
Tuning Large Neural Networks via
Zero-Shot Hyperparameter Transfer

Anonymous Author(s)
Affiliation
Address
email

Abstract

Hyperparameter (HP) tuning in deep learning is an expensive process, prohibitively1

so for neural networks (NNs) with billions of parameters. We show that, in the2

recently discovered Maximal Update Parametrization (µP), many optimal HPs3

remain stable even as model size changes. This leads to a new HP tuning paradigm:4

parametrize the target model in µP, tune the HP indirectly on a smaller model, and5

zero-shot transfer them to the full-sized model, i.e., without directly tuning the6

latter at all. We verify our approach on Transformer and ResNet. For example, by7

transferring pretraining HPs, we outperform BERT-large on MNLI and QQP, with8

a total tuning cost (in FLOPs) equivalent to pretraining BERT-large once.9

1 Introduction10

20 18 16 14 12 10
log2LearningRate

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Tr
ai

ni
ng

 L
os

s

optimum shifts

Standard Practice

Width
128
256
512
1024
2048
4096
8192

20 18 16 14 12 10
log2LearningRate

optimum stable

Our Work

Figure 1: Training loss against learning rate on
Transformers of varying dmodel trained with Adam.
Conventionally and in contrast with our technique,
different widths do not share the same optimal hy-
perparameter; wider networks do not always per-
form better than narrower ones; in fact they under-
perform the same-width networks in our technique
even after tuning learning rate. See Sections 3
and 4 for experimental setup.

Hyperparameter tuning is critical to deep learn-11

ing. Poorly chosen hyperparameters result12

in subpar performance and training instability.13

Many published baselines are hard to compare14

to one another due to varying degrees of hy-15

perparameter tuning. These issues are exacer-16

bated when training extremely large deep learn-17

ing models, since state-of-the-art networks with18

billions of parameters become prohibitively ex-19

pensive to tune.20

Recently, [40] showed that different neural net-21

work parametrizations induce different infinite-22

width limits and proposed the Maximal Update23

Parametrization (abbreviated µP) (summarized24

in Table 3) that enables “maximal” feature learn-25

ing in the limit. Intuitively, it ensures that each26

layer is updated on the same order during train-27

ing regardless of width.1 We leverage this new parametrization to zero-shot transfer hyperparameters28

from small models to large models in this work – that is, we obtain near optimal hyperparameters on a29

large model without directly tuning it at all! While practitioners have always guessed hyperparameters30

of large models from those of small models, the results are hit-or-miss at best, and this is because of31

incorrect parametrization. For example, as shown in Fig. 1, in a transformer, the optimal learning rate32

is stable with width in µP (right) but far from stable in standard parametrization (left). In addition to33

width, we empirically verify that, with a few caveats, hyperparameters can also be transferred across34

depth (in the main text) as well as batch size, language model sequence length, and training time (in35

the appendix). This reduces the tuning problem of an (arbitrarily) large model to that of a (fixed-sized)36

1i.e., updates’ effect on activations become roughly independent of width in the large width limit

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

Algorithm 1 Tuning a Large Target Model by µTransfer

1: Parametrize target model in Maximal Update Parametrization (µP)
2: Tune a smaller version (in width and/or depth) of target model
3: Copy tuned hyperparameters to target model

Table 1: Hyperparameters That Can Be µTransferred, Not µTransferred, or µTransferred
Across, with a few caveats discussed in Section 5.1. * means empirically validated only on Trans-
formers, while all others additionally have theoretical justification.

µTransferable Not µTransferable µTransferred Across

optimization related, init, regularization width, depth*, batch size*,
parameter multipliers, etc (dropout, weight decay, etc) training time*, seq length*

small model. Our overall procedure, which we call µTransfer, is summarized in Algorithm 1 and37

Fig. 2, and the hyperparameters we cover are summarized in Tables 1 and 2.38

$$$$$$

$$
St

an
d

ar
d

P
ra

ct
ic

e
O

u
r

M
et

h
o

d

Directly tune large model

Shrink Tune Transfer

𝜇 𝜇

Figure 2: Illustration of µTransfer

There are several benefits to our approach: 1. Speedup: It39

provides massive speedup to the tuning of large models.40

For example, we are able to outperform published numbers41

of BERT-large [7], as measured on MNLI and QQP [37],42

purely by zero-shot hyperparameter transfer, with tuning43

cost approximately equal to only 1 BERT-large pretraining.44

For the largest models such as T5 [27] or GPT-3 [6], our45

approach renders hyperparameter tuning possible at all.246

2. Tune once for whole family: For any fixed family of47

models with varying width and depth (such as the BERT48

family or the GPT-3 family), we only need to tune a sin-49

gle small model and can reuse its hyperparameters for all50

models in the family (but in general not for different data51

and/or tasks). For example, we will use this technique to52

tune BERT-base and BERT-large simultaneously. 3. Bet-53

ter Compute Utilization: While large model training needs to be distributed across many GPUs, the54

small model tuning can happen on individual GPUs, greatly increasing the level of parallelization of55

tuning (and in the context of organizational compute clusters, better scheduling and utilization ratio).56

Nevertheless, µTransfer still has several limitations. For example, while it is very effective for57

pretraining, it cannot transfer regularization hyperparameters, so it’s generally not applicable to the58

finetuning of pretrained models. We discuss other limitations carefully in Section 5.1.59

Our Contributions60

• We demonstrate it is possible to zero-shot transfer near optimal hyperparameters to a large61

model from a small version;62

• We propose a new hyperparameter tuning technique, µTransfer, for large neural networks63

based on this observation that provides massive speedup over conventional methods;64

• We thoroughly verify our method on machine translation and large language models pre-65

training (in main text) as well as image classification (in appendix);66

• We release a Pytorch[24] package for implementing µTransfer painlessly. A sketch of this67

package is given in Appendix E.68

Terminologies Sometimes, to be less ambiguous, we will often refer to the “large model” as the69

target model, as it is the model we wish to ultimately tune, while we refer to the “small model” as70

the proxy model, as it proxies the hyperparameter tuning process. We will follow standard notation71

dmodel, dhead = dk, dv, nhead, dffn regarding dimensions in a Transformer; one can see Fig. 6 for a72

refresher.73

2Note, again, that our tuning cost stays fixed even as the target model grows in size, so tuning T5-large would
have the same cost as tuning BERT-large even though it is 4 times larger.

2

Table 2: Examples of µTransferable Hyperparameters. All of the below can also be specialized
to per-layer hyperparameters.

Optimizer Related Initialization Parameter Multipliers

learning rate (LR), momentum, per-layer multiplicative constants after
Adam beta, LR schedule, etc init. variance weight/biases, etc

2 Parametrization Matters: A Primer74

In this section, we give a very basic primer on why the correct parametrization can allow hyperpa-75

rameter transfer across width, but see Appendices G.1 to G.3 for more (mathematical) details.76

The Central Limit Theorem (CLT) says that, if x1, . . . , xn are iid samples from a zero-mean, unit-77

variance distribution, then 1√
n

(x1 + · · ·+ xn) converges to a standard Gaussian N (0, 1) as n→∞.78

Therefore, we can say that 1√
n

is the right order of scaling factor cn such that cn(x1 + · · · + xn)79

converges to something nontrivial. In contrast, if we set cn = 1/n, then cn(x1 + · · ·+ xn)→ 0; or80

if cn = 1, then cn(x1 + · · ·+ xn) blows up in variance as n→∞.81

Now suppose we would like to minimize the function82

Fn(c)
def
= E

x1,...,xn

f(c(x1 + · · ·+ xn)) (1)

over c ∈ R, for some bounded continuous function f : R→ R. If we reparametrize c = α/
√
n for83

α ∈ R, then by CLT, Gn(α)
def
= Fn(c)→ E f(N (0, α2)) stabilizes into a function of α as n→∞.84

Then for sufficiently large n, the optimal α∗n
def
= arg minαGn(α) should be close to α∗N for any85

N > n, and indeed, for N =∞— this precisely means we can transfer the optimal c∗n or α∗n for a86

smaller problem (say Fn) to a larger problem (say FN): GN is approximately minimized by α∗n and87

FN is approximately minimized by c∗n
√
N/n. Because the transfer algorithm is simply copying α,88

we say the parametrization c = α/
√
n is the correct parametrization for this problem.89

In the scenario studied in this paper, x1, . . . , xn are akin to randomly initialized parameters of a90

width-n neural network, c is akin to a hyperparameter such as learning rate, and f is the test-set91

performance of the network after training, so that Fn gives its expectation over random initializations.92

Just as in this example, if we parametrize the learning rate and other hyperparameters correctly,93

then we can directly copy the optimal hyperparameters for a narrower network into a wide network94

and expect approximately optimal performance — this is the hyperparameter transfer we propose95

here. It turns out the Maximal Update Parametrization (µP) introduced in [40] is correct (akin to96

the parametrization in α above), while the standard parametrization (SP) is incorrect (akin to the97

parametrization in c). We will review both parametrizations shortly. Theoretically, a µP network has98

a well-defined infinite-width limit — akin to (x1 + · · ·+ xn)/
√
n having a N (0, 1) limit by CLT —99

while a SP network does not (the limit will blow up) [40].3 More concretely, as shown in [40] and100

Appendix G.3, in SP, the last layer is initialized too large and is updated disproportionally more as the101

model width increases, forcing a smaller learning rate to prevent a blow-up, consequently sacrificing102

performance.103

3 Hyperparameters Don’t Transfer Conventionally104

In the community there seem to be conflicting assumptions about hyperparameter stability. A priori,105

models of different sizes don’t have any reason to share the optimal hyperparameters. Indeed, papers106

aiming for state-of-the-art results often tune them separately. On the other hand, a nontrival fraction107

of papers in deep learning fixes all hyperparameters when comparing against baselines, which reflects108

an assumption that the optimal hyperparameters should be stable — not only between the same model109

of different sizes but also between models of different designs — so that such comparisons are fair.110

Here, we demonstrate hyperparameter instability across width explicitly in MLP and Transformers in111

the standard parametrization. We will only look at training loss to exclude the effect of regularization.112

3The more theoretically astute reader may observe that SP with a Θ(1/width) learning rate induces a
well-defined infinite-width limit exists as well. Nevertheless, this does not allow hyperparameter transfer because
this limit is in kernel regime as shown in [40]. See Appendix G.3 for more discussions.

3

MLP with Standard Parametrization We start with a 2-hidden-layer MLP with activation func-113

tion φ, using the standard parametrization4 with LeCun initialization5 akin to the default in PyTorch:114

115

f(ξ) = W 3>φ(W 2>φ(W 1>ξ + b1) + b2)

with init. W 1 ∼ N (0, 1/din), W {2,3} ∼ N (0, 1/n), b{1,2} = 0,
(2)

14 12 10 8 6 4 2
log2LearningRate

0.0

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 L
os

s

SP / xent
width

256
512
1024
2048
4096
8192

14 12 10 8 6 4 2
log2LearningRate

0.0

0.5

1.0

1.5

2.0
P / xent

Figure 3: MLP width different hidden sizes trained
for 20 epoch on CIFAR-10 using SGD. Left uses stan-
dard parametrization (SP); right uses maximal update
parametrization (µP). µP networks exhibit better learning
rate stability than their SP counterparts.

where W 1 ∈ Rdin×n, b1 ∈ Rn,116

W 2 ∈ Rn×n, b2 ∈ Rn, W 3 ∈117

Rn×dout and din, n, and dout are118

the input, hidden, and output dimen-119

sions. The particular MLP we use has120

φ = ReLU and a cross-entropy (xent)121

loss function. We define the width of122

MLP as the hidden size n, which is123

varied from 256 to 8192. The mod-124

els are trained on CIFAR-10 for 20125

epochs, which is more than enough to126

ensure convergence.127

As shown on the left in Fig. 3, the128

optimal learning rate shifts by roughly129

an order of magnitude as the width130

increases from 256 to 8192; using the131

optimal learning of the smallest model132

on the largest model gives very bad performance, if not divergence.133

Transformer with Standard Parametrization This perhaps unsurprising observation holds for134

more complex architectures such as Transformer as well, as shown in Fig. 1 (left). We define width135

as dmodel, with dk = dq = dv = dmodel/nheads and dffn = 4dmodel. The models are trained on136

wikitext-2 for 5 epochs. In Fig. 12 in the appendix we also show the instability of initialization scale137

and other hyperparameters.138

4 Unlocking Zero-Shot Hyperparameter Transfer with µP139

We show that µP solves the problems we see in Section 3.140

MLP with µP The basic form of µP for the MLP in Section 3 is141

f(ξ) = 1/
√
nW 3>φ(W 2>φ(

√
nW 1>ξ +

√
nb1) +

√
nb2)

with init. W 1 ∼ N (0, 1/n), W {2,3} ∼ N (0, 1/n), b{1,2} = 0.
(3)

Here we highlighted in purple the differences in the two parametrizations, namely the first layer142

initialization and the explicit multipliers in front of first layer weights, biases, and the output in143

µP. This basic form makes clear the scaling with width n of the parametrization, but in practice we144

will often insert (possibly tune-able) multiplicative constants in front of each appearance of n. For145

example, a particularly useful instance of this is when we would like to be consistent with a SP MLP146

at a base width n0. Then we may insert constants as follows: For ñ def
= n/n0,147

f(ξ) = 1/
√
ñW 3>φ(W 2>φ(

√
ñW 1>ξ +

√
ñb1) +

√
ñb2)

with init. W 1 ∼ N (0, 1/ñ · 1/din), W {2,3} ∼ N (0, 1/n), b{1,2} = 0,
(4)

Then at width n = n0, all purple factors above are 1, and the parametrization is identical to SP148

(Eq. (2)) at width n0. Of course, as n increases from n0, then Eq. (4) quickly deviates away from149

Eq. (2). In other words, for a particular n, µP and SP can be identical up to the choice of some150

constants (in this case n0), but µP determines a different “set" of networks than SP as one varies n.151

As we will see, this deviation is crucial for hyperparameter transfer.152

Indeed, in Fig. 3(right), we plot the CIFAR10 performances, over various learning rates and widths,153

of µP MLPs with n0 = 128. In contrast to SP, the optimal learning rate under µP is stable. This154

4i.e. the default parametrization offered by common deep learning frameworks. See Table 3 for a review.
5The key here is that the init. variance ∝ 1/fan_in, so the same insights here apply with e.g. He initialization.

4

Table 3: µP[40] and SP for General Neural Networks, Basic Form. This basic form emphasizes
the scaling with width (fan_in or fan_out); in practice, we may insert tunable multipliers in front of
fan_in and fan_out as in Eq. (4). Notations: 1) η is the “master” learning rate. 2) The fan_out of
a bias vector is its dimension (whereas fan_in is 1). 3) Multiplier means explicit multipliers of the
parameter, such as in Eq. (3). 4) Purple text highlights key differences from standard parametrization
(SP); Gray text recalls the corresponding SP. SGD (resp. Adam) here can be replaced by variants
such as SGD with momentum (resp. Adagrad, Adadelta, etc). Transformer µP requires one more
modification (1/d attention instead of 1/

√
d); see Definition 4.1.

Input weights & all biases Output weights Hidden weights

Init. Var. 1/fan_out (1/fan_in) 1/fan_in 1/fan_in

Multiplier
√

fan_out (1) 1/
√
fan_in (1) 1

SGD LR η η η
Adam LR η/

√
fan_out (η) η/

√
fan_in (η) η/fan_in (η)

means that, the best learning rate for a width-128 network is also best for a width-8192 network in155

µP — i.e. hyperparameter transfer works — but not for SP. In addition, we observe performance for a156

fixed learning rate always increases with width in µP , but not in SP.157

This MLP µP example can be generalized easily to general neural networks trained under SGD or158

Adam, as summarized in Table 3.159

Transformers with µP We repeat the experiments with base width n0 = 128 for Transformers:160

Definition 4.1. The Maximal Update Parametrization (µP) for a Transformer is given by Table 3161

and 1/d attention instead of 1/
√
d, i.e. the attention logit is calculated as q>k/d instead of q>k/

√
d162

where query q and key k have dimension d.6163

The results are shown on the right in Fig. 1, where the optimal learning rate is stable, and the164

performance improves monotonically as width increases.165

5 Which Hyperparameters Can Be µTransferred?166

In this section, we explore how common hyperparameters fit into our framework. In general, they can167

be divided into three kinds, summarized in Table 1:168

1. those that can transfer from the small to the large model, such as learning rate (Table 2);169

2. those that primarily control regularization and don’t work well with our technique; and170

3. those that define training scale, such as width as discussed above as well as others like depth171

and batch size, across which we transfer other hyperparameters.172

Those in the first category transfer across width, as theoretically justified above in Section 2, while173

we empirically explore the transfer across the other dimensions in the third category, in order to push174

the practicality and generality of our technique. Note that µTransfer across width is quite general,175

e.g. it allows varying width ratio of different layers or number of attention heads in a Transformer;176

see Appendix B.2. This will be very useful in practice. For the second category, the amount of177

regularization naturally depends on both the model size and data size, so we should not expect transfer178

to work if the parametrization only depends on model size. We discuss these hyperparameters in179

more detail in Appendix B.1.180

5.1 Empirical Validation and Limitations181

Our empirical investigations focus on Transformers (here) and ResNet (in Appendix D.1.1), the most182

popular backbones of deep learning models today. We train a 2-layer pre-layernorm µP7 Transformer183

6This is roughly because during training, q and k will be correlated so q>k actually scales like d due to Law
of Large Numbers, in contrast to the original motivation that q, k are uncorrelated at initialization so Central
Limit applies instead. See Appendix G.2.1 for a more in-depth discussion.

7“2 layers” means the model has 2 self-attention blocks. To compare with SP Transformer, see Fig. 12.

5

14 12 10 8

1

2

3

4

5

Tr
ai

ni
ng

 L
os

s

Width
128
256
512
1024
2048
4096

5 0 5 10 15

1

2

3

4

5

5.0 2.5 0.0 2.5

1

2

3

4

5

(a) (b) (c) (d) (e) (f)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

14 12 10 8
log2LearningRate

3.75

4.00

4.25

4.50

4.75

5.00

5.25

5.50

5.75

Tr
ai

ni
ng

 L
os

s

Depth
2
4
8
16

5 0 5 10 15
log2 output

3.0

3.5

4.0

4.5

5.0

5.0 2.5 0.0 2.5
log2InitStd

4.0

4.5

5.0

5.5

6.0

6.5

7.0

(a) (b) (c) (d) (e) (f)
LR Schedule

3.8

3.9

4.0

4.1

4.2

4.3

4.4

4.5

Figure 4: Empirical validation of the stability of four representative hyperparameters on pre-
LN Transformers in µP: learning rate, last layer weight multiplier αoutput, weight initialization
standard deviation, and learning rate schedule. We use the following learning rate schedules: (a)
constant; (b) linear decay; (c) StepLR @ [5k, 8k] with a decay factor of 0.1; (d) StepLR @ [4k,
7k] with a decay factor of 0.3; (e) cosine annealing; (f) inverse square-root decay. All models are
trained on wikitext-2 for 10k steps. When not specified in the legend, the width used is 256, depth
2, batch size 20, sequence length 32, LR schedule constant. We sweep a particular hyperparameter,
corresponding to each column, while fixing all others constant. See Section 5.1 for discussion of
these results.

with 4 attention heads on Wikitext-2. We sweep one of four hyperparameters (learning rate, output184

weight multiplier αoutput, initialization standard deviation, and learning rate schedule) while fixing185

the others and sweeping along width and depth (with additional results in Fig. 10 on transfer across186

batch size, sequence length, and training time). Fig. 4 shows the results averaged over 5 random187

seeds.188

Empirically, we find that for language modeling on Transformers, hyperparameters generally transfer189

across scale dimensions if some minimum width (e.g. 256), depth (e.g., 4), batch size (e.g., 32),190

sequence length (e.g., 128), and training steps (e.g., 5000) are met, with some caveats discussed191

below. While the exact optimum can shift slightly with increasing scale, this shift usually has very192

small impact on the loss, compared to SP (Figs. 1 and 3(left)). However, there are some caveats.193

For example, the best initialization standard deviation does not seem to transfer well across depth194

(2nd row, 3rd column), despite having a stabler optimum across width. In addition, while our results195

on width, batch size, sequence length, and training time still hold for post-layernorm (Fig. 11),8196

the transfer across depth only works for pre-layernorm Transformer. Nevertheless, in practice (e.g.197

our results in Section 6.2.1) we find that fixing initialization standard deviation while tuning other198

hyperparameters works well when transferring across depth.199

6 Efficiency and Performance of µTransfer200

Now that the plausibility of µTransfer has been established in toy settings, we turn to more realistic201

scenarios to see if one can achieve tangible gains. Specifically, we perform hyperparameter tuning202

only on a smaller proxy model, test the obtained hyperparameters on the large target model directly,203

and compare against baselines tuned using the target model. We seek to answer the question: Can204

µTransfer make hyperparameter tuning more efficient while achieving performance on par with205

traditional tuning? As we shall see by the end of the section, the answer is positive. We focus on206

Transformers here, while experiments on ResNets on CIFAR10 and Imagenet can be found as well in207

Appendix D.1. All of our experiments are run on V100 GPUs.208

8in fact, post-layernorm transformers are much more sensitive to hyperparameters than pre-layernorm, so our
technique is more crucial for them, especially for transfer across width. Fig. 1 uses post-layernorm.

6

Table 4: Transformer on IWSLT14 De-En. 1x and 0.25x refers to scaling of width only. Compared
to traditional tuning (“Tuning on 1x”), hyperparameter transfer from 0.25x provides better and more
reliable outcome given fixed amount of compute. On the other hand, naive transfer (i.e. with SP
instead of µP) fails completely. The percentiles are over independent trials, with each trial involving
the entire tuning process with a new hyperparameter random search.

Val. BLEU Percentiles
Setup Total Compute #Samples 25 50 75 100

fairseq[22] default - - - - - 35.40

Tuning on 1x 1x 5 33.62 35.00 35.35 35.45
Naive transfer from 0.25x 1x 64 training diverged
µTransfer from 0.25x (Ours) 1x 64 35.27 35.33 35.45 35.53

6.1 Transformer on IWSLT14 De-En209

Setup IWSLT14 De-En is a well-known machine translation benchmark. We use the default IWSLT210

(post-layernorm) Transformer implemented in fairseq [22] with 40M parameters, which we denote211

as the 1x model.9 For µTransfer, we tune on a 0.25x model with 1/4 of the width, amounting to 4M212

parameters. For this experiment, we tune via random search the learning rate η, the output layer213

parameter multiplier αoutput, and the attention key-projection weight multiplier αattn. See the grid214

and other experimental details in Appendix C.1.215

4 3 2 1 0 1 2 3
log2Compute

34.4

34.6

34.8

35.0

35.2

35.4

BL
EU

 S
co

re

Method
Ours
Conventional

10 20 30 40 50 60
Samples

Method
Ours
Conventional

Figure 5: Efficiency-Performance Pareto frontier of
µTransfer compared to conventional tuning, on IWSLT
Transformer, using random hyperparameter search as the
base method. We plot the median BLEU score over 25 tri-
als (Left) against relative compute budget in log scale and
(Right) against number of hyperparameter samples taken.
While with the same number of samples, µTransfer slighly
underperforms conventional tuning, this gap vanishes with
more samples, and in terms of compute, our Pareto frontier
strongly and consistently dominates that of conventional tun-
ing. Note that, in larger models (e.g. BERT or GPT-3, not
shown here), we believe our efficiency advantage will only
widen as our small proxy model can stay the same size while
the target model grows.

We compare transferring from the216

0.25x model with tuning the 1x model217

while controlling the total tuning bud-218

get in FLOPs.10 To improve the repro-219

ducibility of our result: 1) we repeat220

the entire hyperparameter search pro-221

cess (a trial) 25 times for each setup,222

with number of samples as indicated223

in Table 4, and report the 25th, 50th,224

75th, and 100th percentiles; 2) we225

evaluate each selected hyperparame-226

ter combination using 5 random ini-227

tializations and report the mean per-228

formance.11229

We pick the hyperparameter combi-230

nation that achieves the lowest vali-231

dation loss12 for each trial. The re-232

ported best outcome is chosen accord-233

ing to the validation loss during tun-234

ing. We compare against the default in235

fairseq, which is presumably heav-236

ily tuned. The result is shown in Ta-237

ble 4.238

Performance Pareto Frontier The result above only describes a particular compute budget. Is239

µTransfer still preferable when we have a lot more (or less) compute? To answer this question, we240

produce the compute-performance Pareto frontier in Fig. 5(left), where we repeat the above experi-241

ment with different compute budgets. Evidently, our approach completely dominates conventional242

tuning.243

9https://github.com/pytorch/fairseq/blob/master/examples/translation/README.md.
10Ideally we would like to measure the wall clock time of tuning. But for smaller models such as the IWSLT

Transformer proxy models here, CUDA is poorly optimized, so wall clock time scaling would not reflect the
scaling for larger models like BERT. Thus, we measure in FLOPs, which is less dependent on model size.

11We do not report the standard deviation over random initializations to avoid confusion.
12We find this provides more reliable result than selecting for the best BLEU score because loss is “smoother.”

7

https://github.com/pytorch/fairseq/blob/master/examples/translation/README.md

Sample Quality of Proxy Model vs Target Model The Pareto frontier in Fig. 5(right) suggests244

that, given a fixed number of random samples from the hyperparameter space, 1) tuning the target245

model directly yields slightly better results than tuning the proxy model (while taking much more246

compute of course), but 2) this performance gap seems to vanish as more samples are taken. This can247

be explained by the intuition that the narrower proxy model is a “noisy estimator” of the wide target248

model [40].13 With few samples, this noise can distort the random hyperparameter search, but with249

more samples, this noise is suppressed.14250

6.2 Transformer on WMT14 En-De251

We scale up to WMT14 En-De using the large (post-layernorm) Transformer from [35] with 211M252

parameters. We tune on a proxy model with 15M parameters by shrinking dmodel, dffn, and nheads.253

For this experiment, we tune via random search the learning rate η, the output layer parameter254

multiplier αoutput, and the attention key-projection weight multiplier αattn following the grid in255

Appendix C.2. The result is shown in Table 5: While random search with 3 hyperparameter samples256

far underperforms the fairseq default, we are able to match it via transfer using the same tuning257

budget.258

Table 5: Transformers on WMT14 En-De. 1x and 0.25x refers to scaling of width only. We report
BLEU fluctuation over 3 independent trials, i.e., 3 independent random hyperparameter searches.

Val. BLEU Percentiles
Setup Total Compute #Samples Worst Median Best

fairseq[22] default - - - - 26.40

Tuning on 1x 1x 3 training diverged 25.69
Naive transfer from 0.25x 1x 64 training diverged
µTransfer from 0.25x (Ours) 1x 64 25.94 26.34 26.42

6.2.1 BERT259

Finally, we consider large-scale language model pretraining where hyperparameter tuning is known260

to be challenging. Using Megatron (pre-layernorm) BERT [30] as a baseline, we hope to recover the261

performance of the published hyperparameters by only tuning a proxy model that has roughly 13M262

parameters, which we call BERT-prototype. While previous experiments scaled only width, here we263

will also scale depth, as discussed in Section 5 and validated in Fig. 4. We use a batch size of 256 for264

all runs and follow the standard finetuning procedures. For more details on BERT-prototype, what265

hyperparameters we tune, and how we finetune the trained models, see Appendix C.3.266

During hyperparameter tuning, we sample 256 combinations from the search space and train each267

combination on BERT-prototype for 105 steps. The total tuning cost measured in FLOPs is roughly the268

same as training 1 BERT-large for the full 106 steps; the exact calculation is shown in Appendix C.3.269

The results are shown in Table 6. Notice that on BERT-large, we obtain sizeable improvement over270

the pretuned Megatron BERT-large baseline.271

7 Related Works272

Hyperparameter Tuning Many have sought to speedup hyperparameter tuning beyond the simple273

grid or random search, such as via Bayesian optimization [32, 33] or multi-arm bandits [13, 16].274

There are also dedicated tools such as Optuna [4] and Talos [3] which integrate with existing deep275

learning frameworks and provide an easy way to apply more advanced tuning techniques. Our work276

is complementary to the above, as they can be used to tune the proxy model. it is only for scientific277

reasons that we primarily did random search throughout this work.278

Hyperparameter Transfer Many previous works explored transfer learning of hyperparameter279

tuning (e.g. [10, 25, 34, 43]). However, to the best of our knowledge, our work is the first to explore280

13More precisely, the proxy and the target models are both “estimators” of their common infinite-width limit,
but the former is more noisy than the latter, with width akin to the number of items in an average.

14but perhaps not completely, as the narrow proxy models may be biased estimators, i.e. the optimal hyperpa-
rameters might differ slightly from the wide model as seen in Fig. 4.

8

Table 6: BERT pretraining. Hyperparameter transfer outperforms published baselines without
tuning the full model directly at all. We tune BERT-base and BERT-large simultaneously via a single
proxy model, BERT-prototype. The total tuning cost = the cost of pretraining a single BERT-large.
Model speedup refers to the training speedup of BERT-prototype over BERT-base or BERT-large.
Total speedup in addition includes time saving from transferring across training steps. Both speedups
can be interpreted either as real-time speedup on V100s or as FLOPs speedup (which turn out to be
empirically very similar in this case).

Model Method Model Speedup Total Speedup Test loss MNLI (m/mm) QQP

BERTbase Megatron Default 1x 1x 1.995 84.2/84.2 90.6
BERTbase Naive Transfer 4x 40x training diverged
BERTbase µTransfer (Ours) 4x 40x 1.970 84.3/84.8 90.8

BERTlarge Megatron Default 1x 1x 1.731 86.3/86.2 90.9
BERTlarge Naive Transfer 22x 220x training diverged
BERTlarge µTransfer (Ours) 22x 220x 1.683 87.0/86.5 91.4

zero-shot hyperparameter transfer. In addition, we focus on transferring across model scale rather281

than between different tasks or datasets. Some algorithms like Hyperband [17] can leverage cheap282

estimates of hyperparameter evaluations (like using a small model to proxy a large model) but they283

are not zero-shot algorithms, so would still be very expensive to apply to large model training.284

Nevertheless, all of the above methods are complementary to ours as they can be applied to the tuning285

of our proxy model.286

Previously Proposed Scaling Rules of Hyperparameters [9, 21, 29, 31] investigated the right287

way to scale learning rate with batch size, with sometimes conflicting proposals. which we summarize288

in Appendix A. [23] studied how learning rate (and batch size) should scale with width for MLPs and289

CNNs trained with SGD in NTK or standard parametrizations. We provide a detailed comparison of290

our work with theirs in Appendix A.291

Many previous works proposed different initialization or parametrizations with favorable properties,292

such as better stability for training deep neural networks [5, 8, 11, 19, 28, 41, 42, 45]. Our work293

differs from these in that we focus on the transferability of optimal hyperparameters from small294

models to large models in the same parametrization.295

8 Conclusion296

Leveraging the discovery of a feature learning neural network infinite-width limit, we hypothesized297

and verified that the hyperparameter landscape across NNs of different width is reasonably stable if298

parametrized according to Maximal Update Parametrization (µP). We further empirically showed299

that it’s possible to transfer across depth, batch size, sequence length, and training time, with a few300

caveats. This allowed us to indirectly tune a very large network by tuning its smaller counterparts301

and transfering the hyperparameters to the full model.302

Nevertheless, our method has plenty of room to improve. For example, initialization does not transfer303

well across depth, and depth transfer generally still does not work for post-layernorm Transformers.304

This begs the question whether a more principled parametrization in depth could solve these problems.305

Additionally, Fig. 4 shows that the optimal hyperparameter still shifts slightly for smaller models.306

Perhaps by considering finite-width corrections to µP one can fix this shift. Finally, it will be307

interesting to consider if there’s a way to transfer regularization hyperparameters as a function of308

both the model size and data size.309

Broader Impact Our work makes hyperparameter tuning of large models more efficient. This310

enables large models to be better tuned given the same compute budget, thereby increasing the311

performance per cost. Organizations large and small can focus their research on small models and312

scale up only once with reasonable confidence that the training would go well. We do not foresee any313

direct negative societal impact.314

9

References315

[1] NVIDIA/DeepLearningExamples, apache v2 license. URL https://github.com/NVIDIA/316

DeepLearningExamples.317

[2] Davidnet, mit license, 2019. URL https://github.com/davidcpage/cifar10-fast.318

[3] Autonomio talos, mit license, 2019. URL http://github.com/autonomio/talos.319

[4] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:320

A next-generation hyperparameter optimization framework, 2019.321

[5] Thomas Bachlechner, Bodhisattwa Prasad Majumder, Huanru Henry Mao, Garrison W. Cot-322

trell, and Julian McAuley. ReZero is All You Need: Fast Convergence at Large Depth.323

arXiv:2003.04887 [cs, stat], June 2020. URL http://arxiv.org/abs/2003.04887. arXiv:324

2003.04887.325

[6] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,326

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel327

Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.328

Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz329

Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec330

Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.331

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of332

Deep Bidirectional Transformers for Language Understanding. arXiv:1810.04805 [cs], May333

2019. URL http://arxiv.org/abs/1810.04805. arXiv: 1810.04805 version: 2.334

[8] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward335

neural networks. In Yee Whye Teh and Mike Titterington, editors, Proceedings of the Thirteenth336

International Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of337

Machine Learning Research, pages 249–256, Chia Laguna Resort, Sardinia, Italy, May 2010.338

PMLR. URL http://proceedings.mlr.press/v9/glorot10a.html.339

[9] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the340

generalization gap in large batch training of neural networks. arXiv:1705.08741 [cs, stat], May341

2017. URL http://arxiv.org/abs/1705.08741. arXiv: 1705.08741.342

[10] Samuel Horváth, Aaron Klein, Peter Richtárik, and Cédric Archambeau. Hyperparameter343

transfer learning with adaptive complexity. CoRR, abs/2102.12810, 2021. URL https:344

//arxiv.org/abs/2102.12810.345

[11] Xiao Shi Huang and Felipe Pérez. Improving Transformer Optimization Through Better346

Initialization. page 9.347

[12] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural Tangent Kernel: Convergence348

and Generalization in Neural Networks. arXiv:1806.07572 [cs, math, stat], June 2018. URL349

http://arxiv.org/abs/1806.07572. 00000 arXiv: 1806.07572.350

[13] Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and hyperparame-351

ter optimization, 2015.352

[14] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,353

Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling Laws for Neural Language354

Models. arXiv:2001.08361 [cs, stat], January 2020. URL http://arxiv.org/abs/2001.355

08361. arXiv: 2001.08361.356

[15] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint357

arXiv:1412.6980, 2014.358

[16] Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Moritz Hardt, Benjamin359

Recht, and Ameet Talwalkar. A system for massively parallel hyperparameter tuning, 2020.360

[17] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyper-361

band: A Novel Bandit-Based Approach to Hyperparameter Optimization. JMLR 18, page 52.362

10

https://github.com/NVIDIA/DeepLearningExamples
https://github.com/NVIDIA/DeepLearningExamples
https://github.com/NVIDIA/DeepLearningExamples
https://github.com/davidcpage/cifar10-fast
http://github.com/autonomio/talos
http://arxiv.org/abs/2003.04887
http://arxiv.org/abs/1810.04805
http://proceedings.mlr.press/v9/glorot10a.html
http://arxiv.org/abs/1705.08741
https://arxiv.org/abs/2102.12810
https://arxiv.org/abs/2102.12810
https://arxiv.org/abs/2102.12810
http://arxiv.org/abs/1806.07572
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2001.08361

[18] Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Understanding363

the difficulty of training transformers. In Proceedings of the 2020 Conference on Empirical364

Methods in Natural Language Processing (EMNLP), pages 5747–5763, Online, November365

2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.463.366

URL https://www.aclweb.org/anthology/2020.emnlp-main.463.367

[19] Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Understanding the368

Difficulty of Training Transformers. arXiv:2004.08249 [cs, stat], September 2020. URL369

http://arxiv.org/abs/2004.08249. arXiv: 2004.08249.370

[20] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Multi-task deep neural371

networks for natural language understanding. In Proceedings of the 57th Annual Meeting of372

the Association for Computational Linguistics, pages 4487–4496, Florence, Italy, July 2019.373

Association for Computational Linguistics. URL https://www.aclweb.org/anthology/374

P19-1441.375

[21] Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An Empirical376

Model of Large-Batch Training. arXiv:1812.06162 [cs, stat], December 2018. URL http:377

//arxiv.org/abs/1812.06162. arXiv: 1812.06162.378

[22] Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,379

and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling, mit license. In380

Proceedings of NAACL-HLT 2019: Demonstrations, 2019.381

[23] Daniel S. Park, Jascha Sohl-Dickstein, Quoc V. Le, and Samuel L. Smith. The Effect of Network382

Width on Stochastic Gradient Descent and Generalization: an Empirical Study. May 2019.383

URL https://arxiv.org/abs/1905.03776v1.384

[24] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory385

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-386

son, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,387

Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.388

Pytorch: An imperative style, high-performance deep learning library, bsd-style li-389

cense. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dÁlché Buc, E. Fox, and390

R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages391

8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/392

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.393

pdf.394

[25] Valerio Perrone, Rodolphe Jenatton, Matthias W Seeger, and Cedric Archambeau. Scalable395

Hyperparameter Transfer Learning. NeurIPS 2018, page 11.396

[26] Martin Popel and Ondřej Bojar. Training Tips for the Transformer Model. The Prague Bulletin397

of Mathematical Linguistics, 110(1):43–70, April 2018. ISSN 1804-0462. doi: 10.2478/398

pralin-2018-0002. URL http://content.sciendo.com/view/journals/pralin/110/399

1/article-p43.xml.400

[27] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,401

Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the Limits of Transfer Learning with a Unified402

Text-to-Text Transformer. arXiv:1910.10683 [cs, stat], July 2020. URL http://arxiv.org/403

abs/1910.10683. arXiv: 1910.10683.404

[28] Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep Infor-405

mation Propagation. arXiv:1611.01232 [cs, stat], November 2016. URL http://arxiv.org/406

abs/1611.01232. arXiv: 1611.01232.407

[29] Christopher J. Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig,408

and George E. Dahl. Measuring the Effects of Data Parallelism on Neural Network Training.409

arXiv:1811.03600 [cs, stat], November 2018. URL http://arxiv.org/abs/1811.03600.410

arXiv: 1811.03600.411

[30] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan412

Catanzaro. Megatron-lm: Training multi-billion parameter language models using model413

parallelism. CoRR, abs/1909.08053, 2019. URL http://arxiv.org/abs/1909.08053.414

11

https://www.aclweb.org/anthology/2020.emnlp-main.463
http://arxiv.org/abs/2004.08249
https://www.aclweb.org/anthology/P19-1441
https://www.aclweb.org/anthology/P19-1441
https://www.aclweb.org/anthology/P19-1441
http://arxiv.org/abs/1812.06162
http://arxiv.org/abs/1812.06162
http://arxiv.org/abs/1812.06162
https://arxiv.org/abs/1905.03776v1
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://content.sciendo.com/view/journals/pralin/110/1/article-p43.xml
http://content.sciendo.com/view/journals/pralin/110/1/article-p43.xml
http://content.sciendo.com/view/journals/pralin/110/1/article-p43.xml
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1611.01232
http://arxiv.org/abs/1611.01232
http://arxiv.org/abs/1611.01232
http://arxiv.org/abs/1811.03600
http://arxiv.org/abs/1909.08053

[31] Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V. Le. Don’t Decay the Learning Rate,415

Increase the Batch Size. arXiv:1711.00489 [cs, stat], November 2017. URL http://arxiv.416

org/abs/1711.00489. arXiv: 1711.00489.417

[32] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine418

learning algorithms, 2012.419

[33] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,420

Md. Mostofa Ali Patwary, Prabhat, and Ryan P. Adams. Scalable bayesian optimization using421

deep neural networks, 2015.422

[34] Danny Stoll, Jörg K.H. Franke, Diane Wagner, Simon Selg, and Frank Hutter. Hyperparameter423

transfer across developer adjustments, 2021. URL https://openreview.net/forum?id=424

WPO0vDYLXem.425

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,426

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.427

URL http://arxiv.org/abs/1706.03762.428

[36] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.429

Glue: A multi-task benchmark and analysis platform for natural language understanding.430

EMNLP 2018, page 353, 2018.431

[37] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.432

Glue: A multi-task benchmark and analysis platform for natural language understanding, 2019.433

[38] Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus434

for sentence understanding through inference. In Proceedings of the 2018 Conference of the435

North American Chapter of the Association for Computational Linguistics: Human Language436

Technologies, Volume 1 (Long Papers), pages 1112–1122. Association for Computational437

Linguistics, 2018. URL http://aclweb.org/anthology/N18-1101.438

[39] Greg Yang. Tensor Programs III: Neural Matrix Laws. arXiv:2009.10685 [cs, math], September439

2020. URL http://arxiv.org/abs/2009.10685.440

[40] Greg Yang and Edward J. Hu. Feature learning in infinite-width neural networks. arXiv, 2020.441

[41] Greg Yang and Sam S. Schoenholz. Deep Mean Field Theory: Layerwise Variance and442

Width Variation as Methods to Control Gradient Explosion. February 2018. URL https:443

//openreview.net/forum?id=rJGY8GbR-.444

[42] Greg Yang and Samuel S. Schoenholz. Mean Field Residual Networks: On the Edge of Chaos.445

arXiv:1712.08969 [cond-mat, physics:nlin], December 2017. URL http://arxiv.org/abs/446

1712.08969. 00000 arXiv: 1712.08969.447

[43] Dani Yogatama and Gideon Mann. Efficient Transfer Learning Method for Automatic Hyperpa-448

rameter Tuning. In Artificial Intelligence and Statistics, pages 1077–1085. PMLR, April 2014.449

URL http://proceedings.mlr.press/v33/yogatama14.html. ISSN: 1938-7228.450

[44] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks, 2017.451

[45] Hongyi Zhang, Yann N. Dauphin, and Tengyu Ma. Residual Learning Without Normalization452

via Better Initialization. In International Conference on Learning Representations, 2019. URL453

https://openreview.net/forum?id=H1gsz30cKX.454

12

http://arxiv.org/abs/1711.00489
http://arxiv.org/abs/1711.00489
http://arxiv.org/abs/1711.00489
https://openreview.net/forum?id=WPO0vDYLXem
https://openreview.net/forum?id=WPO0vDYLXem
https://openreview.net/forum?id=WPO0vDYLXem
http://arxiv.org/abs/1706.03762
http://aclweb.org/anthology/N18-1101
http://arxiv.org/abs/2009.10685
https://openreview.net/forum?id=rJGY8GbR-
https://openreview.net/forum?id=rJGY8GbR-
https://openreview.net/forum?id=rJGY8GbR-
http://arxiv.org/abs/1712.08969
http://arxiv.org/abs/1712.08969
http://arxiv.org/abs/1712.08969
http://proceedings.mlr.press/v33/yogatama14.html
https://openreview.net/forum?id=H1gsz30cKX

Checklist455

The checklist follows the references. Please read the checklist guidelines carefully for information on456

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or457

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing458

the appropriate section of your paper or providing a brief inline description. For example:459

• Did you include the license to the code and datasets? [Yes] See Section ?.460

• Did you include the license to the code and datasets? [No] The code and the data are461

proprietary.462

• Did you include the license to the code and datasets? [N/A]463

Please do not modify the questions and only use the provided macros for your answers. Note that the464

Checklist section does not count towards the page limit. In your paper, please delete this instructions465

block and only keep the Checklist section heading above along with the questions/answers below.466

1. For all authors...467

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s468

contributions and scope? [Yes] . See abstract and Section 1.469

(b) Did you describe the limitations of your work? [Yes] . See Section 5.1 and Section 8.470

(c) Did you discuss any potential negative societal impacts of your work? [Yes] . See471

Section 8.472

(d) Have you read the ethics review guidelines and ensured that your paper conforms to473

them? [Yes] .474

2. If you are including theoretical results...475

(a) Did you state the full set of assumptions of all theoretical results? [N/A]476

(b) Did you include complete proofs of all theoretical results? [N/A]477

3. If you ran experiments...478

(a) Did you include the code, data, and instructions needed to reproduce the main exper-479

imental results (either in the supplemental material or as a URL)? [No] Our main480

experiments are quite expensive and depend on details of our internal cluster, so we do481

not provide code to exactly reproduce it. However we include a package so that anyone482

can use µTransfer and describe all the details to reproduce it.483

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they484

were chosen)? [Yes] . See Section 6 and Appendix C.485

(c) Did you report error bars (e.g., with respect to the random seed after running experi-486

ments multiple times)? [Yes]487

(d) Did you include the total amount of compute and the type of resources used (e.g., type488

of GPUs, internal cluster, or cloud provider)? [Yes] . See Section 6.489

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...490

(a) If your work uses existing assets, did you cite the creators? [Yes] . We used Megatron,491

fairseq, pytorch and cited all of them.492

(b) Did you mention the license of the assets? [Yes] . In the references.493

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]494

. Yes, we are releasing a new Pytorch package.495

(d) Did you discuss whether and how consent was obtained from people whose data you’re496

using/curating? [N/A]497

(e) Did you discuss whether the data you are using/curating contains personally identifiable498

information or offensive content? [N/A]499

5. If you used crowdsourcing or conducted research with human subjects...500

(a) Did you include the full text of instructions given to participants and screenshots, if501

applicable? [N/A]502

(b) Did you describe any potential participant risks, with links to Institutional Review503

Board (IRB) approvals, if applicable? [N/A]504

(c) Did you include the estimated hourly wage paid to participants and the total amount505

spent on participant compensation? [N/A]506

13

A Detailed Discussions on Related Works507

A.1 Hyperparameter Tuning508

Many have sought to speedup hyperparameter tuning beyond the simple grid or random search. Snoek509

et al. [32] treated hyperparameter tuning as an optimization process and used Bayesian optimization510

by treating the performance of each hyperparameter combination as a sample from a Gaussian process511

(GP). Snoek et al. [33] further improved the runtime by swapping the GP with a neural network.512

Another thread of work investigated how massively parallel infrasture can be used for efficient tuning513

under the multi-arm bandit problem [13, 16]. There are also dedicated tools such as Optuna [4] and514

Talos [3] which integrate with existing deep learning frameworks and provide an easy way to apply515

more advanced tuning techniques.516

Our approach is distinct from all of the above in that it does not work on the hyperparameter517

optimization process itself. Instead, it decouples the size of the target model from the tuning518

cost, which was not feasible prior to this work. This means that no matter how large the target519

model is, we can always use a fixed-sized proxy model to probe its hyperparameter landscape520

Nevertheless, our method is complementary, as the above approaches can naturally be applied to the521

tuning of the proxy model; it is only for scientific reasons that we use either grid search or random522

search throughout this work.523

A.2 Previously Proposed Scaling Rules of Hyperparameters524

(Learning Rate, Batch Size) Scaling [31] proposed to scale learning rate with batch size while525

fixing the total epochs of training; [9] proposed to scale learning rate as
√
batchsize while fixing526

the total number of steps of training. However, [29] showed that there’s no consistent (learning527

rate, batch size) scaling law across a range of dataset and models. Later, [21] studied the trade-off528

of training steps vs computation as a result of changing batch size. They proposed an equation of529

a/(1 + b/batchsize), where a and b are task- and model-specific constants, for the optimal learning530

rate (see their fig 3 and fig 5). This law suggests that for sufficiently large batch size, the optimal531

learning rate is roughly constant.15 This supports our results here as well as the empirical results in532

[29, fig 8].533

Learning Rate Scaling with Width Assuming that the optimal learning rate should scale with534

batch size following [31], [23] empirically investigated how the “noise ratio” LR/batchsize scales535

with width for MLP and CNNs in NTK parametrization (NTP) or standard parametrization (NTP)536

trained with SGD. They claimed that, in networks without batch normalization, the optimal noise537

ratio is constant in SP but scales like 1/width for NTP. However, they found this law breaks down538

for networks with normalization.539

Here in our work, Fig. 3 contradicts their results on SP MLP by showing the optimal learning rate540

(fixing batch size) shifts with width. We believe this difference is 1) due to their erroneous assumption541

that optimal learning rate scales with batch size (as debunked by [21, 29]) and 2) because their SP542

experiments were done by fixing the learning rate and only sweeping batch size.543

Furthermore, Fig. 1 clearly shows the optimal learning rate is not constant in SP for transformers544

(trained with Adam). Other differences in our works include our applicability to 1) networks with545

normalization, 2) Adam and other adaptive optimizers, 3) our empirical validation of transfer across546

depth and sequence length, and 4) explicit validation of tuning via hyperparameter transfer on large547

models like BERT-large.548

Finally, as argued in [40] and Appendix G.3, SP and NTP lead to bad infinite-width limits in contrast549

to µP and hence are suboptimal for wide neural networks. For example, sufficiently wide neural550

networks in SP and NTP would lose the ability to learn features, as concretely demonstrated on551

word2vec in [40].552

Input Layer Parametrization While typically, the input layer is initialized with fanin initialization,553

in language models where the input and output layers are shared (corresponding to word embeddings),554

it can actually be more natural to use a fanout initialization (corresponding to fanin initialization of555

15while the optimal learning is roughly linear in batch size when the latter is small

14

the output layer). In fact, we found that fairseq [22] by default actually implements our proposed556

input layer parametrization (both the fanout initialization and the
√

fan_out multiplier).16557

From the Theory of Infinite-Width to the Practice of Finite-Width Neural Networks and Back558

[40] introduced µP as the unique parametrization that enables all layers of a neural network to learn559

features in the infinite-width limit, especially in contrast to the NTK parametrization [12] (which560

gives rise to the NTK limit) that does not learn features in the limit. Based on this theoretical561

insight, in Appendix G.3, we argue that µP should also be the unique parametrization that allows562

hyperparameter transfer across width; in short this is because it both 1) preserves feature learning, so563

that performance on feature learning tasks (such as language model pretraining) does not become564

trivial in the limit, and 2) ensures each parameter tensor is not stuck at initialization in the large565

width limit, so that its learning rate does not become meaningless. At the same time, our results566

here suggest that µP is indeed the correct parametrization for large neural networks and thus provide567

empirical motivation for the theoretical study of the infinite-width µP limit.568

B Which Hyperparameters Can Be Transferred? (Continued)569

B.1 Further Discussions on Hyperparameter Categories570

Below, we discuss the reasoning behind each kind, which are supported by our empirical evidence571

collected in Fig. 4 on Transformers as well as those in Appendix D.1 on ResNet.572

Transferable Hyperparameters In Table 2, we summarize which hyperparameters can be trans-573

ferred across training scale. The transfer across width, as explained in Section 2, is theoretically574

justified, while we present the transfer across the other dimensions as empirical results.575

These cover most of the well-known and important hyperparameters when the need for regularization576

is not paramount, e.g., during large scale language model pretraining. Parameter Multipliers are not577

well-known hyperparameters, yet we include them here as they serve a bridge between SP and µP and578

can impact model performance in practice. Concretely, any SP and µP neural networks of the same579

width can have their Parameter Multipliers tuned so that their training dynamics become identical.580

Hyperparameters That Don’t Transfer Well Not all hyperparameters transfer well even if we581

use µP. In particular, those whose primary function is to regularize training to mitigate “overfitting"582

tend not to transfer well. Indeed, intuitively, regularization needs to be applied more heavily in larger583

models, so naturally we do not expect the same regularization hyperparameters to stay constant across584

model sizes.585

To the best of our knowledge, there is no strict separation between hyperparameters that regularize586

and those that don’t. However, conventional wisdom tells us that there exists a spectrum of how587

much regularizing effect a hyperparameter has. For example, dropout probability and weight decay588

are among those whose primary function is to regularize, whereas batch size and learning rate might589

regularize training in some cases but affect the dynamics more so in other ways. Our empirical590

exploration tells us that the former do not transfer well, while the latter do. Our subsequent discussion591

will focus on the latter; we leave to future works the expansion to the former.592

Hyperparameters Transfered Across We have left out a category of hyperparameters that defines593

the training scale, or in practical terms, training cost. This includes 1) those that define how many594

operations a model’s forward/backward pass takes, such as the model’s width, depth, and in the case595

of language modeling, sequence length; and 2) those that define how many such passes are performed,596

such as batch size and number of training steps.597

As recent works have shown [6, 14], improvements along any of these scale dimensions lead to598

apparently sustainable gain in performance; as a result, we are primarily interested in transferring599

other hyperparameters across these dimensions that define scale, rather than finding the optimal600

scale.17 This category of hyperparameters is particularly crucial as one can speedup training by601

16But it certainly does not implement other parts of our parametrization, like Adam learning rate scaling or
the output multiplier.

17In particular, we are not fixing the total training FLOPs when we scale, which requires understanding the
tradeoff of different scale hyperparameters. For example, when we transfer across batch size, we fix the number
of steps of training (not the number of epochs), so that the total FLOPs scales linearly.

15

𝑊𝐾 𝑊𝑄
𝑊𝑉

𝑑𝑘 𝑑𝑘 𝑑𝑣

Self-attn (paramless)

𝑊𝑂

𝑑𝑚𝑜𝑑𝑒𝑙

𝑑𝑓𝑓𝑛

𝑑𝑚𝑜𝑑𝑒𝑙

𝑑𝑚𝑜𝑑𝑒𝑙

Sk
ip

 c
o

n
n

ec
ti

o
n

Sk
ip

 c
o

n
n

ec
ti

o
n

𝑑𝑚𝑜𝑑𝑒𝑙

𝑑𝑓𝑓𝑛

𝑑𝑚𝑜𝑑𝑒𝑙

𝑑𝑚𝑜𝑑𝑒𝑙

𝑑𝑣 ⋅ 𝑛ℎ𝑒𝑎𝑑

𝑛𝑜. ℎ𝑒𝑎𝑑𝑠 = 𝑛ℎ𝑒𝑎𝑑

Sk
ip

 c
o

n
n

ec
ti

o
n

Sk
ip

 c
o

n
n

ec
ti

o
n

(a) Single-head attention (b) Multi-head attention

Figure 6: Schematics of each Transformer layer. Commonly, the key and value dimensions dk and dv
are both set to dmodel/nhead, and this is referred to as dhead.

downsizing in one or multiple such dimensions. Indeed, it’s very common for practitioners to602

implicitly transfer hyperparameters across the number of training samples by tuning on only a subset603

of the full training data.604

Our insights from the infinite-width limit inspired us to explore hyperparameter tranfer across width,605

which does not work under SP as we have shown earlier. Building upon our success with width,606

which is well explained theoretically, we hope to push the limit of compute-saving by investigating607

the other dimensions empirically. To the best of our knowledge, the transferability of optimal608

hyperparameters across depth, batch size, sequence length, and training time has not been rigorously609

investigated previously, with the main exception of the literature on (learning rate, batch size) scaling610

[29, 31] where our transferability result of learning rate across batch size recapitulates [21]. 18 See611

Appendix A.2 on how our results relate to prior works. We will primarily focus on the Transformer612

architecture in the main text with evidence for ResNet in Appendix D.1.613

B.2 On the Definitions of Width614

Our theory allows more general notions of width. This is especially relevant in Transformers, where615

dmodel, dhead = dk, dv, nhead, dffn (see Fig. 6) can all be construed as measures of width. We briefly616

discuss these here, with more theoretical justification in Appendix G.2.1 and empirical validation617

below.618

Varying Width Ratio So far we have assumed that every hidden layer is widened by the same619

factor. But in fact we can widen different hidden layers differently. This is useful, for example, in a620

Transformer where we may want to use a smaller dffn during tuning. If we are using Adam, as long621

as the width of every layer still tends to infinity, we still obtain approximately the same limit19, so the622

hyperparameter transfer remains theoretically justified.623

See Fig. 7 for an empirical validation on IWSLT-14 using a Transformer.624

Number of Attention Heads In attention-based models, one typically splits hidden size into625

multiple attention heads following dmodel = dhead × nheads. So far we have assumed dhead and626

dmodel to be width, but it’s possible and potentially advantageous to fix dhead and treat nheads as627

the width, or increasing both simultaneously. This allows our technique to handle many popular628

models, including GPT-3 [6], which scale up by fixing dhead and increasing nhead. See Fig. 8 for an629

empirical validation on Wikitext-2.630

18There’s also a literature on the proper initialization for training deep networks effectively (e.g. [5, 11, 19,
28, 41, 42, 45]), but they do not study the transferability per se. See Appendix A.2

19This also applies for SGD, but we need more involved scaling to keep the limit approximately the same.

16

4 3 2 1 0 1
log2(LearningRate)

4.5

5.0

5.5

6.0

Va
lid

at
io

n
Lo

ss

Transformer on IWSLT14 De-En
(Varying dffn)

dffn/dmodel

0.5
1.0
2.0
4.0
8.0
16.0

Figure 7: Learning rate landscape in µP is stable even if we vary dffn by a factor of 32, fixing
dmodel.

14 12 10
log2

3.5

4.0

4.5

5.0

5.5

6.0

Tr
ai

ni
ng

 L
os

s Width
256
512
1024
2048
4096
8192

5 0 5 10 15
log2 output

3.0

3.5

4.0

4.5

5.0

10 0 10
log2 attn

3.5

4.0

4.5

5.0

5.0 2.5 0.0 2.5
log2

4

5

6

P - Fixing dhead while varying dmodel and nhead

Figure 8: Hyperparameters transfer across width when we fix dhead and vary dmodel and nhead.
αoutput, αattn are multipliers for output and key weights, and σ is initialization standard deviation.

Varying Just the Width of Attention Heads A specific useful instance of varying width ratio is631

decoupling the key and value dimensions dk and dv and scaling dk differently from (typically larger632

than) dmodel/nhead. This works as long as we use 1/d scaled-attention as in Definition 4.1 (instead633

of 1/
√
d as is done commonly). When tuning on the small proxy model, if dk is too small, the634

hyperparameter landscape can be quite noisy. Keeping dk relatively large while shrinking all other635

dimensions solves this problem, while still obtaining significant speedup.636

C Experimental Details637

C.1 IWSLT638

IWSLT14 De-En is a well-known machine translation benchmark. We use a Transformer implemented639

in fairseq [22] with a default dmodel = 1/4dffn = 512 and dk = dq = dv = dmodel/nheads = 128640

(amounting to 40M parameters), which we denote as the 1x model. For transfer, we tune on a proxy641

model with the same nhead but with dmodel and other dimensions 4 times smaller; we will call this642

the 0.25x model (but it has 4M parameters). All models are trained with Adam for 100 epochs and643

validated at the end of every epoch. We tune via random search the learning rate η, the output layer644

parameter multiplier αoutput, and the attention key-projection weight multiplier αattn following the645

grid646

• η: 5× 10−4 × 2z,where z ∈ {−1.5,−1.25,−1, ..., 1.25}647

• αoutput: 2z,where z ∈ {−8,−7,−6, ..., 7}648

• αattn: 2z,where z ∈ {−3,−2,−1, ..., 8}649

C.2 WMT650

We scale up to WMT14 En-De using the large Transformer from [35], with a dmodel = 1/4dffn =651

1024 and dq = dk = dv = dmodel/nheads = 64. We use the exact same setup and reproduce their652

result as our baseline. Then, we build the proxy model by shrinking the target model’s dmodel from653

17

the original 1024 to 256, dffn from 4096 to 256 and nheads from 16 to 4. This reduces the total654

parameter count from 211M to 15M. We then perform the hyperparameter search on the proxy655

model and take the best according to validation loss, before testing on the target model. We tune via656

random search the learning rate η, the output layer parameter multiplier αoutput, and the attention657

key-projection weight multiplier αattn following the grid658

• η: 6× 10−4 × 2z,where z ∈ {−1.5,−1.25,−1, ..., 1.25}659

• αoutput: 2z,where z ∈ {−8,−7,−6, ..., 7}660

• αattn: 2z,where z ∈ {−3,−2,−1, ..., 8}661

C.3 BERT662

Details of BERT Prototype Our proxy model has 10 Transformer layers with dmodel = dffn =663

256. We also reduce the number of attention heads to 8 with a dhead of 32. We call it BERT Prototype664

since we can increase its width and depth according to our definitions to recover both BERT Base665

and BERT Large, which enables us to sweep hyperparameters once and use for both models. Overall,666

BERT Prototype has 13M trainable parameters, a fraction of the 110M in BERT Base and the 350M667

in BERT Large.668

Hyperparameters Tuned for Pretraining We tune the following hyperparameters for pretraining:669

Adam learning rate η, embedding learning rate ηemb, output weight multiplier αoutput, attention670

logits multiplier αattn, layernorm gain multiplier αLNgain , and bias multiplier αbias.671

We sample 256 combinations from the follow grid:672

• η: 1× 10−4 × 2z,where z ∈ {1.5, 2, 2.5, 3, 3.5}673

• ηemb: 1× 10−4 × 2z,where z ∈ {−1,−0.5, 0, 0.5, 1}674

• αoutput: 2z,where z ∈ {2, 4, 6}675

• αattn: 2z,where z ∈ {3, 3.5, 4, ..., 7}676

• αLNgain
: 2z,where z ∈ {8.5, 9, 9.5, 10, 10.5}677

• αbias: 2z,where z ∈ {8.5, 9, 9.5, 10, 10.5}678

The ranges are chosen to include the implicit choices of these hyperparameters in SP BERT Large.679

Finetuning Procedure and Hyperparameters We hand-pick the finetuning hyperparameters after680

training the full-sized model. As regularization is an essential ingredient in successful finetuning, we681

do not perform hyperparameter transfer (at least the suite of techniques presented in this work) (see682

Table 1). We focus on MNLI [38] and QQP, which are two representative tasks from GLUE [36].683

Following [20], we used Adam [15] with a learning rate of 5 × 10−5 and a batch size of 64. The684

maximum number of epochs was set to 5. A linear learning rate decay schedule with warm-up of 0.1685

was used. All the texts were tokenized using wordpieces and were chopped to spans no longer than686

128 tokens.687

D Additional Experiments688

D.1 Experiments on ResNets689

D.1.1 ResNet on CIFAR-10690

Setup For this case we use Davidnet [2], a ResNet variant that trains quickly on CIFAR-10, so691

as to efficiently investigate its hyperparameter landscape. We train with SGD on CIFAR-10 for 10692

epochs; all results are averaged over 15 random seeds. We use a width multiplier to identify models of693

different width, and a multiplier of 1 corresponds to the original model in [2]. We look at validation694

accuracy here as the model barely overfits, and our observations will hold for the training accuracy as695

well. We first conduct a learning rate sweep for models of different widths using SP; the result is696

shown in Fig. 9, on the left.697

18

2 0
log2

0.90

0.91

0.92

0.93

0.94

0.95

Va
lid

at
io

n
Ac

cu
ra

cy

Standard Parametrization

Width mult.
0.5
1.0
2.0
4.0
8.0

3 2 1 0
log2

0.90

0.91

0.92

0.93

0.94

0.95

5 0 5
log2 output

0.91

0.92

0.93

0.94

0.95

Max Update Parametrization (P)

Figure 9: ResNet on CIFAR-10 for different widths (compared to a base network). On the left, the
widest network SP underperforms; on the right, the µP network has a more consistent hyperparameter
landscape and performs better. Both networks are tuned at the smallest width for the hyperparameter
(η or αoutput) not in the x-axis.

Hyperparameter Stability Note that the best model with a width multiplier of 8 under-performs698

that with a multiplier of 4. We run the same sweep with µP, along with a sweep of the output699

multiplier (αoutput); the result is shown in Fig. 9, on the right. We notice that wider models always700

perform better under µP and that the optimal learning rate η and αoutput are stable across width.701

Hyperparameter Transfer Next, we perform a grid search for learning rate (η) and αoutput on702

the 0.5x model for both SP and µP.20 Then, we take the best combination and test on the 8x model,703

simulating how a practitioner might use µTransfer. The result is shown in Table 7, where µP704

outperforms SP by 0.43%± .001%.705

Table 7: Transferring the best learning rate (η) and αoutput from widening factor 0.5 to 8; µP
significantly outperforms SP given the same search grid. The best hyperparameters are different as
the models are parametrized to be identical at 1x width.20

Transfer Setup Best η Best αoutput Valid. Acc. (0.5x) Valid. Acc. (8x)

SP 0.707 4 92.82% 94.86%
µP 0.5 4 92.78% 95.29%

D.1.2 Wide ResNet on ImageNet706

Setup For this case we use Wide-Resnet, or WRN [44], a ResNet variant with more channels per707

layer, to further showcase hyperparameter transfer across width, i.e., number of channels. We train708

with SGD on ImageNet for 50 epochs following standard data augmentation procedures. We use709

a width multiplier to identify models of different width, and a multiplier of 1 corresponds to the710

original WRN-50-2-bottleneck in [44].711

Hyperparameter Transfer We start with a proxy model with a width multiplier of 0.125 and tune712

several hyperparameters using the following grid:713

• η: 1× 2.048× 2z,where z ∈ {−5,−4,−3, ..., 4}714

• αoutput: 10× 2z,where z ∈ {−5,−4,−3, ..., 4}715

• weight decay co-efficient γ: 3.05× 10−5 × 2z,where z ∈ {−2,−1.5,−1, ..., 1.5}716

• SGD momentum β: 0.875× 2z,where z ∈ {−2,−1.5,−1, ..., 1.5}717

The grid is centered around the default hyperparameters used by [1] for ResNet-50; while not expected718

to be competitive for WRN, they represent a reasonable starting point for our experiment.719

20Here we tune the 0.5x model instead of the 1x model to simulate the situation that one does “exploratory
work” on the 1x model but, when scaling up, would like to tune faster by using a smaller proxy model.

19

14 12 10 8
2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Tr
ai

ni
ng

 L
os

s

BatchSize
20
32
64
128
256
512

5 0 5 10 15

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

5.0 2.5 0.0 2.5
2.0

2.5

3.0

3.5

4.0

4.5

(a) (b) (c) (d) (e) (f)
2.0

2.5

3.0

3.5

4.0

14 12 10 8
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Tr
ai

ni
ng

 L
os

s

SeqLen
32
64
128
256
512

5 0 5 10 15

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

5.0 2.5 0.0 2.5
3.0

3.5

4.0

4.5

5.0

5.5

(a) (b) (c) (d) (e) (f)

3.0

3.5

4.0

4.5

5.0

14 12 10 8

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Tr
ai

ni
ng

 L
os

s

Step
2032
4072
5912
7952
9992

5 0 5 10 15

3.5

4.0

4.5

5.0

5.5

5.0 2.5 0.0 2.5

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

(a) (b) (c) (d) (e) (f)

3.5

4.0

4.5

5.0

5.5

6.0

Figure 10: Empirical validation of Hyperparameter Transfer across Batch Size, Sequence
Length, and Training Time on pre-LN Transformers. Same setting as Fig. 4. Despite some
shift, the optimal hyperparameters are roughly stable when transferring from batch size 32, sequence
length 128, and 5000 training steps.

We randomly sample 64 hyperparameter combinations from the grid and train for 50 epochs, before720

selecting the one with the highest top-1 validation accuracy. Then, we scale up the model following721

both µP and SP and run with the same hyperparameters we just selected. The result is shown in722

Table 8, where µP outperforms SP by 0.41% in terms of top-1 validation accuracy.723

Table 8: Transferring the best learning rate (η), αoutput, γ, and β from widening factor 0.125 to 1;
µP significantly outperforms SP given the same search grid.

Transfer Setup Best η Best αoutput Best γ Best β Valid. Acc. (0.125x) Valid. Acc. (1x)

SP 32.768 .625 .000015 .4375 58.12% 76.75%
µP 32.768 .625 .000015 .4375 58.12% 77.16%

D.2 Experiments on Transformers724

D.2.1 Verifying Transfer across Batch Size, Sequence Length, and Training Time on725

Wikitext-2726

See Fig. 10.727

D.3 Post-Layernorm Transformers728

Fig. 11 shows the transferability of learning rate, αoutput, initialization standard deviation, and Adam729

β2 across width, batch size, sequence length, and training steps for post-layernorm transformers.730

However, in general, we find transfer across depth to be fragile.731

20

14 12 10

4.0

4.5

5.0

5.5

6.0

Tr
ai

ni
ng

 L
os

s

Width
128
256
512
1024
2048
4096
8192

5 0 5 10 15

3.50

3.75

4.00

4.25

4.50

4.75

5.00

5.25

5.0 2.5 0.0 2.5
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

5 10 15
3.5

4.0

4.5

5.0

5.5

14 12 10
4.0

4.5

5.0

5.5

6.0

6.5

Tr
ai

ni
ng

 L
os

s

BatchSize
5
10
20
40
80
160

5 0 5 10 15
4.0

4.5

5.0

5.5

6.0

6.5

7.0

5.0 2.5 0.0 2.5
4.0

4.5

5.0

5.5

6.0

6.5

7.0

5 10 15
4.0

4.5

5.0

5.5

6.0

6.5

14 12 10
log2LearningRate

4.0

4.5

5.0

5.5

6.0

Tr
ai

ni
ng

 L
os

s

SeqLen
35
64
128
256
512

5 0 5 10 15
log2 output

4.00

4.25

4.50

4.75

5.00

5.25

5.50

5.0 2.5 0.0 2.5
log2InitStd

4.0

4.5

5.0

5.5

6.0

6.5

5 10 15
log2(1 AdamBeta2) 1

4.00

4.25

4.50

4.75

5.00

5.25

5.50

5.75

14 12 10 8
log2LearningRate

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Tr
ai

ni
ng

 L
os

s

Epoch
1
2
3
4
5

5 0 5 10 15
log2 output

4.5

5.0

5.5

6.0

6.5

7.0

5.0 2.5 0.0 2.5
log2InitStd

4.5

5.0

5.5

6.0

6.5

7.0

5 10 15
log2(1 AdamBeta2) 1

5

6

7

8

9

Figure 11: Empirical validation of Hyperparameter Transfer for Post-LN Transformers. Same
setting as Fig. 4.

D.3.1 Hyperparameter Instability of SP Transformers732

Fig. 12 and Fig. 13 show the hyperparameter instability inherent in SP Transformers.733

E Implementing Hyperparameter Transfer in a Jiffy734

As we have shown, one can enable hyperparameter transfer by just reparametrizing the desired735

model in Maximal Update Parametrization (µP). While conceptually simple, switching from Standard736

Parametrization (SP) to µP can be error-prone, as popular deep learning frameworks are built around737

SP. We strive to build a tool that fulfills two goals:738

1. Minimize code changes when switching to µP;739

2. Keep model behavior invariant, under this switch, at a given model base_width.740

The latter goal, which we call parametrization backward compatibility, ensures that any code base741

works exactly as before when model width equals base_width, similar to Eq. (4), e.g. the loss at742

any time step remains exactly the same before and after the switch to µP. Of course, when width743

differs from base_width, the model behavior necessarily changes so that hyperparameters can be744

transferred. Most commonly, the user should set the base_width to be the width of the target model745

21

20 15 10
log2LearningRate

4

5

6

7

Tr
ai

ni
ng

 L
os

s

128
256
512
1024
2048
4096
8192

0 10
log2 output

4.5

5.0

5.5

6.0

6.5

7.0

10 0
log2 attn

4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5

5 0
log2

4.5

5.0

5.5

6.0

6.5

7.0

12 10
log2LearningRate

3.5

4.0

4.5

5.0

Tr
ai

ni
ng

 L
os

s

0 10
log2 output

3.50

3.75

4.00

4.25

4.50

4.75

5.00

5 10 15
log2 attn

3.5

4.0

4.5

5.0

5 0
log2

3

4

5

6

Standard Parametrization (SP)

Maximal Update Parametrization (P)

Figure 12: Post-layernorm Transformer with SP and µP on Wikitext-2. We sweep one hyperparameter
across width (dmodel) at a time while keeping the rest fixed; we also scale dhead linearly with dmodel
and fixing nheads. αoutput, αattn are multipliers for output and key weights, and σ is initialization
standard deviation. This yields unstable result for SP, as expected, where missing points/curves
represent divergence; in µP, the optimal hyperparameter choices stabilize as width increases.

17.5 15.0 12.5 10.0 7.5
log2LearningRate

2

4

6

8

10

12

Tr
ai

ni
ng

 L
os

s

Transformer on IWSLT14 De-En
(Standard Parametrization)

64
128
256
512
1024
2048

Figure 13: Learning rate landscape is highly unstable under standard parametrization in IWSLT.

(e.g. BERT-large or T5-large). Then one can tune a proxy model with e.g. width = base_width/4746

to obtain the optimal hyperparameters for the target model. In addition, if one wishes to scale up747

further e.g. width = 4×base_width, then these hyperparameters remain optimal. Of course, depth,748

batch size, and sequence lengths can be scaled up and down as well according to Fig. 10.749

The MUP Package We provide our tool as a Python package called MUP designed to work with750

PyTorch. For the most generic use case, where one scales the widths of all layers at once, the751

transition to µP boils down to 3 steps:752

1. Replace the input and the output layers with counterparts in MUP.layer and specify a753

base_width for both;754

2. Ensure all other layers are initialized with fan_in initialization;21755

21This is the default behavior for Pytorch nn.Linear layers, but some code bases then manually overrides
this initialization e.g. with constant init.

22

3. Replace the optimizer (e.g., Adam) with the counterpart (e.g., MuAdam) in MUP.optim.756

What Happens in the MUP Package The MuLayers take care of the parametrization for in-757

put/output layers and label them for the optimizer. The MuOptimizer reads the base_width758

from the input layer and calculates the learning rate scaling for all parameters. For example, MuAdam759

scales the learning rate for the input/output layers like Θ(1/
√
width), one-dimensional parameters760

(e.g., gains and biases) like Θ(1), and other parameters like Θ(1/width). It might seem odd that the761

optimizer “micromanages” the learning rate for gains and biases; this design choice is motivated by762

minimizing the required code change by the user, as the alternative is to replace every layer that has763

gains or biases.764

F Width-Related Training Issues are Hyperparameter Issues765

Large transformers are famously fickle to train [18, 26]. This is especially true in low-precision766

floating point formats such as float16 that is required to train enormous models today. Throughout767

our investigations, we find that, with the hyperparameters transferred from the proxy model (which768

should be close to optimal), we do not observe such instability. This suggests that the training769

instability problems could in fact be hyperparameter problems, not necessarily structural issues770

associated with the architecture or optimizer (which work just fine when tuned properly).22 We771

hypothesize that772

The common manifestations of training instability are caused by practitioners naively
transferring learning rate and other hyperparameters tuned on a small transformer.773

This is certainly consistent with Fig. 1, which shows that the optimal learning rate for small trans-774

formers can lead to trivial performance in large transformers. We support this hypothesis further by775

reverse-transferring the instability-inducing hyperparameters from a large transformer to a small776

one and replicating the training instability. This is shown in Fig. 14.777

20 18 16 14 12 10 8
log2LearningRate

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

Tr
ai

ni
ng

 L
os

s

training instability

Fix Hparam., Change Width
Actual Width

256
512
1024
2048
4096
8192

20 18 16 14 12 10 8
log2LearningRate

4.5

5.0

5.5

6.0

6.5

7.0

7.5

Tr
ai

ni
ng

 L
os

s

training instability

Fix Width, Change Hparam.
Simulated
 Width

256
512
1024
2048
4096
8192

Figure 14: Replicating training instability on a small transformer by reverse-transferring hy-
perparameters. These experiments concern 2-layer Transformers in Standard Parametrization (SP)
on Wikitext-2, trained with Adam, where width is defined as dmodel = dffn. (Left) LR-vs-loss for
wider and wider transformers. (Right) Likewise for simulated width: Here each point (log2 η, loss)
for simulated width n indicates the loss from training a width-256 µP Transformer with base width
n and LR η (i.e. loosely speaking, it’s using LR transferred from η in a width-n SP Transformer).
Takeaway: The overall shapes of the curves are identical between the left and right plots23; in
particular, a learning rate leads to instability in a wide model iff it does so when transferred back to a
narrow model.

22Of course, it is still worthwhile to research layers or architectures that are more insensitive to poor
hyperparameter choices. But with our results, good hyperparameters are obtained much more easily, so this issue
is now much less urgent.

23 Note that the curves on the left are “lower” than curves on the right. This just reflects the increasing capacity
of wider models able to fit the training data better, so is orthogonal to our point.

23

Table 9: Expected entry size of Av for different matrices A and vector v correlated with each other,
both having entries of size Θ(1).

Standard Gaussian (Nonlinear) Tensor Product Vector
A ∈ Rn×n A ∈ Rn×n A ∈ R1×n

Entry size of Av Θ(
√
n) Θ(n) Θ(n)

G An Intuitive Introduction to the Theory of Maximal Update778

Parametrization779

In what follows, we seek to describe useful intuitions and rule of thumbs that would be helpful780

to practitioners and empirical researchers alike in figuring out what is the right neural network781

parametrization. Readers needing rigorous justification can generally find it in [39, 40].782

G.1 Behaviors of Gaussian Matrices vs Tensor Product Matrices783

Central to the derivation of µP for any architecture are key insights on the behaviors of two kinds of784

random matrices: 1) iid Gaussian random matrix and 2) tensor product matrix (by which we mean a785

sum of outer products) and more generally what we call nonlinear tensor product matrix (see Eq. (6)).786

For example, a neural network, randomly initialized in the typical way, will have each weight matrix787

look like the former. However, every step of training by gradient descent adds a sum of outer products788

to this initial matrix, so that the change in weights constitute a tensor product matrix. For Adam,789

the change in weights is not a tensor product but a more general nonlinear tensor product matrix790

(see Eq. (6)). In this section, we will particularly focus on the right scaling for the entries of such791

matrices, leading to a discussion of the right neural network parametrization in the next section. We792

concentrate on the key heuristics but eschew burdensome rigor.793

Key Insights Consider a random vector v ∈ Rn with approximately iid entries and a random794

matrix A of either size n × n or 1 × n, both having entries of size Θ(1).24 In the context of deep795

learning, v for example can be an activation vector in an MLP, a Gaussian A the hidden weights at796

initialization, a (nonlinear) tensor product A the change in hidden weights due to training, and a797

vector A the readout layer weights. Then Av corresponds to a part of the next layer preactivation798

or the network output. To make sure the preactivations and the output don’t blow up, we thus need799

to understand the scale of Av, especially in the general case where A is correlated with v.25 This is800

summarized in Table 9, with the derivations below. Intuitively, a (nonlinear) tensor product or vector801

A will interact with a correlated v via Law of Large Numbers, hence the n-scaling, while a Gaussian802

A interacts with v via Central Limit Theorem, hence the
√
n-scaling.803

In the derivations below, we answer a slightly different but equivalent question of “how to scale A804

such that Av has entry size Θ(1)?”805

G.1.1 Preparation for the Derivations806

By the results of [40], each (pre-)activation vector and its gradient vector in a multi-layer perceptron807

have approximately iid coordinates in the large width limit,26 and something similar can be said for808

more advanced networks such as ResNet and Transformers 27. In particular, to each such vector v,809

we can associate a random variable Zv that represents the coordinate distribution of v. If vector u is810

correlated with v, then Zu will also be correlated with Zv , and limn→∞ v>u/n = EZuZv .811

24in the sense that the the variance of the entries are Θ(1)
25Here “correlated” formally means v depends on W> in a Tensor Program. This essentially captures all

scenarios of “v correlated with W ” that occurs in deep learning.
26Our intuition here is derived from the assumption that width is much larger than training time; of course, as

illustrated by our myriad experiments, these intuition are very useful even when this is not the case, such as
when training to convergence.

27E.g. in a convnet, the (pre-)activations are iid across channels, but correlated across pixels

24

G.1.2 Linear Tensor Product Matrix (e.g. SGD Updates)812

The case of (linear) tensor product matrix can be reduced to the outer product case by linearity. Given813

u, v, x ∈ Rn having approximately iid coordinates (of size Θ(1)) like so, we can form the outer814

product815

A
def
= u⊗ v/n = uv>/n, (5)

which is the form of a single (batch size 1) gradient update to a weight matrix. Then, by Law of816

Large Numbers,817

Ax = u
v>x

n
≈ cu, where c = EZvZx.

So Ax also has approximately iid coordinates, distributed like ZAx def
= Zu EZvZx. Likewise, if A is818

a sum of outer products A =
∑k
i=1 u

i ⊗ vi/n, then819

Ax =

k∑
i=1

ui
vi>x

n
, with coordinates distributed as ZAx =

k∑
i=1

Zu
i

EZv
i

Zx.

Notice that each coordinate of A has size Θ(1/n). The above reasoning shows that, in order for Ax820

to have coordinate size Θ(1) (assuming x does), then Θ(1/n) is the right coordinate size for A, in821

the general case that vi and x are correlated (as is generically the case during gradient descent, with822

A = ∆W for some weights W and x being the previous activations).28823

G.1.3 Nonlinear Tensor Product Matrix (e.g. Adam Updates)824

When using Adam or another adaptive optimizer that normalizes the gradient coordinatewise before825

applying them, we need to modify our argument slightly to obtain the right coordinate size scaling of826

the matrix. The gradient update A, after such normalization, will take the form of827

Aαβ = ψ(u1α, . . . , u
k
α, v

1
β , . . . , v

k
β), for some ψ : R2k → R and vectors ui, vj∈ Rn. (6)

We say a matrix of this form is a nonlinear tensor product matrix.828

First, note the tensor product matrices (e.g. the form of SGD update) discussed previously (Eq. (5))829

already takes this form, with ψ(u1α, . . . , u
k
α, v

1
β , . . . , v

k
β) = n−1(u1αv

1
β + · · · + ukαv

k
β), so Eq. (6)830

is a strict generalization of linear tensor products. Next, for the example of Adam, each gradient831

update is µ/σ where µ (resp. σ2) is the moving average of previous (unnormalized) gradients (resp.832

the coordinatewise square of the same).29 If these unnormalized gradients are the outer products833

u1 ⊗ v1, . . . , uk ⊗ vk, then the update has coordinates834

(µ/σ)αβ = ψ(u1α, . . . , u
k
α, v

1
β , . . . , v

k
β)

def
=

∑
i

γiu
i
αv

i
β/

√∑
i

ωi(uiαv
i
β)2, (7)

where γi and ωi are the weights involved in the moving averages.835

Now suppose we have some A ∈ Rn×n of the form Eq. (6), where ui, vi ∈ Rn have approximately836

iid coordinates (of size Θ(1)), and ψ = n−1ψ̄ where ψ̄ doesn’t depend on n (in terms of Adam where837

ψ̄ corresponds to the ψ of Eq. (7), this corresponds to using a learning rate of 1/n). Then for x ∈ Rn838

having approximately iid coordinates of size Θ(1), by Law of Large Numbers,839

(Ax)α =
1

n

n∑
β=1

ψ̄(u1α, . . . , u
k
α, v

1
β , . . . , v

k
β)xβ ≈ E ψ̄(u1α, . . . , u

k
α, Z

v1 , . . . , Zv
k

)Zx
def
= Ψ(u1α, . . . , u

k
α).

Here we made the obvious definition840

Ψ : Rk → R, Ψ(r1, . . . , rk)
def
= E ψ̄(r1, . . . , rk, Z

v1 , . . . , Zv
k

)Zx.

28In some corner cases when x is uncorrelated with v, then v>x = Θ(
√
n) by Central Limit, so actually

Ax has Θ(1/
√
n) coordinates. However, this case does not come up much in the context of training neural

networks.
29Adam also has bias correction for the moving averages which can be accomodated easily, but for simplicity

we omit them here.

25

Thus Ax also has approximately iid coordinates (of size Θ(1)),841

ZAx
def
= Ψ(Zu

1

, . . . , Zu
k

).

For example, in the SGD example with A = u ⊗ v/n and ψ̄(uα, vβ) = uαvβ , this formula gives842

ZAx = Ψ(Zu) where Ψ(z) = z EZvZx, recovering the earlier derivation.843

In any case, the point here is that A has coordinate size Θ(1/n), and this is the unique scaling that844

leads to Ax having coordinate size Θ(1).845

G.1.4 Vector Case (e.g. Readout Layer)846

The vector A case is similar to the tensor product cases above.847

G.1.5 Gaussian Matrix (e.g. Hidden Weights Initialization)848

Now consider the case where A ∈ Rn×n is random Gaussian matrix with Aαβ ∼ N (0, 1/n) and849

x ∈ Rn has approximately iid coordinates distributed like Zx. In the context of neural network850

training, A should be thought of as a randomly initialized weight matrix, and x for example can be851

taken to be an activation vector in the first forward pass.852

If x is independent from A (or sufficiently uncorrelated), then each coordinate (Ax)α has variance853

E(Zx)2 = Θ(1) (so by definition has size Θ(1)). Thus, here A having Θ(1/
√
n) coordinates leads854

to Ax having Θ(1) coordinates, in contrast to the tensor product case above.855

When x is correlated with A, it turns out the same scaling applies (Θ(1/
√
n) is the unique scaling for856

A’s entries such so that Ax has Θ(1) entries), but the reasoning is much more subtle: In the context857

of neural network training, it turns out all scenario where x is correlated with A can be reduced858

to the case where x = φ(A>y, . . .) for some coordinatewise nonlinearity φ and some other vector859

Rn.30 Let’s consider a very simple example with x = A>1 for the all 1s vector 1 ∈ Rn (which has860

coordinate size Θ(1) as can be checked easily). Then, for each index α ∈ [n], we can calculate861

(AA>1)α =
∑
β,γ

AαβAγβ =
∑
β

A2
αβ +

∑
β

∑
γ 6=α

AαβAγβ .

Since EA2
αβ = 1/n, by the Law of Large Number, the first sum

∑
β A

2
αβ ≈ 1. On the other hand,862

there are n summands of the form
∑
γ 6=αAαβAγβ , all iid with variance n−1

n2 = Θ(1/n). Thus by863

the Central Limit Theorem, we expect
∑
β

∑
γ 6=αAαβAγβ ≈ N (0, 1). Therefore, each coordinate864

of (AA>1)α looks like 1 +N (0, 1) = N (1, 1) and thus has size Θ(1); again this is caused by A865

having Θ(1/
√
n) coordinates.866

This example can be generalized to more general x that is correlated with A, but the mathematics is867

quite involved. See [39] for more details.868

G.2 Deriving µP for Any Architecture869

Armed with the insight from the last section, we now outline the key steps to derive µP for any870

architecture. In practice, µP of [40] implies the following desiderata871

Desiderata G.1. At any time during training872

1. Every (pre)activation vector in a network should have Θ(1)-sized coordinates31873

2. Neural network output should also be Θ(1).874

3. All parameters should be updated as much as possible (in terms of scaling in width) without875

leading to divergence.876

Let’s briefly justify these desiderata. For the desideratum 1, if the coordinates are ω(1) or o(1),877

then for sufficiently wide networks their values will go out of floating point range. This problem is878

30This is because every “reasonable” deep learning computation can be expressed in a Tensor Program.
31In a convnet, a (pre-)activation vector corresponds to a single pixel across all channels; in general , we

expect (pre-)activations are iid across channels, but correlated across pixels

26

particularly acute for low-precision formats that are essential for training large models such as BERT879

or GPT. Moreover, a general nonlinearity is only well-behaved if its input is in a fixed range (although880

this is not a problem for homogeneous nonlinearities like relu). For example, for tanh nonlinearity, if881

the preactivation is vanishing o(1), then tanh is essentially linear; if the preactivation is exploding882

ω(1), then the tanh gradient vanishes.883

For the desideratum 2, a similar justification applies to the numerical fidelity of the loss function and884

loss derivative.885

Finally, desideratum 3 means that 1) we are doing “maximal feature learning” [40] and 2) every886

parameter contribute meaningfully in the infinite-width limit. This ensures that learning rate “plays887

the same role” in the finite-width case as in the infinite-width limit. For example, it prevents the888

scenario where a weight matrix gets stuck at initialization in the limit for any learning rate (so889

learning rate does not matter) but evolves nontrivially in any finite-width network (so learning rate890

does matter).891

These desiderata will essentially uniquely single out µP. More formally, µP is the unique parametriza-892

tion that admits feature learning in all parameters of the neural network [40], and this property893

theoretically guarantees hyperparameter transfer across width (for sufficiently large width). However,894

for the sake of reaching a broader audience, we will focus more on the intuitive derivations from the895

desiderata rather than on this formal aspect.896

Below, we assume for simplicity that the width of every layer is n, and we focus only on dense897

weights. Later, we will discuss convolutions and varying the widths between layers.898

G.2.1 µP Derivation From the Desiderata899

Output Weights Suppose W ∈ R1×n is an output weight. By desideratum 1, the input x to W900

has Θ(1)-sized coordinates. Thus W should have Θ(1/n) coordinates so that Wx = Θ(1). We901

can initialize W with Θ(1/n) coordinates and scale its (per-layer) LR so that ∆W has Θ(1/n)902

coordinates as . However, in order to use the same SGD learning rate for all layers, we instead903

equivalently 1) reparametrizeW = 1√
n
w with trainable w, 2) initialize w with Θ(1/

√
n) coordinates,904

and 3) use Θ(1) learning rate (of w) for SGD. For Adam, however, we cannot use the same learning905

rate for every layer, so we set the Adam learning rate of w to be Θ(1/
√
n).906

Hidden Weights Consider a square weight matrix W ∈ Rn×n. Desiderata 1 guarantees that the907

input x to W has Θ(1)-sized coordinates. Generally, x will be correlated with W . By Table 9, we908

can immediately derive909

Initialization W should be randomly initialized with coordinate size Θ(1/
√
n)910

LR The learning rate should be scaled so that ∆W has coordinate size Θ(1/n)911

so that (W0 + ∆W)x is Θ(1) if x is, inductively satisfying desideratum 1. With Adam, this just912

means the per-layer LR is Θ(1/n). With SGD and the scaling of output layers above, we can calculate913

that the gradient of W has Θ(1/n) coordinates, so the Θ(1) SGD LR derived above suffices as well.914

Input Weights Suppose W ∈ Rn×d is an input weight. To satisfy desiderata 1 (i.e. for any input ξ,915

Wξ should have Θ(1) coordinates), we want W to have Θ(1) coordinates. We can initialize W with916

Θ(1) coordinates and scale its (per-layer) LR so that ∆W has Θ(1) coordinates as well. However,917

in order to use the same SGD learning rate for all layers, we instead 1) reparametrize W =
√
nw918

with trainable w, 2) initialize w with Θ(1/
√
n) coordinates, and 3) use Θ(1) for SGD learning rate.919

Again, for Adam LR, we have to use a per-layer learning rate (of w), for which we take Θ(1/
√
n).920

Biases Biases follow the same reasoning as input weights (just think of it as an input weight with921

input 1).922

Attention Suppose the key dimension dk is tending to infinity with width with number of heads923

nhead fixed. Then the key-query contraction q>k ∈ R scales like Θ(dk) by Law of Large Numbers924

(instead of Central Limit Theorem because q and k are generally correlated) and desideratum 1, hence925

the 1/dk we propose rather than 1/
√
dk.926

Now suppose instead that nhead tends to infinity with width with dk fixed. Let K,Q ∈927

RN×dk×nhead , V ∈ RN×dv×nhead be keys, queries, and values across all heads and tokens. Think-928

27

ing of N × dk as constants, we may view attention as a nonlinearity coordinatewise in the nhead929

dimension. Then it’s clear that our parametrization described above already works.930

Finally, we may freely let dk and nhead both tend to infinity, and the above reasoning shows that our931

parametrization still works.932

Changing Width Ratios As noted above, at any time in training, every (pre-)activation vector will933

have approximately iid coordinates (of order Θ(1) by desideratum 1). Another desideratum for µP is934

to ensure that this coordinate distribution (at any particular time) stays roughly invariant as widths935

increases. When all layer widths are tied, this is automatic if the other desiderata are satisfied, hence936

why we did not list this above.937

When width ratios vary, this is not automatic. In this case, we need to choose whether to replace each938

n with fan-in or fan-out (or some function of them). Making the wrong choices will let the coordinate939

distributions vary with width ratios.940

It turns out the correct choice, as shown in Table 3, is to replace n with fan-in for the input layers941

and with fan-out for the output layers. For the hidden weights, we replace n with fan-in so that942

the forward pass is preserved. When using Adam (and assuming the initialization of W is quickly943

dominated by the change in W), this ensures that the (pre-)activation coordinate distributions are944

preserved at any time during training even if we vary widths in different layers differently. (For945

SGD this doesn’t quite work in general because the varying width ratios change the gradient sizes of946

different layers differently, whereas Adam always normalizes the gradient coordinatewise).947

Convolution A convolution weight tensor W ∈ Rfan_out×fan_in×s1×s2 with kernel size s1 × s2948

can be thought of just as a s1s2 = Θ(1)-sized collection of fan_out× fan_in dense weights. Then949

all of our discussions above apply accordingly.950

G.3 Why Other Parametrizations Cannot Admit Hyperparameter Transfer951

Standard Parametrization (SP) SP doesn’t work essentially because it leads to blow-up in the952

infinite-width limit.953

1. For Adam (with LR Θ(1)), ∆W would have Θ(1) coordinates, causing preactivations to954

blow up like Θ(n) by Desideratum 1 and Table 9.955

2. For SGD, the gradient of Rn×n weight has Θ(1/
√
n) coordinates because the last layer956

has no 1/
√
n factor, so Θ(1) learning rate would make preactivation scale like Θ(

√
n) and957

hence blow up.958

If we use Θ(1/width) learning rate, then blow-up does not occur. However, this infinite-width limit959

is in the kernel regime and thus does not allow hyperparameter transfer for the same reason that NTP960

below does not.961

Neural Tangent Parametrization (NTP) We have concrete examples, e.g. Word2Vec in [40],962

where the NTK limit has trivial performance — so hyperparameters have no effect at all — vastly963

outperformed by finite-width networks — where hyperparameters matter. More importantly, wider964

does not always do better in NTP, especially in tasks where feature learning is crucial [40]. So in the965

context of modern deep learning e.g. large language model pretraining, NTP (or SP with Θ(1/width)966

LR) does not make sense for wide neural networks.967

Other Parametrizations Recall the Dynamical Dichotomy Theorem proven in [40], which says968

that any nontrivial stable “natural parametrization” (formally, “abc-parametrization,” [40]) either969

admits a feature learning limit or a kernel limit, but not both.970

Our argument above against SP and NTP will also work against any parametrization inducing a971

kernel limit. Therefore, it remains to ask, can other feature learning parametrizations transfer972

hyperparameters?973

We argue no. As shown in [40], any other feature learning parametrization differs from µP essentially974

only in that some parameters are not updated maximally. By [40, Sec 6.4], in the infinite-width limit,975

such parameters can be thought of as being fixed at initialization. Therefore, in such infinite-width976

limits, the learning rate of such parameters becomes useless. Therefore, we cannot hope for the977

28

hyperparameter landscape of the limit to reflect the hyperparameter landscape of finite-width neural978

networks.979

µP is the unique feature learning parametrization that updates all parameters maximally, so that the980

learning rate of each parameter plays approximately the same role in finite-width neural networks as981

in the infinite-width limit. Consequently, the hyperparameter landscape of the µP limit should reflect982

the hyperparameter landscape of finite-width neural networks.983

H Nuances of the Hyperparameter Landscape Convergence Intuition984

What converges and what doesn’t We want to tune hyperparameters on a small model with width985

N such that its hyperparameter landscape looks like that of a large model with width� N . However,986

for this to be useful, we do not want the small model (as a function) after training to be close to that987

of the large model — otherwise there is no point in training the large model to begin with. So N 1)988

must be large enough so that the hyperparameter optimum converges, but 2) cannot be so large that989

the functional dynamics converges. The fact that such N exists, as demonstrated by our experiments,990

shows that: In some sense, the hyperparameter optimum is a “macroscopic” or “coarse” variable991

which converges quickly with width, while the neural network function is a very “microscopic” or992

“fine” detail that converges much more slowly with width.993

The same discussion applies to scaling of batch size as well [21].994

29

	Introduction
	Parametrization Matters: A Primer
	Hyperparameters Don't Transfer Conventionally
	Unlocking Zero-Shot Hyperparameter Transfer with MUP
	Which Hyperparameters Can Be muTransferred?
	Empirical Validation and Limitations

	Efficiency and Performance of muTransfer
	Transformer on IWSLT14 De-En
	Transformer on WMT14 En-De
	BERT

	Related Works
	Conclusion
	Detailed Discussions on Related Works
	Hyperparameter Tuning
	Previously Proposed Scaling Rules of Hyperparameters

	Which Hyperparameters Can Be Transferred? (Continued)
	Further Discussions on Hyperparameter Categories
	On the Definitions of Width

	Experimental Details
	IWSLT
	WMT
	BERT

	Additional Experiments
	Experiments on ResNets
	ResNet on CIFAR-10
	Wide ResNet on ImageNet

	Experiments on Transformers
	Verifying Transfer across Batch Size, Sequence Length, and Training Time on Wikitext-2

	Post-Layernorm Transformers
	Hyperparameter Instability of SP Transformers

	Implementing Hyperparameter Transfer in a Jiffy
	Width-Related Training Issues are Hyperparameter Issues
	An Intuitive Introduction to the Theory of Maximal Update Parametrization
	Behaviors of Gaussian Matrices vs Tensor Product Matrices
	Preparation for the Derivations
	Linear Tensor Product Matrix (e.g. SGD Updates)
	Nonlinear Tensor Product Matrix (e.g. Adam Updates)
	Vector Case (e.g. Readout Layer)
	Gaussian Matrix (e.g. Hidden Weights Initialization)

	Deriving MUP for Any Architecture
	MUP Derivation From the Desiderata

	Why Other Parametrizations Cannot Admit Hyperparameter Transfer

	Nuances of the Hyperparameter Landscape Convergence Intuition

