih, aih, uih, rih)}i∈[n],h∈[H], tuning parameters λ, β > 0, backdoor-
adjusted feature {ψh}h∈[H], which is defined in (3.6).

1: Initialization: Set {Q0
h, V

0
h }h∈[H] as zero functions and V kH+1 as a zero function for k ∈ [K].

2: for k = 1, . . . ,K do
3: for h = H, . . . , 1 do
4: Set ωkh ← argminω∈Rd

∑k−1
τ=1(rτh + V τh+1(sτh+1) − ω>ψh(sτh, a

τ
h))2 + λ‖ω‖22 + Lkh(ω),

where Lkh is defined in (3.8).
5: Set Qkh(·, ·)← min{ψh(·, ·)>ωkh + Γkh(·, ·), H − h}, where Γkh is defined in (3.12).
6: Set πkh(· | sh)← argmaxah∈AQ

k
h(sh, ah) for all sh ∈ S.

7: Set V kh (·)← 〈πkh(· | ·), Qkh(·, ·)〉A.
8: end for
9: Obtain sk1 from the environment.

10: for h = 1, . . . ,H do
11: Take akh ∼ πkh(· | skh). Obtain rkh = rh(skh, a

k
h, u

k
h) and skh+1.

12: end for
13: end for

Point Estimation. To solve the Bellman optimality equation in (3.4), we minimize the empirical255

mean-squared Bellman error as follows at each step,256

ωkh ← argmin
ω∈Rd

k−1∑
τ=1

(
rτh + V τh+1(sτh+1)− ω>ψh(sτh, a

τ
h)
)2

+ λ‖ω‖22 + Lkh(ω), h = H, . . . , 1,

(3.7)

where we set V kH+1 = 0 for all k ∈ [K] and V τh+1 is defined in Line 7 of Algorithm 1 for all257

(τ, h) ∈ [K] × [H − 1]. Here k is the index of episode, λ > 0 is a tuning parameter, and Lkh is a258

regularizer, which is constructed based on the confounded observational data. More specifically, we259

define260

Lkh(ω) =

n∑
i=1

(
rih + V kh+1(sih+1)− ω>φh(sih, a

i
h, u

i
h)
)2
, ∀(k, h) ∈ [K]× [H], (3.8)

which corresponds to the least-squares loss for regressing rih + V kh+1(sih+1) against φh(sih, a
i
h, u

i
h)261

for all i ∈ [n]. Here {(sih, aih, uih, rih)}(i,h)∈[n]×[H] are the confounded observational data, where262
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uih ∼ P̃h(· | sih), sih+1 ∼ Ph(· | sih, aih, uih), and aih ∼ νh(· | sih, wih) with ν = {νh}h∈[H] being the263

behavior policy. Here recall that, with a slight abuse of notation, we write P(sh+1 | sh, ah, uh) as264

Ph(sh+1 | sh, ah, uh) and P(uh | sh) as P̃h(uh | sh), since they are induced by the SCM defined in265

§2.266

The update in (3.7) takes the following explicit form,267

ωkh ← (Λkh)−1

( k−1∑
τ=1

ψh(sτh, a
τ
h) ·

(
V kh+1(sτh+1) + rτh

)
+

n∑
i=1

φh(sih, a
i
h, u

i
h) ·

(
V kh+1(sih+1) + rih

))
, (3.9)

where268

Λkh =

k−1∑
τ=1

ψh(sτh, a
τ
h)ψh(sτh, a

τ
h)> +

n∑
i=1

φh(sih, a
i
h, u

i
h)φh(sih, a

i
h, u

i
h)> + λI. (3.10)

Uncertainty Quantification. We now construct the UCB Γkh(·, ·) of the point estimator ψh(·, ·)>ωkh269

obtained from (3.9), which encourages the exploration of the less visited state-action pairs. To this270

end, we employ the following notion of information gain to motivate the UCB,271

Γkh(skh, a
k
h) ∝ H(ωkh | ξk−1)−H

(
ωkh | ξk−1 ∪ {(skh, akh)}

)
, (3.11)

where H(ωkh | ξk−1) is the differential entropy of the random variable ωkh given the data ξk−1. In272

particular, ξk−1 = {(sτh, aτh, rτh)}(τ,h)∈[k−1]×[H] ∪ {(sih, aih, uih, rih)}(i,h)∈[n]×[H] consists of the273

confounded observational data and the interventional data up to the (k − 1)-th episode. However, it274

is challenging to characterize the distribution of ωkh. To this end, we consider a Bayesian counterpart275

of the confounded MDP, where the prior of ωkh is N(0, I/λ) and the residual of the regression276

problem in (3.7) is N(0, 1). In such a “parallel” confounded MDP, the posterior of ωkh follows277

N(µk,h, (Λ
k
h)−1), where Λkh is defined in (3.10) and µk,h coincides with the right-hand side of278

(3.9). Moreover, it holds for all (skh, a
k
h) ∈ S ×A that279

H(ωkh | ξk−1) = 1/2 · log det
(
(2πe)d · (Λkh)−1

)
,

H
(
ωkh
∣∣ ξk−1 ∪ {(skh, akh)}

)
= 1/2 · log det

(
(2πe)d ·

(
Λkh + ψh(skh, a

k
h)ψh(skh, a

k
h)>
)−1
)
.

Correspondingly, we employ the following UCB, which instantiates (3.11), that is,280

Γkh(skh, a
k
h) = β ·

(
log det

(
Λkh + ψh(skh, a

k
h)ψh(skh, a

k
h)>
)
− log det(Λkh)

)1/2

(3.12)

for all (skh, a
k
h) ∈ S × A. Here β > 0 is a tuning parameter. We highlight that, although the281

information gain in (3.11) relies on the “parallel” confounded MDP, the UCB in (3.12), which is used282

in Line 5 of Algorithm 1, does not rely on the Bayesian perspective. Also, our analysis establishes283

the frequentist regret.284

Regularization with Observational Data: A Bayesian Perspective. In the “parallel” confounded285

MDP, it holds that286

ωkh ∼ N(0, I/λ), ωkh | ξ0 ∼ N
(
µ1,h, (Λ

1
h)−1

)
, ωkh | ξk−1 ∼ N

(
µk,h, (Λ

k
h)−1

)
,

where µk,h coincides with the right-hand side of (3.9) and µ1,h is defined by setting k = 1 in287

µk,h. Here ξ0 = {(sih, aih, uih, rih)}(i,h)∈[n]×[H] are the confounded observational data. Hence, the288

regularizer Lkh in (3.8) corresponds to using ωkh | ξ0 as the prior for the Bayesian regression problem289

given only the interventional data ξk−1 \ ξ0 = {(sτh, aτh, rτh)}(τ,h)∈[k−1]×[H].290

3.2 Theory291

The following theorem characterizes the regret of DOVI, which is defined in (2.3).292
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Theorem 3.5 (Regret of DOVI). Let β = CdH
√

log(d(T + nH)/ζ) and λ = 1, where C > 0 and293

ζ ∈ (0, 1] are absolute constants. Under Assumptions 3.1 and 3.3, it holds with probability at least294

1− 5ζ/2 that295

Regret(T ) ≤ C ′ ·∆H ·
√
d3H3T ·

√
log
(
d(T + nH)/ζ

)
, (3.13)

where C ′ > 0 is an absolute constant and296

∆H =
1√
dH2

H∑
h=1

(
log det(ΛK+1

h )− log det(Λ1
h)
)1/2

. (3.14)

Proof. See §F.3 for a detailed proof.297

Note that ΛK+1
h � (n + K + λ)I and Λ1

h � λI for all h ∈ [H]. Hence, it holds that ∆H =298

O(
√

log(n+K + 1)) in the worst case. Thus, the regret of DOVI isO(
√
d3H3T ) up to logarithmic299

factors, which is optimal in the total number of steps T if we only consider the online setting.300

However, ∆H is possibly much smaller than O(
√

log(n+K + 1)), depending on the amount of301

information carried over by the confounded observational data from the offline setting, which is302

quantified in the following.303

Interpretation of ∆H : An Information-Theoretic Perspective. Let ω∗h be the parameter of the304

globally optimal action-value function Q∗h, which corresponds to π∗ in (2.3). Recall that we de-305

note by ξ0 and ξK the confounded observational data {(sih, aih, uih, rih)}(i,h)∈[n]×[H] and the union306

{(sih, aih, uih, rih)}(i,h)∈[n]×[H] ∪ {(skh, akh, rkh)}(k,h)∈[K]×[H] of the confounded observational data307

and the interventional data up to the K-th episode, respectively. We consider the aforementioned308

Bayesian counterpart of the confounded MDP, where the prior of ω∗h is also N(0, I/λ). In such a309

“parallel” confounded MDP, we have310

ω∗h ∼ N(0, I/λ), ω∗h | ξ0 ∼ N
(
µ∗1,h, (Λ

1
h)−1

)
, ω∗h | ξK ∼ N

(
µ∗K,h, (Λ

K+1
h )−1

)
, (3.15)

where311

µ∗1,h = (Λ1
h)−1

n∑
i=1

φh(sih, a
i
h, u

i
h) ·

(
V ∗h+1(sih+1) + rih

)
,

µ∗K,h = (ΛK+1
h )−1

(
Λ1
hµ
∗
1,h +

K∑
τ=1

ψh(sτh, a
τ
h) ·

(
V ∗h+1(sτh+1) + rτh

))
.

It then holds for the right-hand side of (3.14) that312

1/2 · log det(ΛK+1
h )− 1/2 · log det(Λ1

h) = H(ω∗h | ξ0)−H(ω∗h | ξK). (3.16)

The left-hand side of (3.16) characterizes the information gain of intervention in the online setting313

given the confounded observational data in the offline setting. In other words, if the confounded314

observational data are sufficiently informative upon the backdoor adjustment, then ∆H is small,315

which implies that the regret is small. More specifically, the matrices (Λ1
h)−1 and (ΛK+1

h )−1 de-316

fined in (3.10) characterize the ellipsoidal confidence sets given ξ0 and ξK , respectively. If the317

confounded observational data are sufficiently informative upon the backdoor adjustment, ΛK+1
h318

is close to Λ1
h. To illustrate, let {ψh(sτh, a

τ
h)}(τ,h)∈[K]×[H] and {φh(sih, a

i
h, u

i
h)}(i,h)∈[n]×[H]319

be sampled uniformly at random from the canonical basis {e`}`∈[d] of Rd. It then holds that320

ΛK+1
h ≈ (K + n)I/d + λI and Λ1

h ≈ nI/d + λI . Hence, for λ = 1 and sufficiently large n and321

K, we have ∆H = O(
√

log(1 +K/(n+ d))) = O(
√
K/(n+ d)). For example, for n = Ω(K2),322

it holds that ∆H = O(n−1/2), which implies that the regret of DOVI is O(n−1/2 ·
√
d3H3T ). In323

other words, if the confounded observational data are sufficiently informative upon the backdoor324

adjustment, the regret of DOVI can be arbitrarily small given a sufficiently large sample size n of325

the confounded observational data, which is often the case in practice [28, 8, 9, 22, 21].326
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