
TTT++: When Does Self-Supervised
Test-Time Training Fail or Thrive?

Yuejiang Liu Parth Kothari Bastien van Delft

Baptiste Bellot-Gurlet Taylor Mordan Alexandre Alahi

École Polytechnique Fédérale de Lausanne (EPFL)

{firstname.lastname}@epfl.ch

Abstract

Test-time training (TTT) through self-supervised learning (SSL) is an emerging
paradigm to tackle distributional shifts. Despite encouraging results, it remains
unclear when this approach thrives or fails. In this work, we first provide an in-
depth look at its limitations and show that TTT can possibly deteriorate, instead of
improving, the test-time performance in the presence of severe distribution shifts.
To address this issue, we introduce a test-time feature alignment strategy utilizing
offline feature summarization and online moment matching, which regularizes
adaptation without revisiting training data. We further scale this strategy in the
online setting through batch-queue decoupling to enable robust moment estimates
even with limited batch size. Given aligned marginal distributions of encoded
features, we shed light on the strong potential of TTT by theoretically analyzing the
performance post adaptation. This analysis motivates our use of more informative
self-supervision in the form of contrastive learning. We empirically demonstrate
that our modified version of test-time training, termed TTT++, outperforms state-of-
the-art methods by a significant margin on multiple vision benchmarks. Our result
indicates that exploiting extra information stored in a compact form, such as related
SSL tasks and feature distribution moments, can be critical to the design of test-
time algorithms. Our code is available at https://github.com/vita-epfl/
ttt-plus-plus.

1 Introduction

Machine learning models often struggle to generalize under distribution shifts. Even a perceptually
mild shift between training and test data, e.g., JPEG compression, may cause severe prediction errors
[1]. One popular family of methods to address this challenge is to learn an invariant representation
across domains by making use of labelled training data and unlabelled test data simultaneously [2–5].
However, revisiting training data at test time can be impractical due to increasing privacy concerns,
inflating sizes of datasets as well as many other real-world constraints. This shortcoming prompts a
more challenging yet appealing test-time adaptation paradigm: given a trained model, how can we
effectively adapt it from one domain to another on the fly, without access to training data and human
annotations?

One promising approach towards this goal is test-time training (TTT) through self-supervision [6].
The key idea of TTT is simple and straightforward: train the model on two tasks, the main task and a
self-supervised learning (SSL) task, and update the model based only on the SSL task at test time.
This technique implemented with rotation prediction as the SSL task has shown encouraging results

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/vita-epfl/ttt-plus-plus
https://github.com/vita-epfl/ttt-plus-plus

for improving the robustness of image classifiers under a variety of distributional shifts. Yet, its
empirical performance is still inferior to other variants of test-time algorithms [7, 8].

In this paper, we first take an in-depth look at TTT with emphasis on its limitations. Our analysis
starts with a basic question: can TTT always mitigate the effects of distributional shifts? Through an
illustrative problem, we show that the TTT framework can lead to surprising failures, deteriorating
the test accuracy rather than improving it. This problem is largely attributed to unconstrained updates
from the SSL task that interfere with the main task. To address this issue, we introduce a test-time
feature alignment strategy by means of offline feature summarization and online moment matching:
once training completes, we compute the mean and covariance matrix of training features and store
them as part of the model, referred to as offline feature summarization; at test time, we encourage the
test feature distribution to be close to the training one by matching the moments estimated online
with those pre-computed offline, a process referred to as online moment matching.

One practical challenge for online feature alignment lies in scaling the strategy to problems with a
large number of classes, as obtaining a robust estimate of moments often requires at least a handful of
samples per class. To mitigate this issue, we draw inspiration from recent literature [9] and decouple
the sample size from the batch size for moment estimates. Specifically, we maintain a large dynamic
queue of encoded features and progressively update it in a mini-batch manner. This modification
enables effective feature alignment even with limited batch size, greatly improving its viability in the
online test-time setting.

Finally, we shed light on the strong potential of TTT through a theoretical analysis of the test accuracy
after adaptation. In particular, we derive a lower bound of the test accuracy on the main task and show
that it is expected to grow rapidly when the SSL task gets closer to the main task. These findings
motivate our integration of contrastive representation learning [9–12], as a strong instance of SSL,
into the TTT framework.

By combining the three proposed components, we devise an improved version of test-time training,
termed TTT++. Experimental results show that TTT++ significantly outperforms other recent
methods by significant margins on various robustness benchmarks. Our results suggest that exploiting
extra information, including both task-specific information in the form of strong self-supervision and
model-specific information in the form of feature summarization, can be a promising direction to
enhance the effectiveness of test-time adaptation.

2 Background

2.1 Related Work

Test-time Adaptation. Adapting machine learning models based on test samples has garnered
growing interests in both generative problems such as super-resolution [13], image synthesis [14, 15]
and image manipulation [16], and discriminative problems like image classification [17]. Our work
is focused on the latter one in the presence of distributional shifts. Several recent methods [17, 18]
have shown the potential of adapting the learned models to a new domain at test time without
access to the training data. One simple yet effective approach is to replace the batch-norm statistics
estimated on the training set with the test examples [18]. Another line of work proposed to adapt
the model parameters by exploiting the outputs on test samples, such as entropy minimization [8]
or pseudo-labeling [7]. While these methods yield promising results on some benchmarks, they are
largely restricted to classification problems and vulnerable under large distribution shifts [19].

More closely related to ours, [6] proposed test-time training through self-supervised learning, e.g.,
predicting image rotation. This approach does not involve any assumptions over the output of the
main task and is hence more generic. It has been successfully applied to a variety of problems, such
as instance tracking [20] and reinforcement learning [21]. Nevertheless, it was shown empirically
inferior to other families of test-time algorithms [8]. Our work provides an in-depth analysis of its
limitations and introduces simple yet effective remedies with more theoretical grounds.

Feature Alignment. Matching the distributions of feature activations between the training and test
samples is commonly used for domain adaptation. Previous works often promote feature alignment
in two ways: either explicitly minimizing a divergence measure, such as MMD [22], Coral [23]
and CMD [24], or employing an adversarial loss function that encourages domain confusion [5, 25].

2

SSL

Main

(a) training features

SSL

Main

(b) test features before TTT

Main

SSL

(c) test features after TTT

Figure 1: Illustration of a failure case where test-time training (TTT) hurts generalization. (a) The predictive
model reaches high accuracy on both the main classification task, i.e., separating red and blue data points, and the
auxiliary self-supervised task, i.e., separating circles and crosses, in the training domain. (b) Under significant
distributional shift, test samples are encoded into a new subspace, resulting in limited accuracy on both tasks.
(c) Without any constraints over the feature distribution, TTT may yield an updated encoder that overfits the
self-supervised task, which deteriorates, instead of improving, the performance on the main task.

However, most of these methods rely on the co-existence of source and target data, and thus cannot
be readily applied to the test-time setting where source data is not available. Our work revisits the
critical role of feature alignment for test-time training and proposes a simple and practical strategy
that enables online feature alignment even with a limited batch size.

Self-Supervised Learning. Self-supervised learning is a powerful paradigm to learn rich visual
representations from unlabeled samples. Stunning progress has been made in recent years by
designing informative self-supervised tasks [11, 12, 26–29] and stabilizing the training process
[9, 30]. While previous works focused on unsupervised pre-training tasks, our work sheds light on
the importance of incorporating strong self-supervised learning for test-time training.

2.2 Preliminary: Test-Time Training

Test-time training (TTT) [6] is a general framework for adapting neural network models to a new
test distribution based on unlabeled samples. Different from the conventional approach that trains
the model only on the task of interest, TTT considers two tasks: a main task and an auxiliary SSL
task. The model is trained on both tasks simultaneously with a multi-task architecture composed of
one shared encoder g and two separate heads πm and πs respectively for each task. Given a labeled
training dataset D = {(xi, yi)}i∈{1,...,N}, the model is trained to jointly optimize two losses:

Ltrain(D; g, πm, πs) =
1

N

N∑
i=1

Lm(xi, yi; g, πm) + λLs(xi; g, πs), (1)

where λ is a hyper-parameter to balance the two tasks.

At test time, in the presence of a distributional shift, the learned model often struggles to directly
generalize to test samples D′ = {x′i}i∈{1,...,N ′}. The core idea of TTT is to fine-tune the encoder g
based on the self-supervised task, with the hope that the updated model πm ◦ g′ achieves improved
results on the main task:

LTTT (D′; g′) =
1

N ′

N ′∑
i=1

Ls(x
′
i; g
′). (2)

TTT instantiated with rotation prediction as the SSL task consistently improves the robustness of
image classifiers on several benchmarks [6]. However, it was shown less effective than other test-time
adaptation methods [7, 8].

3 When Does Test-Time Training Fail?

In this section, we first throw light on a caveat of test-time training under large distributional shifts,
and subsequently propose practical solutions tailored for the test-time setting.

3

Stage I: Training

ℒ𝑚

ℒ𝑠

Stage III: Test-time

Stage II: Summarization

𝜇𝑧 , Σ𝑧 𝜇𝑠, Σ𝑠
ℒ𝑓

ℒ𝑚

ℒ𝑠

Batch-queue
Decoupling

Figure 2: Our modified version of test-time training (TTT++). Our method consists of three stages: model
training, offline feature summarization, and online test-time adaptation. (i) During training, the model is jointly
optimized for the main task and contrastive self-supervised task. (ii) Once training completes, we summarize
the feature distributions after the encoder and the self-supervised head in the form of first and second-order
moments. (iii) At test time, we adapt the encoder through self-supervised learning and online feature alignment
with a large dynamic queue for robust moment estimates.

3.1 Illustrative Example of Failures

We first introduce a simple toy problem to illustrate the limitation of TTT. Consider the low-
dimensional problem shown in Figure 1, where the main task and the SSL task are defined as
classifying colors and symbols of encoded features in the 2-dimensional latent space. Thanks to the
strong correlation between these two tasks, the model can attain high accuracy on both of them in the
training domain. However, at test time, the encoded features undergo a significant distributional shift,
resulting in substantial prediction errors on both tasks.

While the objective of test-time training is to restore the discriminative power of the learned repre-
sentation for the main task, updating the encoder solely based on the self-supervised task may yield
severe overfitting to the auxiliary task. As a consequence, the performance on the main task can
severely deteriorate as opposed to improving. This phenomenon is not restricted to this illustration
and also occurs in practice, as evidenced in our simulation in Section 5.1.

3.2 Online Feature Alignment

As illustrated in the toy example above, simply applying self-supervised adaptation at test time can
lead to arbitrarily poor results. To address this issue, we introduce an online feature alignment strategy
to promote robust adaptation at test time. The core idea of our strategy is to impose a constraint over
the feature space during TTT such that the feature distribution of test examples remains close to that
in the training domain. While feature alignment techniques based on MMD [2] or adversarial training
[25] have been widely used for domain adaptation, they often rely on sampling from training and test
domains concurrently, which is impractical in the test-time setting. We, therefore, turn to classical
divergence measures that can be estimated independently for each distribution. More specifically, we
use the square distance of the first and second moments between two feature distributions, inspired by
DDC [31] and Coral [23], to approximate the domain discrepancy. This design choice allows us to
summarize the distribution of training features in a compact format and store it as part of the model,
eliminating the need to revisit the training data during test-time adaptation.

Concretely, once training completes, we perform an offline feature summarization step that character-
izes the entire set of feature vectors encoded from the training data Z = {zT1 , . . . , zTN}, in the forms
of empirical mean µz = 1

N

∑N
i zi and covariance matrix ΣZ = 1

N−1 (ZTZ − (ITZ)T (ITZ)). The
former is essentially equivalent to the channel-wise batch normalization statistics while the latter
is more informative while remaining light-weight for efficient storage. At test time, we constrain
the self-supervised adaptation by minimizing the distance between the feature statistics estimated
from a mini-batch of test samples, i.e., µ′z and Σ′z , and that from the stored summarization of training

4

features:
Lf,z = ‖µz − µ′z‖

2
2 + ‖Σz − Σ′z‖

2
F , (3)

where ‖·‖2 is the Euclidean norm and ‖·‖F is the Frobenius norm.

One limitation of online moment matching in its naive form is that the low-order statistics may be
insufficient to fully capture complex distributions in high dimensions, e.g., 2048 for the standard
ResNet-50. To alleviate this issue, we align the feature distributions at both the output of the encoder
and the output of the self-supervised head, which are of lower dimensions, e.g., 128 in the case of
contrastive projection head in Sec. 4. Thus, our final objective at test time is a weighted combination
of the self-supervised loss Ls, the feature alignment loss at the encoder Lf,z and the one at the
self-supervised head Lf,s:

LTTT++ = Ls + λzLf,z + λsLf,s, (4)

where λz and λs are hyper-parameters controlling the emphasis on feature alignment at different
layers.

This proposed test-time algorithm takes into account both the discriminative power and the domain
discrepancy of the updated representations and hence enables the model to adapt more robustly under
various settings. In fact, the current moment matching strategy is just one instance of the online
feature alignment scheme. It can be naturally extended to incorporate higher-order statistics [24, 32],
to bring further performance gain at the cost of model size and computational efficiency.

3.3 Online Dynamic Queue

One practical challenge for online feature alignment lies in scaling the strategy to problems having
large numbers of classes. Intuitively, a good estimate of moments of the entire distribution needs at
least a handful of samples per class. As a consequence, the demand for sample size grows linearly
with the number of classes, for instance, over ∼1000 samples are required in the case of CIFAR-100.
However, the computational resources during deployment are often limited to accommodate such a
large batch size in the test-time setting.

To overcome this challenge, we draw inspiration from recent literature [9] and maintain a dynamic
queue of encoded features to decouple the batch size at test time from the sample size for moment
estimates. The dynamic queue contains a few batches of feature vectors encoded at test time.
We progressively update it by appending the latest mini-batch and popping out the oldest one, as
illustrated in Figure 2. This decoupling allows us to collect a large and consistent pool of samples for
online moment matching, even with a very limited batch size.

4 When Does Test-Time Training Thrive?

Given properly aligned feature distribution, we next look into the potential of test-time training given
strong SSL tasks. We first derive a lower bound of the test accuracy in general scenarios and then
analyze it in a specific setup where the performance on the main task can be directly estimated. These
analyses motivate our use of more informative self-supervised learning for test-time training.

4.1 Theoretical Results

We consider a training set comprised of samples drawn from the joint distribution PX,Ym,Ys , where
X,Ym and Ys are random variables corresponding to the training samples, the main task labels and
the self-supervised labels respectively. Similarly, the test set consists of samples drawn from the
joint distribution PX′,Y ′

m,Y ′
s
. In the presence of distribution shift, PX,Ym,Ys

and PX′,Y ′
m,Y ′

s
are not

identical. However, we make the following assumption about label distribution in our analysis.

Assumption 1. The training and test labels are equal in distribution, Ym
d
= Y ′m, Ys

d
= Y ′s and

(Ym, Ys)
d
= (Y ′m, Y

′
s).

In addition, we restrict our analysis to the scenarios where both two tasks can be solved perfectly
during training.
Assumption 2. There exist an encoder g and classifiers πm and πs such that P(πm(g(X)) = Ym) =
1 and P(πs(g(X)) = Ys) = 1.

5

During TTT, the shared encoder g is updated to g′ such that the self-supervised head πs fits the test
data. Given our proposed online feature alignment in Equation 4, we assume the encoded features in
the training and test domains, i.e., Z and Z ′, have the following property.
Assumption 3. The marginal feature distribution and the conditional feature distributions at test
time are aligned with their counterparts during training, that is, Z d

= Z ′ and (Z | Ys = k)
d
= (Z ′ |

Y ′s = k) for all classes k in the SSL task.

Under these assumptions, the test accuracy on the main task is lower bounded as follows.
Theorem 1. If assumptions 1-3 hold, then the prediction accuracy on the main task is lower bounded:

P(πm(Z ′) = Y ′m) ≥
∑
ys

P(Ys = ys) max

{
0, 2

(
max
ym

P(Ym = ym | Ys = ys)− 0.5

)}
. (5)

Proof. Please refer to Section A.1 in the supplementary material.

Theorem 1 highlights the importance of the relation between the main task and the SSL task for the
test accuracy after adaptation. In fact, it can be difficult to ensure that there always exists a class in
the main task for which P(Ym = ym | Ys = ys) is sufficiently large in the worst-case scenario.

To further understand the impact of the task relation on test-time training, we next consider a particular
setting, where the encoded features fully overfit to the SSL task (e.g., lengthy test-time training) and
become independent of the main task label given the SSL label. Under this condition, the prediction
accuracy of the main task can be directly estimated as follows.
Theorem 2. If assumptions 1-3 hold and Z ′ ⊥⊥ Y ′m | Y ′s , then the prediction accuracy on the main
task is given by

P(πm(Z ′) = Y ′m) =
∑
ys

[
P(Ys = ys)

∑
ym

P(Ym = ym | Ys = ys)
2

]
. (6)

Proof. Please refer to Section A.2 in the supplementary material.

Intuitively, if the encoded features do not contain more information than the SSL labels about the
main task, the accuracy of the main classifier πm only depends on the property of the SSL task. In
particular, the square term on the right-hand side of Equation 6 emphasizes the paramount importance
of designing a well-suited SSL task for the prediction accuracy on the main task. When the two tasks
diverge, the test accuracy drops quadratically fast, leading to ineffective adaptation.

4.2 Test-Time Training through Contrastive Learning

Our theoretical analysis above reveals the importance of incorporating an SSL task highly correlated
with the main task for test-time training. One practical way to quantify the relation between two tasks
is to measure the transferability of the representation learned from one task to another [33]. Given
the remarkable results of contrastive methods for pre-training visual representations [9, 12, 34, 35],
we hypothesize that they would also be suitable choices for test-time training. Thus, we replace the
rotation prediction task with SimCLR [12]. For a mini-batch of B images, we augment each image
to two views. We consider the two augmented views from the same original instance as a positive
pair and treat the other pairs as negative ones. The feature vector zi = g(xi) of each image xi is
projected to a lower-dimensional space hi = πs(zi) through our self-supervised head. We encourage
the projected hidden embeddings from a positive pair <hi, hj> to be closer in the embedding space
while pushing apart the negative ones:

Ls = − log
exp(sim(hi, hj)/τ)∑2B

k=1 1k 6=i exp(sim(hi, hk)/τ)
, (7)

where τ is a temperature scaling parameter. The distance between projected embeddings is measured
by cosine similarity sim(u, v) = uT v/(‖u‖‖v‖).

6

Training TTT TTT++

La
b

el
 C

la
ss

if
ic

at
io

n
Fe

at
u

re
 P

C
A

Figure 3: Qualitative comparison of TTT [6] and our
TTT++ on the inter-twinning moons problem. Our
method effectively adapts the decision boundary to the
test domain, whereas the vanilla TTT suffers from a se-
vere feature misalignment, marked by the dashed arrow
in the PCA visualization.

0.5 0.6 0.7 0.8 0.9
Test Accuracy

0.5

0.6

0.7

0.8

0.9

1.0

Ad
ap

t A
cc

ur
ac

y

TTT
TTT++

0.70 0.75 0.80 0.85
Task Relation

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ad
ap

t A
cc

ur
ac

y

TTT
TTT++

Figure 4: Quantitative comparison of TTT [6] and our
TTT++ on the inter-twinning moons problem under var-
ious setups. Our method is particularly advantageous
under large shifts (low test accuracy before adaptation)
and substantially benefits from SSL tasks closely re-
lated to the main one (higher label agreement).

5 Experiments

We validate our proposed method in four scenarios: synthetic toy problem, common image corruptions,
natural domain shifts, and sim-to-real transfer.

We consider the following baselines throughout our experiments:
• Test - the trained network is evaluated on the test data without any test-time adaptation;
• Test-time normalization (BN) [36] - we update the batch normalization statistics of the trained

network according to the target data during testing;
• Test entropy minimization (TENT) [8] - we update the batch normalization statistics of the trained

network by minimizing the entropy of the model predictions on target data during testing;
• Source Hypothesis Transfer (SHOT) [37] - we freeze the classifier module and update only

the feature extraction module by exploiting the concepts of information maximization and self-
supervised pseudo-labeling during testing;

• Test-time training (TTT-R) [6] - we train the network jointly on the main task and a rotation-based
SSL task in the source domain; during test time, TTT-R continues to train on the rotation-based
task in the target domain.

We also evaluate the following ablated versions of our method:
• Test-Time Feature Alignment (TFA) aligns the first-order and second-order statistics of source

and target distributions during testing (Section 3.2);
• Test-Time Contrastive Learning (TTT-C) trains the network jointly on the main task and a

contrastive learning (SSL) task in the source domain; during test time, TTT-C continues to update
the encoder based on contrastive learning in the target domain (Section 4.2).

Our proposed improved Test-Time Training (TTT++) trains the network jointly on the main task and
a contrastive learning self-supervised task in the source domain; during test time, TTT++ continues
to train on the contrastive learning in the target domain along with performing feature alignment.

5.1 Synthetic Toy Problem

We first evaluate our method on the inter-twinning moons problem [4, 38], where the main task is
to predict the moon class of a given data point and the SSL task is to predict on which side of the
hyperplane (i.e., linear separator between the two moons) the data point lies on. The relation (label
agreement) between these two tasks depends on the separation distance between the moons. To solve
both tasks simultaneously, we build a small neural network that consists of a 2-layer MLP as the
shared encoder and two 2-layer MLPs as separate task heads. Each hidden layer contains 8 neurons.
The learned model attains over 99% accuracy on both the main and SSL tasks in the training domain.
We simulate a variety of distributional shifts through translation and rotation of all data points.

Figure 3 shows the decision boundaries and encoded features from the vanilla TTT and our proposed
TTT++ in a particular test case of large distributional shift. TTT fails to improve the classification

7

bri
t

con
tr

de
foc ela

st fog fro
st

ga
uss gla

ss
im

pu
l

jpe
g

motn pix
el

sho
t

sno
w

zoo
m

0

10

20

30

40

50

Er
ro

r (
%

)

Test
Tent
SHOT
TTT++

Figure 5: Classification error (%) on CIFAR10-C [1].

Table 1: Average classification error (%) on
CIFAR10-C/100-C [1] and CIFAR10.1 [41]

Method C10-C C100-C C10.1

Test 29.1 61.2 12.1
BN [42] 15.7 43.3 14.1
TTT-R [6] 14.3 40.4 11.0
SHOT [37] 14.7 38.1 11.1
TENT [8] 12.6 36.3 13.4

TFA (Ours) 11.9 35.8 12.1
TTT-C (Ours) 10.7 36.9 9.7
TTT++ (Ours) 9.8 34.1 9.5

accuracy. In fact, the resulting decision boundary goes even further from a desired one due to the
severe distribution mismatch, which we can observe in the PCA visualization of encoded features.
In comparison, our method TTT++ yields substantial performance gain, boosting the test accuracy
from 50% to 93%, thanks to the reduced feature distributional shift enforced by the proposed online
moment matching.

Figure 4 summarizes the quantitative results of our methods as well as the vanilla counterpart
under 150 different simulated setups. As shown on the left, when the domain shift only causes
mild test errors on the main task, both the original TTT and our TTT++ yield strong adaptation
results. However, the effectiveness of TTT deteriorates quickly along with the growth of domain
shift (reflected on the lower test accuracy). In comparison, our proposed TTT++ demonstrates clear
advantages under large shifts, e.g., when the test accuracy before adaptation is around 0.5. In the
figure on the right side, we vary the separation distance between the two moons in order to examine
the impact of the task relation on the prediction accuracy after adaptation. The simulation results
confirm the high potential of test-time training given improved SSL tasks, as analyzed in Section 4.1.

5.2 Common Image Corruption

We further assess the robustness of our method against common image corruptions. Following the
evaluation protocol of previous work [8], we train ResNet-50 [39] on CIFAR10/CIFAR100 [40]
and test it on the CIFAR10-C/CIFAR100-C [1] datasets, which contain 15 types of algorithmically
generated corruptions, such as noise, blur and snow effects. We use a batch size of 256 for test-time
training. In addition, we use a dynamic queue containing 16 batches of feature vectors for online
feature alignment on CIFAR100-C.

Figure 5 shows the quantitative results under each type of image corruption. The average results on
CIFAR10-C and CIFAR100-C are reported in Table 1. Our TTT++ clearly outperforms the prior
state-of-the-art test-time methods on CIFAR10-C and CIFAR100-C. In particular, incorporating a
strong self-supervision task (TTT-C) already suffices to perform on par or better than TENT. Adding
test-time feature alignment (TFA) on top of that yields an additional ∼ 8% relative reduction in terms
of the test error.

5.3 Natural Domain Shift

We next demonstrate the efficacy of our method TTT++ to tackle natural distribution shifts. We again
use the pre-trained ResNet-50 and test it on CIFAR10.1 [41], a recently collected test set subject
to natural distributional shift. Despite its high perceptual similarity with the CIFAR10 dataset, the
CIFAR10.1 typically leads to a drop of accuracy (4% to 10%) for a wide range of deep learning
models [41].

Table 1 summarizes the results of various test-time algorithms on CIFAR10.1. Previous batch-norm-
based methods perform poorly and even degrade model accuracy. This phenomenon is tied to their
implicit assumption that different samples and spatial locations are shifted in a similar manner, which
is true for algorithmically generated image corruptions but does not hold on CIFAR-10.1 [19]. In
contrast, TTT++ is more generic and yields stronger performance under the natural distribution shift.

8

Table 2: Classification error (%) on the large-scale VisDA-C dataset [43].

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Per-class

Test 56.52 88.71 62.77 30.56 81.88 99.03 17.53 95.85 51.66 77.86 20.44 99.51 58.72
BN [42] 44.38 56.98 33.24 55.28 37.45 66.60 16.55 59.02 43.55 60.72 31.07 82.98 48.12
TENT [8] 13.43 77.98 20.17 48.15 21.72 82.45 12.37 35.78 21.06 76.41 34.11 98.93 42.73
SHOT [37] 5.73 13.64 23.33 42.69 7.93 86.99 19.17 19.97 11.63 11.09 15.06 43.26 25.04

TFA (Ours) 28.25 32.03 33.67 64.77 20.49 56.63 22.52 36.30 24.84 35.20 25.31 64.24 39.58
TTT-C (Ours) 5.46 32.23 25.42 37.03 7.84 85.20 9.14 23.80 11.72 11.00 7.74 56.87 25.72
TTT++ (Ours) 4.13 26.20 21.60 31.70 7.43 83.30 7.83 21.10 7.03 7.73 6.91 51.40 22.46

Table 3: Classification error (%) results from online feature alignment with or without a dynamic queue of
feature vectors on the CIFAR100-C under level-5 fog corruption. Sample size = Batch size × # Batches. Given
a fixed batch size, enlarging the queue size leads to similar results as having a larger batch size.

w/o queue w/ queue

Sample Size 64 128 256 64 × 2 64 × 4 64 × 8 64 × 16

Test Error 40.31 38.67 37.01 39.84 37.37 36.18 36.02

5.4 Sim-to-Real Transfer

We finally validate the effectiveness of our method on the VisDA-C dataset [43], a challenging
large-scale benchmark of synthetic-to-real object classification. As shown in Table 2, prior methods
that are fairly competitive under image corruptions, such as BN [42] and TENT [8], are not effective
on VisDA-C. We conjecture that this is attributed to their strong restrictions over the adaptable
parameters at test time. In contrast, our proposed method is more flexible, allows the model to update
the entire encoder, and thus achieves compelling results on VisDA-C. Furthermore, the test-time
feature alignment plays a crucial role in this synthetic-to-real domain adaptation problem, providing
∼ 13% performance boost on top of the TTT-C.

5.5 Effect of Batch-Queue Decoupling

To verify the effects of batch-queue decoupling, we compare the results of online feature alignment
with different sample sizes. Table 3 summarizes the test errors on CIFAR100 under the level-5 fog
corruption. As expected, larger sample sizes generally lead to lower classification errors. Interestingly,
while the performance of using a dynamic queue is slightly worse than its counterpart of having the
same sample size using a single large batch, enlarging the queue size always yields better results.
For instance, given a small batch size of 64, using a dynamic queue maintaining 512 or 1024 feature
vectors from 8 or 16 consecutive batches respectively is more advantageous compared to the vanilla
moment matching based on a batch size of 256 samples. This result corroborates the benefit of
integrating a dynamic queue into our proposed feature alignment framework, for enhancing the
scalability in the online setting.

5.6 Design Choice for Moment Matching

As discussed in Section 3, our proposed online feature alignment can be instantiated with different
orders of moments and applied at various layers. To understand the effects of these different design
choices, we empirically compare our proposed version against several ablated variants in Table 4.
Irrespective of the layer choice, our proposed online feature alignment consistently results in reduced
classification error. Nevertheless, moment matching applied to the self-supervised head alone leads
to lower test error compared to applying it to the feature extractor output in 11 out of 15 types of
corruption. The strong performance of the former can be attributed to the lower dimensionality of the
feature vector, which allows for a more accurate estimate of statistics given the limited batch size.
The best result comes from the online feature alignment at the outputs of both the encoder and the
projection head simultaneously, which validates our design choice in Section 3.2.

We further verify the choice of divergence measure through an ablation study. The online feature
alignment using the second-order moment (covariance) leads to clearly better results than the one

9

Table 4: Classification error (%) on CIFAR10-C [1] with different versions of online feature alignment. Taking
into account both the first and second-order moments at two different layers is better than the other counterparts
under most types of image corruptions.

TFA brit contr defoc elast fog frost gauss glass impul jpeg motn pixel shot snow zoom

w/o Lf,s 7.96 7.57 9.4 17.24 14.38 12.54 14.62 21.05 21.4 12.68 11.92 10.7 13.7 12.74 7.32
w/o Lf,z 7.85 7.84 9.18 16.51 14.33 11.99 13.79 20.08 20.17 12.42 12.02 10.5 12.78 13.28 7.44

w/o Σ 7.49 7.56 9.62 18.62 19.22 12.72 16.02 25.07 25.17 13.43 13.63 11.22 15.04 15.11 7.77
w/o µ 7.43 7.37 8.90 15.92 12.98 11.57 13.46 19.27 18.95 11.87 11.11 9.97 12.81 11.76 7.04

Full 7.44 7.40 8.89 15.73 12.82 11.49 12.94 18.46 19.13 11.66 10.77 9.93 12.67 11.73 7.03

using the first-order moment (mean). It is also evident that the online feature alignment is most
effective when both the mean and the covariance are taken into account.

6 Conclusion and Discussions

In this work, we conduct an in-depth analysis of the limitations and potential of the test-time training
through self-supervised learning. We draw attention to the risk of feature distribution mismatch, which
is critical but largely overlooked in recent test-time algorithms. We shed light on the strong potential
of this approach by analyzing the growth of test accuracy given improved SSL tasks. These analyses
inspire three proposed modifications, namely online feature alignment, batch-queue decoupling and
contrastive test-time training, which yield state-of-the-art results on multiple robustness benchmarks.
Our results suggest the advantages of bringing additional task-specific and model-specific information
in a compact format for test-time adaptation. We hope these findings will motivate researchers
and practitioners to rethink what should be stored, in addition to weight parameters, for the robust
deployment of machine learning models.

Limitations. In this work, we restrain feature summarization to first and second-order moments.
Yet, the low-order statistics may be insufficient to characterize the complex distribution of high-
dimensional features. Developing more advanced summarization methods tailored for test-time
adaptation is an interesting avenue for future work. In addition, there may exist a considerable gap
between our theoretical analysis and the empirical results, when the stated assumptions do not hold.
For instance, neither the classifier nor the feature alignment is perfect in practice. More theoretical
guarantees can be valuable for practical use of test-time adaptation.

Open Questions. In our experiments, we only consider the standard ResNet-50 as the backbone
architecture and share the whole feature extractor between the main task and self-supervised task.
Yet, recent literature [31, 44] has shown that different layers capture different levels of semantic
granularity. The impact of architectural design on test-time training remains an open question.
Furthermore, while we empirically compare our proposed method against other families of test-time
adaptation algorithms, these techniques exploit different supervisory signals extracted from unlabeled
data, which can be complementary to each other. Blending these techniques into a unified framework
is another interesting direction to explore in the future.

Societal Impact. Our work aims at expanding the current horizon of machine learning algorithms
for test-time adaptation. For applications where humans’ lives are at risk, such as autonomous driving,
trust, safety, robustness are all mandatory keywords. The field has made amazing progress when
the training and testing environments are highly similar. What if a machine encounters deployed to
new environments? We, humans, have an innate capability for handling such shifts. We believe that
machines should have the same capability as humans. Indeed, there is a long way to go. Nevertheless,
we hope that our work will foster more research in analyzing and devising algorithms for robust
test-time adaptation.

Acknowledgements

This work was supported by the Swiss National Science Foundation under the Grant 2OOO21-
L92326, Honda R&D Co. Ltd, EPFL Open Science fund and Valeo. We thank Sudeep Salgia, Tao
Lin, Lingjun Meng for helpful inputs to our early drafts and reviewers for valuable comments.

10

References
[1] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common

corruptions and perturbations. Proceedings of the International Conference on Learning
Representations, 2019.

[2] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning Transferable Features
with Deep Adaptation Networks. In International Conference on Machine Learning, pages
97–105. PMLR, June 2015. ISSN: 1938-7228.

[3] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I. Jordan. Deep Transfer Learning with
Joint Adaptation Networks. In Proceedings of the 34th International Conference on Machine
Learning, pages 2208–2217. PMLR, July 2017. ISSN: 2640-3498.

[4] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural
networks. The Journal of Machine Learning Research, 17(1):2096–2030, January 2016.

[5] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial Discriminative
Domain Adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7167–7176, 2017.

[6] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-Time
Training with Self-Supervision for Generalization under Distribution Shifts. In Proceedings of
the 37th International Conference on Machine Learning, pages 9229–9248. PMLR, November
2020. ISSN: 2640-3498.

[7] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data?
source hypothesis transfer for unsupervised domain adaptation. In International Conference on
Machine Learning (ICML), pages 6028–6039, July 13–18 2020.

[8] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent:
Fully Test-Time Adaptation by Entropy Minimization. In International Conference on Learning
Representations, September 2020.

[9] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum Contrast for
Unsupervised Visual Representation Learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 9729–9738, 2020.

[10] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality Reduction by Learning an
Invariant Mapping. In 2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition - Volume 2 (CVPR’06), volume 2, pages 1735–1742, New York, NY, USA,
2006. IEEE.

[11] Zhirong Wu, Yuanjun Xiong, Stella Yu, and Dahua Lin. Unsupervised Feature Learning via
Non-parametric Instance Discrimination. In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3733–3742, June 2018. ISSN: 2575-7075.

[12] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A Simple Framework
for Contrastive Learning of Visual Representations. In Proceedings of the 37th International
Conference on Machine Learning, pages 1597–1607. PMLR, November 2020. ISSN: 2640-
3498.

[13] Assaf Shocher, Nadav Cohen, and Michal Irani. Zero-Shot Super-Resolution Using Deep
Internal Learning. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 3118–3126, June 2018. ISSN: 2575-7075.

[14] Firas Shama, Roey Mechrez, Alon Shoshan, and Lihi Zelnik-Manor. Adversarial Feedback Loop.
In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pages 3204–3213,
October 2019. ISSN: 2380-7504.

[15] Yuejiang Liu, Parth Kothari, and Alexandre Alahi. Collaborative Sampling in Generative Adver-
sarial Networks. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04):4948–
4956, April 2020. Number: 04.

11

[16] David Bau, Hendrik Strobelt, William Peebles, Jonas Wulff, Bolei Zhou, Jun-Yan Zhu, and An-
tonio Torralba. Semantic photo manipulation with a generative image prior. ACM Transactions
on Graphics, 38(4):59:1–59:11, July 2019.

[17] Jogendra Nath Kundu, Naveen Venkat, Rahul M. V, and R. Venkatesh Babu. Universal Source-
Free Domain Adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4544–4553, 2020.

[18] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias
Bethge. Improving robustness against common corruptions by covariate shift adaptation.
Advances in Neural Information Processing Systems, 33, 2020.

[19] Collin Burns and Jacob Steinhardt. Limitations of Post-Hoc Feature Alignment for Robustness.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 2525–2533, 2021.

[20] Yang Fu, Sifei Liu, Umar Iqbal, Shalini De Mello, Humphrey Shi, and Jan Kautz. Learning to
Track Instances without Video Annotations. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 8680–8689, 2021.

[21] Nicklas Hansen, Rishabh Jangir, Yu Sun, Guillem Alenyà, Pieter Abbeel, Alexei A. Efros,
Lerrel Pinto, and Xiaolong Wang. Self-Supervised Policy Adaptation during Deployment. In
International Conference on Learning Representations, September 2020.

[22] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander
Smola. A Kernel Two-Sample Test. Journal of Machine Learning Research, 13(25):723–773,
2012.

[23] Baochen Sun, Jiashi Feng, and Kate Saenko. Correlation Alignment for Unsupervised Domain
Adaptation. In Gabriela Csurka, editor, Domain Adaptation in Computer Vision Applications,
Advances in Computer Vision and Pattern Recognition, pages 153–171. Springer International
Publishing, Cham, 2017.

[24] Werner Zellinger, Thomas Grubinger, Edwin Lughofer, Thomas Natschläger, and Susanne
Saminger-Platz. Central Moment Discrepancy (CMD) for Domain-Invariant Representation
Learning. International Conference on Learning Representations, International Conference on
Learning Representations, November 2016. 00283.

[25] Yaroslav Ganin and Victor Lempitsky. Unsupervised Domain Adaptation by Backpropagation.
In Proceedings of the 32nd International Conference on Machine Learning, pages 1180–1189.
PMLR, June 2015. ISSN: 1938-7228.

[26] Mehdi Noroozi and Paolo Favaro. Unsupervised Learning of Visual Representations by Solving
Jigsaw Puzzles. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, European
Conference on Computer Vision, pages 69–84, Cham, 2016. Springer International Publishing.

[27] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep Clustering
for Unsupervised Learning of Visual Features. In Vittorio Ferrari, Martial Hebert, Cristian
Sminchisescu, and Yair Weiss, editors, Computer Vision – ECCV 2018, Lecture Notes in
Computer Science, pages 139–156, Cham, 2018. Springer International Publishing.

[28] Yuejiang Liu, Qi Yan, and Alexandre Alahi. Social NCE: Contrastive Learning of Socially-
Aware Motion Representations. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 15118–15129, 2021.

[29] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging Properties in Self-Supervised Vision Transformers. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 9650–9660, 2021.

[30] Xinlei Chen and Kaiming He. Exploring Simple Siamese Representation Learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
15750–15758, 2021.

12

[31] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep Domain
Confusion: Maximizing for Domain Invariance. arXiv:1412.3474 [cs], December 2014. arXiv:
1412.3474.

[32] Chao Chen, Zhihang Fu, Zhihong Chen, Sheng Jin, Zhaowei Cheng, Xinyu Jin, and Xian-
sheng Hua. HoMM: Higher-Order Moment Matching for Unsupervised Domain Adaptation.
Proceedings of the AAAI Conference on Artificial Intelligence, 34(04):3422–3429, April 2020.
Number: 04.

[33] Amir R. Zamir, Alexander Sax, William Shen, Leonidas J. Guibas, Jitendra Malik, and Silvio
Savarese. Taskonomy: Disentangling Task Transfer Learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 3712–3722, 2018.

[34] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own
latent: A new approach to self-supervised Learning. arXiv:2006.07733 [cs, stat], September
2020. 00623 arXiv: 2006.07733.

[35] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand
Joulin. Unsupervised Learning of Visual Features by Contrasting Cluster Assignments.
arXiv:2006.09882 [cs], January 2021. 00403 arXiv: 2006.09882.

[36] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias
Bethge. Removing covariate shift improves robustness against common corruptions. CoRR,
abs/2006.16971, 2020.

[37] Jian Liang, Dapeng Hu, and Jiashi Feng. Do We Really Need to Access the Source Data?
Source Hypothesis Transfer for Unsupervised Domain Adaptation. In International Conference
on Machine Learning, pages 6028–6039. PMLR, November 2020. ISSN: 2640-3498.

[38] Pascal Germain, Amaury Habrard, François Laviolette, and Emilie Morvant. A PAC-Bayesian
Approach for Domain Adaptation with Specialization to Linear Classifiers. In Proceedings of
the 30th International Conference on Machine Learning, pages 738–746. PMLR, May 2013.
ISSN: 1938-7228.

[39] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016.

[40] A. Krizhevsky. Learning multiple layers of features from tiny images, 2009.

[41] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do ImageNet
Classifiers Generalize to ImageNet? In Proceedings of the 36th International Conference on
Machine Learning, pages 5389–5400. PMLR, May 2019. ISSN: 2640-3498.

[42] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Francis R. Bach and David M. Blei, editors, Proceedings
of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July
2015, volume 37 of JMLR Workshop and Conference Proceedings, pages 448–456. JMLR.org,
2015.

[43] Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman, Dequan Wang, and Kate Saenko.
Visda: The visual domain adaptation challenge. ArXiv, abs/1710.06924, 2017.

[44] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How Transferable Are Features
in Deep Neural Networks? In Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2, NIPS’14, pages 3320–3328, Cambridge, MA, USA,
2014. MIT Press.

[45] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised Contrastive Learning. arXiv:2004.11362
[cs, stat], April 2020. arXiv: 2004.11362.

13

A Proofs of Theorems

In this section, we prove the theoretical results in the Section 4.1.

A.1 Proof of Theorem 1

Lemma 1. Let (Ω,F ,P) be a probability space and let (Ai)i∈{1...n} be a partition of Ω. Let C be
the set of partitions of Ω whose elements have the same probabilities as (Ai)i∈{1...n}, that is :

C = {(Ui)i∈{1...n} /
⋃
i

Ui = Ω; ∀(i, j), i 6= j, Ui ∩ Uj = ∅; ∀i,P(Ui) = P(Ai)}. (8)

If n = 2 or P(A1) ≥ 1/2 then :

min
(Bi)i∈{1...n}∈C

∑
i

P(Bi ∩Ai) ≥ 2× P (A1)− 1. (9)

Proof. If n > 2 and P(A1) ≥ 1/2, then we can write A′1 = A1 and A′2 = (
⋃

i=2...,nAi) and reason
similarly as in the case where n = 2 with (A′1, A

′
2) and (B′1, B

′
2).

In the case n = 2, we have:

P(A1 ∩B1) + P(A2 ∩B2) = 1− P(A1 ∩B2)− P(A2 ∩B1)

≥ 1− P(B2)− P(A2)

≥ 1− 2× (1− P (A1))

≥ 2× P(A1)− 1

The intuition is that no matter how the partitions are built, if P (A1) > 1/2 and P (B1) > 1/2, there
is necessarily an overlap between the two subsets such that A1 ∩B1 6= ∅.

Theorem 1. If we assume that:

• Z d
= Z ′;

• (Z | Ys = k)
d
= (Z ′ | Y ′s = k),∀k ∈ {1, ...,K};

then the accuracy of the main task classifier is lower-bounded:

P(πm(Z ′) = Y ′m) ≥
∑
ys

P(Ys = ys) max

{
0, 2

(
max
ym

P(Ym = ym | Ys = ys)−
1

2

)}
. (10)

Proof. Using that
⋃

ys
{Y ′s = ys} = Ω, we obtain using the law of total probability that:

Accuracy︷ ︸︸ ︷
P(πm(Z ′) = Ym

′) =
∑
ys

P(πm(Z ′) = Ym
′ | Ys′ = ys)P(Ys

′ = ys)

=
∑
ys

P(Ys
′ = ys)

∑
ym

P({πm(Z ′) = ym} ∩ {Ym′ = ym} | Ys′ = ys).

(11)

Let us introduce A(ys)
ym = {Y ′m = ym | Y ′s = ys} and B(ys)

ym = {πm(Z ′) = ym | Y ′s = ys}. It is
important to note that P(A

(ys)
ym) = P(B

(ys)
ym). Indeed, we know that:

P(B(ys)
ym

) = P(πm(Z ′) = ym | Y ′s = ys). (12)

14

Moreover, we assume conditional distribution to be aligned, and πm not to be retrained, as a result
equation (12) can be written as:

P(B(ys)
ym

) = P(πm(Z) = ym | Ys = ys)

= P(Ym = ym | Ys = ys)

= P(Y ′m = y′m | Y ′s = y′s)

= P(A(ys)
ym

).

(13)

Then, we can rewrite equation (11), namely the accuracy, as:
Accuracy︷ ︸︸ ︷

P(πm(Z ′) = Ym
′) =

∑
ys

P(Ys
′ = ys)

∑
ym

P(A(ys)
ym
∩B(ys)

ym
). (14)

Finally, without loss of generality, we can assume that the indexes of (A
(ys)
ym)ym and (B

(ys)
ym)ym are

ordered such that:

1. ∀ys ∈ {1...Ks}, P(A
(ys)
1) ≥ P(A

(ys)
2) ≥ ... ≥ P(A

(ys)
Km

);

2. ∀ys ∈ {1...Ks}, ∀i ∈ {1...Km}, P(A
(ys)
i) = P(B

(ys)
i).

Let us now define C(ys), the set of partitions of Ω whose elements have the same probabilities as
(A

(ys)
i)i∈{1...Km}. That is,

C(ys) = {(Ui)i∈{1...Km} /
⋃
i

Ui = Ω; ∀(i, j), i 6= j, Ui ∩ Uj = ∅; ∀i,P(Ui) = P(A
(ys)
i)}.

(15)

It is clear that: (B
(ys)
i)i∈{1...Km} ∈ C(ys).

Hence, it is also clear that:∑
ys

P(Ys
′ = ys)

∑
i

P(A
(ys)
i ∩B(ys)

i) ≥
∑
ys

P(Ys
′ = ys) min

(U
(ys)
i)∈C(ys)

∑
i

P(A
(ys)
i ∩U (ys)

i) (16)

Therefore, we can lower bound the accuracy in equation (14) using the inequality (16) above, such
that:

Accuracy︷ ︸︸ ︷
P(πm(Z ′) = Ym

′) ≥
∑
ys

P(Ys
′ = ys) min

(U
(ys)
i)∈C(ys)

∑
i

P(A
(ys)
i ∩ U (ys)

i) (17)

Let us now separate two cases:

1. Km > 2 and P(A
(ys)
1) < 1/2;

2. Km ≤ 2 or P(A
(ys)
1) ≥ 1/2.

We shall henceforth ignore the index (ys) for better clarity.

In case 1, we simply use that:

∀(U (ys)
i)i∈{1...Km} ∈ C

(ys),
∑
i

P(A
(ys)
i ∩ U (ys)

i) ≥ 0. (18)

In case 2 , we show that (cf. Lemma 1):

min
(Bi)i∈{1...Km}∈C

∑
i

P(Bi ∩Ai) ≥ 2× P (A1)− 1. (19)

15

The final result comes from the fact that:

P(A1) < 1/2 =⇒ P (A1)− 1/2 < 0

Hence the two cases are summarized by the formula:

min
(Bi)i∈{1...Km}∈C

∑
i

P(Bi ∩Ai) ≥ max

{
0, 2

(
max

i
P(Ai)−

1

2

)}
.

Finally, as the joint laws are assumed equal, namely (Ym, Ys) ∼ (Y ′m, Y
′
s), it comes that:

P (A
(ys)
1) = max

ym

P(Y ′m = ym | Y ′s = ys)

= max
ym

P(Ym = ym | Ys = ys).
(20)

A.2 Proof of Theorem 2

Lemma 2. If Y ⊥⊥ X | Z and X,Y, Z are discrete random variables then,

∀(x, y, z) ∈ (X(Ω)× Y (Ω)× Z(Ω)) with P(X = x ∩ Z = z) > 0,

P(Y = y | X = x, Z = z) = P(Y = y | Z = z)

Proof. ∀(x, y, z) ∈ (X(Ω)× Y (Ω)× Z(Ω)) such that P(X = x ∩ Z = z) > 0 :

P(Y = y | X = x, Z = z) =
P(X = x, Y = y, Z = z)

P(X = x, Z = z)

=

cf. Assumption︷ ︸︸ ︷
P(X = x | Y = y, Z = z) P(Y = y, Z = z)

P(X = x, Z = z)

=
P(X = x | Z = z)P(Y = y, Z = z)

P(X = x, Z = z)

=
P(X = x | Z = z)P(Y = y | Z = z)

P(X = x | Z = z)

P(Y = y | X = x, Z = z) = P(Y = y | Z = z)

Theorem 2. If we assume that:

• Z d
= Z ′;

• (Z | Ys = k)
d
= (Z ′ | Y ′s = k),∀k ∈ {1, ...,K};

• Z ′ ⊥⊥ Y ′m | Y ′s ;

then the accuracy of the model is:

P(πm(Z ′) = Y ′m) =
∑
ys

[
P(Ys = ys)

∑
ym

P(Ym = ym | Ys = ys)
2

]
. (21)

Proof. Let (Ω,F ,P) be a probability space. Let Ym(Ω) = Y ′m(Ω) = {1, ...,Km} and Ys(Ω) =
Y ′s (Ω) = {1, ...,Ks}. In the following, for the sake of clarity we shall try to omit writing Ys(Ω) and
Ym(Ω). Thus,when no confusion is possible we shall write

⋃
ys

instead of
⋃

ys∈Y (Ω) .

16

Using the law of total probability, with
⋃

ys
{Y ′s = ys} = Ω, it comes that:

Accuracy︷ ︸︸ ︷
P(πm(Z ′) = Y ′m) =

∑
ys

P(πm(Z ′) = Y ′m | Y ′s = ys)︸ ︷︷ ︸
A(ys)

P(Y ′s = ys). (22)

Similarly, we reformulate A(ys) with the law of total probability, using that
⋃

ym
{Y ′m = ym | Y ′s =

ys} = Ω,and it comes that:

A(ys) =
∑
ym

P(πm(Z ′) = ym | Ys′ = ys, Ym
′ = ym)P(Ym

′ = ym | Ys′ = ys).

We now replace A(ys) in equation 22, which is the accuracy, and it comes that :

Accuracy︷ ︸︸ ︷
P(πm(Z ′) = Y ′m) =

∑
ys

P(Ys
′ = ys)

∑
ym

P(πm(Z ′) = ym | Ys′ = ys, Ym
′ = ym)P(Ym

′ = ym | Ys′ = ys).

(23)

If Y ′m ⊥⊥ Z ′ | Y ′s (assumption 3), it can easily be shown (cf. Lemma 2) for all (ys, ym) such that
P(Y ′s = ys, Y

′
m = ym) > 0, we have:

P(πm(Z ′) = ym | Ys′ = ys, Ym
′ = ym) = P(πm(Z ′) = ym | Y ′s = ys)

Furthermore, it is clear that

P(Y ′s = ys, Y
′
m = ym) = 0 =⇒ P(Y ′s = ys | Y ′m = ym) = 0.

Hence, we can rewrite equation 23, namely the accuracy, using equation A.2 for all (ys, ym), and it
comes that:

Accuracy︷ ︸︸ ︷
P(πm(Z ′) = Ym

′) =
∑
ys

P(Ys
′ = ys)

∑
ym

P(πm(Z ′) = ym | Ys′ = ys)P(Ym
′ = ym | Ys′ = ys).

(24)

From assumption 2 on conditional features alignment, namely ∀k ∈ Ys(Ω), (Z | Ys = k)
d
= (Z ′ |

Y ′s = k), and given that the classifier πm is fixed, it comes that :

∀(ym, ys), P(πm(Z ′) = ym | Y ′s = ys) = P(πm(Z) = ym | Ys = ys). (25)

We assumed that the classifier πm is perfect on the training set, such that:

∀(ym, ys), P(πm(Z) = ym | Ys = ys) = P(Ym = ym | Ys = ys). (26)

Hence, combining equality 26 and equality 25, it comes that:

∀(ym, ys), P(πm(Z ′) = ym | Y ′s = ys) = P(Ym = ym | Ys = ys). (27)

We now rewrite the accuracy, that is equation 24, using the equality 27 above, and it comes that:

Accuracy︷ ︸︸ ︷
P(πm(Z ′) = Ym

′) =
∑
ys

P(Ys
′ = ys)

∑
ym

P(Ym = ym | Ys = ys) P(Ym
′ = ym | Ys′ = ys)︸ ︷︷ ︸

Joint distributions of labels

.

(28)

17

We assumed that the joint distributions of the labels were constant over time, i.e., (Ym ∩ Ys)
d
=

(Y ′m ∩ Y ′s). Consequently, we replace the test time joint distribution by their training counterpart in
equation 28, such that:

Accuracy︷ ︸︸ ︷
P(πm(Z ′) = Ym

′) =
∑
ys

P(Ys
′ = ys)︸ ︷︷ ︸

Prior distribution

∑
ym

P(Ym = ym | Ys = ys)P(Ym = ym | Ys = ys). (29)

Finally, we assumed that the prior distributions of the labels are constant over time, i.e., Ys
d
= Y ′s

Therefore, we replace the test time prior by the training time prior in equation 29 and it gives:

P(πm(Z ′) = Ym
′) =

∑
ys

P(Ys = ys)
∑
ym

P(Ym = ym | Ys = ys)
2. (30)

B Implementation Details

Joint Training. We use the same hyper-parameters as [45] to train the ResNet-50 on the classifica-
tion and contrastive tasks jointly. We set the batch size to 256 and the weight of the self-supervised
task λ to 0.1 in all experiments. We train the model for 1,000 epochs on CIFAR-10 and CIFAR-100
from scratch. On VisDA, we reduce the number of epochs to 100 and warm start the training from a
pre-trained ResNet-50 due to limited training data.

Test-Time Adaptation. At test-time, we adapt the encoder using stochastic gradient descent with
a learning rate of 0.001 and momentum of 0.9. We use a batch size of 256 for the self-supervised task
and online feature alignment.

Contrastive Task. We use the same data augmentation strategy as [12]. For random cropping, we
first create crops of random size and aspect ratio from raw images and subsequently resize them to
the original size. For color distortion, we set the strength of color jitter to 0.5. We set the temperature
parameter to 0.5 for CIFAR-10, CIFAR10-C, CIFAR-100 and CIFAR100-C, and 0.1 for the VisDA
dataset.

C Additional Experiments

C.1 Additional Results on Common Corruption Datasets

In addition to the bar plot in Figure 3 from the main paper, we summarize the classification errors on
CIFAR10-C with different severity levels of corruptions in Tables C.1-C.3. Across all three levels,
our proposed TTT++ outperforms other strong baselines [8, 36, 37] by a clear margin. Specifically,
our method leads to ∼23% lower classification errors on average than prior state-of-the-art methods.

C.2 Additional Results with Different Random Seeds

We follow the evaluation protocol of previous work [6, 8] and run all methods on the same pre-trained
model with the same seed. As shown in Table C.4, the variance across different random seeds is
minimal. We therefore report our main experimental results with only one random seed.

C.3 Additional Qualitative Results

In addition to Figure 3 from the main paper, we visualize the learned representation of test images on
three other types of corruption in Figures C.1. These qualitative results confirm that while TTT-C
itself leads to semantically more separated feature clusters, it cannot resolve the distributional shifts
in the feature space. In comparison, the full version of our proposed TTT++ is able to improve both
the feature alignment and the discriminative power of the test-time representations simultaneously.

18

Table C.1: Classification error (%) on CIFAR10-C, level-5 corruptions.

brit contr defoc elast fog frost gauss glass impul jpeg motn pixel shot snow zoom Average

Test 7.01 13.27 11.84 23.38 29.41 28.24 48.73 50.78 57 19.46 23.38 47.88 44 21.93 10.84 29.14
BN [36] 8.22 8.27 9.66 19.54 19.95 19.5 17.11 25.95 27.7 13.67 13.72 11.50 16.17 15.88 7.93 15.65
TENT[8] 7.14 7.16 8.28 16.86 14.49 11.99 14.64 21.39 22.1 12.01 11.28 9.6 13.34 12.16 7.15 12.64
SHOT [37] 8.01 7.95 9.51 18.93 18.88 13.15 16.42 24.74 26.27 13.55 13.39 11.23 15.38 15.55 7.74 14.71

TFA 7.44 7.40 8.89 15.73 12.82 11.49 12.94 18.46 19.13 11.66 10.77 9.93 12.67 11.73 7.03 11.87
TTT-C 5.32 5.7 8.05 15.37 8.39 11.11 14.63 19.87 12.41 9.54 8.76 11.93 13.06 9.91 7.1 10.74
TTT++ 5.20 5.43 7.73 13.08 8.09 9.73 12.73 15.70 12.45 10.39 8.52 8.87 11.07 8.75 6.31 9.60

Table C.2: Classification error (%) on CIFAR10-C, level-4 corruptions.

brit contr defoc elast fog frost gauss glass impul jpeg motn pixel shot snow zoom Average

Test 5.88 7.45 8.32 13.04 13.02 20.07 43.31 52.34 43.78 17.12 16.72 26.45 34.34 19.31 8.12 21.95
BN [36] 7.33 7.48 8.19 13.46 13.10 11.50 15.63 25.36 21.65 12.11 12.35 8.98 12.91 16.70 7.05 12.92
TENT [8] 6.71 6.62 7.08 11.73 9.13 10.66 13.61 20.39 17.12 10.77 10.02 8.56 11.04 13.41 6.59 10.90
SHOT [37] 6.71 6.90 7.66 12.31 11.22 10.77 14.30 22.49 18.68 11.33 11.13 8.51 11.58 15.05 6.68 11.69

TFA 6.55 6.51 7.38 11.76 9.96 10.03 12.65 18.46 15.39 10.45 10.36 8.36 10.69 12.79 6.47 10.52
TTT-C 4.85 5.02 6.14 10.17 6.00 8.47 12.84 19.90 11.48 10.58 8.17 7.43 10.24 10.44 6.15 9.19
TTT++ 4.34 4.81 5.68 9.52 5.91 7.74 12.08 15.92 9.47 9.34 7.71 6.93 9.26 9.08 5.80 8.24

Table C.3: Classification error (%) on CIFAR10-C, level-3 corruptions.

brit contr defoc elast fog frost gauss glass impul jpeg motn pixel shot snow zoom Average

Test 5.64 6.47 5.73 7.69 8.98 18.54 36.96 35.53 26.86 15.54 16.68 13.10 28.00 16.89 7.54 16.68
BN [36] 6.95 6.96 7.03 9.27 10.19 11.21 13.53 16.53 15.84 10.91 12.20 8.42 12.12 14.90 7.26 10.89
TENT [8] 6.51 6.44 6.36 8.63 7.90 9.87 11.88 14.26 12.99 10.38 10.58 7.24 9.97 11.87 6.67 9.44
SHOT [37] 6.58 6.66 6.80 8.67 9.12 10.46 12.14 15.17 14.06 10.40 10.93 7.74 10.72 12.78 6.59 9.92

TFA 6.32 6.46 6.63 8.61 8.78 10.17 11.10 13.23 11.54 9.99 10.20 7.49 10.21 12.03 6.70 9.30
TTT-C 4.51 4.81 4.77 6.79 5.34 8.99 11.38 12.93 8.63 9.86 8.09 6.49 9.49 8.70 5.95 7.78
TTT++ 4.26 4.50 4.68 6.47 5.18 7.84 9.92 10.99 8.06 8.51 7.66 5.97 8.43 7.78 5.46 7.05

Table C.4: Classification error (%) of TTT+ with different random seeds on CIFAR10-C, level-5 corruptions.

Seed brit contr defoc elast fog frost gauss glass impul jpeg motn pixel shot snow zoom Average

0 5.20 5.43 7.73 13.08 8.09 9.73 12.73 15.70 12.45 10.39 8.52 8.87 11.07 8.75 6.31 9.60
1 5.09 5.37 7.47 12.62 7.95 9.44 12.63 16.19 12.25 10.40 8.59 8.51 11.22 8.71 6.12 9.50
2 5.25 5.50 7.69 13.04 8.17 9.46 13.05 16.21 11.95 10.49 8.57 8.48 11.14 8.76 6.34 9.61

Std 0.08 0.07 0.14 0.25 0.11 0.16 0.22 0.29 0.25 0.06 0.04 0.22 0.08 0.03 0.12 0.06

(a) Test (b) TENT (c) SHOT (d) TFA (e) TTT-C (f) TTT++

Figure C.1: T-SNE visualization of the representation for the CIFAR10 images with the level-5 elastic transform
corruption. Top row: per-class feature distribution. Bottom row: marginal feature distribution on the original test
images (red) and corrupted test images (blue).

19

	Introduction
	Background
	Related Work
	Preliminary: Test-Time Training

	When Does Test-Time Training Fail?
	Illustrative Example of Failures
	Online Feature Alignment
	Online Dynamic Queue

	When Does Test-Time Training Thrive?
	Theoretical Results
	Test-Time Training through Contrastive Learning

	Experiments
	Synthetic Toy Problem
	Common Image Corruption
	Natural Domain Shift
	Sim-to-Real Transfer
	Effect of Batch-Queue Decoupling
	Design Choice for Moment Matching

	Conclusion and Discussions
	Proofs of Theorems
	Proof of Theorem 1
	Proof of Theorem 2

	Implementation Details
	Additional Experiments
	Additional Results on Common Corruption Datasets
	Additional Results with Different Random Seeds
	Additional Qualitative Results

