
Decomposing NeRF for Editing
via Feature Field Distillation

Anonymous Author(s)
Affiliation
Address
email

Abstract

Emerging neural radiance fields (NeRF) are a promising scene representation1

for computer graphics, enabling high-quality 3D reconstruction and novel view2

synthesis from image observations. However, editing a scene represented by a3

NeRF is challenging, as the underlying connectionist representations such as MLPs4

or voxel grids are not object-centric or compositional. In particular, it has been5

difficult to selectively edit specific regions or objects. In this work, we tackle6

the problem of semantic scene decomposition of NeRFs to enable query-based7

local editing of the represented 3D scenes. We propose to distill the knowledge8

of off-the-shelf, self-supervised 2D image feature extractors such as CLIP-LSeg9

or DINO into a 3D feature field optimized in parallel to the radiance field. Given10

a user-specified query of various modalities such as text, an image patch, or a11

point-and-click selection, 3D feature fields semantically decompose 3D space12

without the need for re-training, and enables us to semantically select and edit13

regions in the radiance field. Our experiments validate that the distilled feature14

fields can transfer recent progress in 2D vision and language foundation models15

to 3D scene representations, enabling convincing 3D segmentation and selective16

editing of emerging neural graphics representations.17

1 Introduction18

Emerging neural implicit representations or neural fields have been shown to be a promising approach19

for representing a variety of signals [72, 47, 59, 93, 50]. In particular, they play an important role20

in 3D scene reconstruction and novel view synthesis from a limited number of context images.21

Neural radiance fields (NeRF) [50] enabled the recovery of a continuous volume density and radiance22

field from a limited number of observations, producing high-quality images from arbitrary views23

via volume rendering with promising applications in computer graphics. However, editing a scene24

reconstructed by NeRF is non-obvious because the scene is not object-centric and is implicitly encoded25

in the weights of a connectionist representation such as an MLP [50] or a voxelgrid [20]. Although26

we can transform the scene in input or output space or via optimization-based editing [33, 84], this27

does not enable selective object-centric or semantic, local edits, such as moving a single object.28

Prior work has addressed this challenge via coordinate-level, semantic decompositions which allow29

to selectively move, deform, paint, or optimize parts of a NeRF, but relies on costly annotation of30

instance segmentations and training of instance-specific networks [91]. While this can be alleviated31

with pre-trained segmentation models [22, 36], such models require pre-defined closed label sets and32

domains (e.g., traffic scenes), limiting decomposition and editing. Local editing of NeRFs ideally33

requires an efficient, open-set method for coordinate-level decomposition.34

In this work, we present distilled feature fields (DFFs), a novel approach to query-based scene35

decomposition for local, interactive editing of NeRFs. We focus on 3D neural feature fields, which36

map every 3D coordinate to a semantic feature descriptor of that coordinate. Conditioned on a37
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user query such as a text or image patch, this 3D feature field can compute a decomposition of a38

scene without re-training. We train a scene-specific DFF via teacher-student distillation [30], using39

supervision from feature encoders pre-trained in a self-supervised framework on the image domain.40

Unlike the domain of 3D scenes, the image domain boasts massive high-quality datasets and abundant41

prior work on self-supervised training of effective feature extraction models. Notably, recently42

proposed transformer-based models [83, 19] have demonstrated impressive capabilities across various43

vision- and text-based tasks (e.g., CLIP [62], LSeg [39], DINO [10]). Such feature spaces capture44

semantic properties of regions and make it possible to correspond and segment them well by text,45

image queries, or clustering. We employ these models as teacher networks and distill them into 3D46

feature fields via volume rendering. The trained feature field enables us to semantically select and47

edit specific regions in 3D NeRF scenes and render multi-view consistent images from the locally48

edited scenes.49

In extensive experiments, we investigate the applications of neural feature fields with two different50

pre-trained teacher networks, (1) LSeg [39], a CLIP-inspired language-driven semantic segmentation51

network, and (2) DINO [10, 3], a self-supervised network aware of various object boundaries and52

correspondences. LSeg and DINO features allow us to select 3D regions by a simple text query53

or an image patch, respectively. We first quantitatively demonstrate that LSeg-based DFFs with54

label queries can have high 3D segmentation performance compared with an existing point-cloud55

based 3D segmentation baseline trained on ScanNet [17], a supervised point-cloud dataset. We then56

demonstrate a variety of 3D appearance and geometry edits across real-world NeRF scenes with no57

annotations of segmentation; and show that we may edit regions with a single query of text, image,58

pixel, or cluster choice.59

2 Related Work60

Neural Implicit Representations. Neural implicit representations or neural fields have recently61

advanced neural processing for 3D data and multi-view 2D images [72, 47, 59, 93, 50]. For a review62

of this emerging space we point the reader to the reports by Kato et al. [34], Tewari et al. [80], and63

Xie et al. [89]. In particular, a neural radiance field (NeRF) can be fit to a set of posed 2D images and64

maps a 3D point coordinate and a view direction to an RGB color and density. When observations65

are limited, NeRF often overfits and fails to synthesize novel views with correct geometry and66

appearance. Pre-trained vision models have been used for regularizing NeRF via flows [56], multi-67

view consistency [31], perceptual loss [97], or depth estimation [87, 69]. Some pre-trained models68

operate not only on the visual world, but also on other modalities such as language. The recently69

proposed CLIP model [62] has demonstrated impressive performance in image-and-text alignment,70

with strong generalization to various textual and visual concepts. Wang et al. [84] and Jain et al.71

[32] use CLIP to edit or generate a single-object NeRF with a text prompt query by optimizing the72

NeRF parameters to generate images matched with the text. While such methods are promising, they73

do not enable selective editing of specific scene regions. For example, the prompt “yellow flowers”74

may affect unintended scene regions, such as the leaves of a plant. Our proposed decomposition75

method leverages pre-trained foundation models to enable selective editing of real-world NeRF76

scenes. Neural descriptor fields [70] use intermediate features that emerge in a 3D occupancy field77

network [47] for efficiently teaching robots object grasping. Instead of a pre-trained object-centric78

3D model, we use 2D vision models as teacher networks via distillation, exploiting recent progress in79

pre-trained foundation models [5].80

Geometric Decomposition of Neural Scene Representations Kohli et al. [35] and Zhi et al. [99]81

show that neural implicit representations can be combined with supervision of semantic labels. Yang82

et al. [91] demonstrate that, given view-consistent ground-truth instance segmentation masks during83

training, NeRF can be trained to represent each object with different parameters, although such an84

annotation is expensive in practice. Conditional [44, 33, 18, 57] and generative models [54, 55, 27]85

enable a degree of category-specific decomposition (e.g., human bodyparts) and editing on constrained86

domains with large datasets. Regular structures such as voxelgrids or octrees [11, 43, 12, 78, 81, 79,87

38, 71, 94, 53, 54] or unsupervised decomposition [66, 75, 96, 73] enable editability via manipulation88

of localized parameters. However, the decomposition is limited due to the inflexibly structured89

boundaries or strong assumptions about scenes; self-supervised object-centric learning is a difficult90

task. Other studies also explored reconstruction with more structured hybrid representations via91

pipelines specialized to a domain (e.g., traffic scene) [58, 22, 36] or situation (e.g., each object data is92
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independently accessible) [25, 24, 92]. Note that this line of work defines and constrains domains93

or the types of segmentation during or before training, and thus limits the degrees of freedom for94

editable scenes and objects. In contrast, our method can decomposes scene-specific NeRFs into95

arbitrary semantic units via text and image queries, enabling versatile scene edits without re-training.96

Zero-shot Semantic Segmentation. Zero-shot semantic segmentation is a challenging task [21,97

2, 8] where a model has to predict semantic labels of pixels in images without a-priori information98

of the categories. A typical solution is to use vision-and-language cross-modal encoders. They99

are trained to encode images (pixels) and text labels into the same semantic space, and perform100

zero-shot prediction based on similarity or alignments of the two inputs. Recent development of101

image encoder architectures [83, 19, 64] and large-scale training [62, 10] have improved the ability102

and generalization of vision models, including zero-shot models [39, 46, 86, 90, 100, 65]. On the103

other hand, zero-shot perception in 3D still suffers from the lack of effective architectures and104

large-scale datasets [48, 29, 26, 88]. Our method is a new approach to perform zero-shot semantic105

segmentation on scene-specific 3D fields by exploiting progress in the image domain, without106

semantic 3D supervision. We note that the goal of this paper is not to achieve state-of-the-art107

performance on 3D semantic segmentation tasks. Instead, our goal is the decomposition of neural108

scene representations for editing, which requires smooth segmentation results on continuous 3D109

space rather than segmentation of discrete point clouds or voxelgrids.110

3 Preliminaries111

3.1 Neural Radiance Fields (NeRF)112

NeRF [50] uses MLPs to output density � and color c given a point coordinate x = (x, y, z) in a 3D113

scene. This simple scene representation can be rendered and optimized via volume rendering. Given114

a pixel’s camera ray r(t) = o + td, depth t with bounds [tnear, tfar], camera position o, and its view115

direction d, NeRF calculates the color of a ray using quadrature of K sampled points {xk}K
k=1 with116

depths {tk}K
k=1 as117

Ĉ(r) =
KX

k=1

T̂ (tk) ↵ (�(xk)�k) c(xk,d) , T̂ (tk) = exp

 
�

k�1X

k0=1

�(xk0)�k0

!
, (1)

where ↵ (x) = 1 � exp(�x), and �k = tk+1 � tk is the distance between adjacent point samples.118

NeRFs are optimized solely on a dataset of images and their camera poses by minimizing a re-119

rendering loss.120

3.2 Pre-trained Models and Zero-shot Segmentation of Images121

Most semantic segmentation models pre-define a closed set of labels, and cannot flexibly change the122

segmentation categories or boundaries without supervised training. In contrast, zero-shot semantic123

segmentation predicts target regions given open-set queries. Li et al. [39] proposes LSeg, a model to124

perform zero-shot semantic segmentation by aligning pixel-level features and a text query feature.125

LSeg employs an image feature encoder with the DPT architecture [64] and a CLIP-based text label126

feature encoder [62], trained via large-scale language-image contrastive learning. The probability of127

a text label l given a pixel r in an image I , p(l|I, r), is then calculated via dot product of pixel-level128

image feature fimg(I, r) and queried text feature fq(l) followed by a softmax:129

p(l|I, r) =
exp(fimg(I, r)fq(l)T)P

l02L exp(fimg(I, r)fq(l0)T)
, (2)

where L is a set of possible labels. If negative labels are not available, we may use other scores like130

thresholded cosine similarity to directly compute the probability of a label. During training, LSeg131

optimizes only the image encoder fimg(I, r) by minimizing cross-entropy on supervised semantic132

segmentation datasets. The text encoder fq(l) is obtained from a pre-trained CLIP model [62].133

Recently, pre-trained CLIP has been leveraged as backbone for a variety of tasks and has been134

extended with additional modules sharing the same latent space. For example, Reimers and Gurevych135

[67, 68] trains a multi-lingual (more than 50+ languages) text encoder, which enables CLIP and136

CLIP-inspired variants to use non-English queries like Japanese. We similarly use the latent space of137
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3.2 Pre-trained Models and Zero-shot Segmentation of Image125

Zero-shot semantic segmentation is a task of predicting target regions after training without infor-126

mation about what semantic concepts are targeted during test time. A typical approach is training127

encoders on large-scale datasets for obtaining generalizable features. Recent development of self-128

supervised learning improves the performance of such a feature-based approach.129

Li et al. [2022]’s LSeg employs an image feature encoder using dense prediction transformers [Ranftl130

et al., 2021] and a text label feature encoder using CLIP [Radford et al., 2021], which are trained on131

large-scale language-image contrastive learning. Probability of a label l of a pixel r in an image I ,132

p(l|I, r), are predicted by dot product of pixel-level image feature fimg(I, r) and queried text label133

feature fq(l) followed by softmax:134

p(l|I, r) =
exp(fimg(I, r)fq(l)T)P

l02L exp(fimg(I, r)fq(l0)T)
, (3)

where L is a set of possible labels. We omit the temperature parameter � in softmax. During135

training, LSeg optimizes only the image encoder fimg(I, r) through SGD on minimizing cross entropy136

on supervised semantic segmentation image datasets. The text encoder fq(l) is frozen from the137

pre-trained CLIP checkpoint [Radford et al., 2021]. The pre-trained CLIP becomes a platform138

and has been extended with further training another modules sharing the same latent space. For139

example, Reimers and Gurevych [2019, 2020] trains a multi-lingual (more than 50+ languages) text140

encoder, which enables CLIP and CLIP-inspired variants to use non-English queries like Japanese1.141

Because our work uses the same latent space, we can decompose NeRF with such non-English queries142

similarly.143

Segmentation can be performed with other types of query. For example, we can use image or pixel144

feature as a query fq in the same or similar formulation of Equation 3. For example, DINO [Caron145

et al., 2021], a self-supervised vision model, unsupervisedly solves video instance segmentation146

(tracking) by calculating similarity among the features in adjacent frames. Amir et al. [2021] also147

investigates co-segmentation and point correspondence by similarity and clustering of DINO features.148

In our experiments, we use these two publicly available models, LSeg and DINO, for producing149

image or text features of observed view images or users’ queries for 3D decomposition.150

4 Neural Perceptual Fields151

4.1 Learning Feature via Volume Rendering152

The basic NeRF learns a field to compute the density and the view-dependent color of a point, �(x) and153

c(x,d). We can extend NeRF by additionally modeling quantities. For example, SemanticNeRF [Zhi154

et al., 2021a, Fu et al., 2022] adds a branch, whose output is a probability distribution of closed-set155

semantic labels. They train the branch by supervision from images with ground-truth semantic labels156

and use the model to produce more labeled images from novel views for augmenting the labeled157

dataset.158

We further extend such ideas and enable NeRF to perform 3D zero-shot segmentation using open-set159

text labels or other feature queries. Instead of a branch performing closed-set classification, we160

propose to add a feature branch, whose output is a feature vector. This branch models a feature field161

describing some kind of characteristics of each spatial point. We supervise the feature field by a162

pretrained pixel-level image encoder fimg as a teacher network. Specifically, given a 3D coordinate x,163

the new NeRF outputs a feature vector f(x) in addition to density �(x) and color c(x,d). Volume164

rendering is also performed in the feature field as follows165

F̂(r) =
KX

k=1

T̂ (tk) ↵(�(xk)�k) f(xk) . (4)

We can optimize f through SGD on minimizing the difference between rendered features F̂(r) and166

the teacher’s outputs fimg(I, r). This can be seen as distillation from 2D teacher network to 3D student167

network via the volume rendering trick. We call this model Neural Perceptual Fields (NePeRF).168

1https://huggingface.co/sentence-transformers/clip-ViT-B-32-multilingual-v1
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feature fq(l) followed by softmax:134
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exp(fimg(I, r)fq(l)T)P
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, (3)

where L is a set of possible labels. We omit the temperature parameter � in softmax. During135

training, LSeg optimizes only the image encoder fimg(I, r) through SGD on minimizing cross entropy136

on supervised semantic segmentation image datasets. The text encoder fq(l) is frozen from the137

pre-trained CLIP checkpoint [Radford et al., 2021]. The pre-trained CLIP becomes a platform138

and has been extended with further training another modules sharing the same latent space. For139

example, Reimers and Gurevych [2019, 2020] trains a multi-lingual (more than 50+ languages) text140

encoder, which enables CLIP and CLIP-inspired variants to use non-English queries like Japanese1.141

Because our work uses the same latent space, we can decompose NeRF with such non-English queries142

similarly.143

Segmentation can be performed with other types of query. For example, we can use image or pixel144

feature as a query fq in the same or similar formulation of Equation 3. For example, DINO [Caron145

et al., 2021], a self-supervised vision model, unsupervisedly solves video instance segmentation146

(tracking) by calculating similarity among the features in adjacent frames. Amir et al. [2021] also147

investigates co-segmentation and point correspondence by similarity and clustering of DINO features.148

In our experiments, we use these two publicly available models, LSeg and DINO, for producing149

image or text features of observed view images or users’ queries for 3D decomposition.150

4 Neural Perceptual Fields151

4.1 Learning Feature via Volume Rendering152

The basic NeRF learns a field to compute the density and the view-dependent color of a point, �(x) and153

c(x,d). We can extend NeRF by additionally modeling quantities. For example, SemanticNeRF [Zhi154

et al., 2021a, Fu et al., 2022] adds a branch, whose output is a probability distribution of closed-set155

semantic labels. They train the branch by supervision from images with ground-truth semantic labels156

and use the model to produce more labeled images from novel views for augmenting the labeled157

dataset.158

We further extend such ideas and enable NeRF to perform 3D zero-shot segmentation using open-set159

text labels or other feature queries. Instead of a branch performing closed-set classification, we160

propose to add a feature branch, whose output is a feature vector. This branch models a feature field161

describing some kind of characteristics of each spatial point. We supervise the feature field by a162

pretrained pixel-level image encoder fimg as a teacher network. Specifically, given a 3D coordinate x,163

the new NeRF outputs a feature vector f(x) in addition to density �(x) and color c(x,d). Volume164

rendering is also performed in the feature field as follows165
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We can optimize f through SGD on minimizing the difference between rendered features F̂(r) and166

the teacher’s outputs fimg(I, r). This can be seen as distillation from 2D teacher network to 3D student167

network via the volume rendering trick. We call this model Neural Perceptual Fields (NePeRF).168
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Figure 2: Neural perceptual field’s network architecture and its training flow. Its MLP takes positional
encoding of a coordinate x and a view direction d as input and predicts density �, color c, and feature
f . Training signal is backpropagated through minimizing the difference between volume-rendered
color/feature and ground-truth color/teacher’s feature, respectively.

We follow the training objective of the original NeRF [Mildenhall et al., 2020] and add a new objective169

for minimizing minimizing the difference between rendered features F̂(r) and the teacher’s outputs170

fimg(I, r). We use two networks for volume rendering with coarse-and-fine hierarchical sampling as171
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1
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where R are sampled rays, and C(r) is the ground truth color of pixel ray r. Total training loss L is174

L = Lp + �Lf , (6)

where � is the weight of the feature loss and is set to 0.04 to balance the losses [Zhi et al., 2021a].175

We apply stop-gradient to density during rendering features F̂(r) in Equation 4, because multi-view176

inconsistent supervision with noise could harm reconstruction quality of geometry, although the177

effect seems negligible in preliminary experiments.178

4.2 Query-based Decomposition and Editing179

After training a NePeRF model, we can perform 3D zero-shot segmentation by directly using the180

feature field f and the pretrained text encoder fq. Specifically, probability of a label l of a point x in181

the 3D space, p(l|x), are predicted by dot product of the 3D feature f(x) and text label feature fq(l)182

followed by softmax:183

p(l|x) =
exp(f(x)fq(l)T)P

l02L exp(f(x)fq(l0)T)
. (7)

When we use multiple queries, L = {l1, ...}, for selecting a group of regions, we use p(L|xk) =184 P
l02L p(l0|xk). This segmentation information is the fruits of the proposed PeNeRF framework.185

It is calculated at any 3D points without resolution limitation, and naturally used together with a186

radiance field and volume rendering. Note that the segmentation depends on only the 3D coordinate187

and the query2, so it and view synthesis with it are 3D consistent as well as the original NeRF. Unlike188

the proposed method, editing multiple synthesized images by image-based postprocessing breaks189

3D consistency. In addition, we can change the segmentation by changing only the query without190

retraining, which cannot be realized by existing methods using closed-set semantic segmentation [Zhi191

et al., 2021a] or instance segmentation annotation [Yang et al., 2021], but important for user-friendly192

interactive editing.193

2It is an interesting direction to introduce view dependency to the segmentation for discriminating view-
dependent query like referring expressions (e.g., “the chair left to the table”), but left for future work.
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encoding of a coordinate x and a view direction d as input and predicts density �, color c, and feature
f . Training signal is backpropagated through minimizing the difference between volume-rendered
color/feature and ground-truth color/teacher’s feature, respectively.

We can optimize f through SGD on minimizing the difference between rendered features F̂(r) and190

the teacher’s outputs fimg(I, r). This can be seen as distillation from 2D teacher network to 3D191

student network via the volume rendering trick. We call this model distilled feature field (DFF).192

We follow the original NeRF [Mildenhall et al., 2020] for the training objective and the volume193

rendering strategy. In addition to the photometric loss, we add a new objective for minimizing the194

difference between rendered features F̂(r) and the teacher’s outputs fimg(I, r). For volume rendering,195

we use two networks for volume rendering with coarse-and-fine hierarchical sampling as well as the196

original NeRF does. We simultaneously train each network from scratch by minimizing photometric197

loss Lp and feature loss Lf , in total, L:198
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where R are sampled rays, and C(r) is the ground truth color of pixel ray r, � is the weight of the199

feature loss and is set to 0.04 to balance the losses [Zhi et al., 2021a]. We apply stop-gradient to200

density during rendering features F̂(r) in Equation 3, because teacher’s features fimg(I, r) are not201

completely multi-view consistent, which could harm reconstruction quality of geometry.202

4.2 Query-based Decomposition and Editing203

After training a NePeRF model, we can perform 3D zero-shot segmentation by directly using the204

feature field f and another query encoder fq. Specifically, probability of a label l of a point x in the205

3D space, p(l|x), are predicted by dot product of the 3D feature f(x) and text label feature fq(l)206

followed by softmax:207

p(l|x) =
exp(f(x)fq(l)T)P

l02L exp(f(x)fq(l0)T)
. (5)

When we use multiple queries, M = {l1, l2, ...}, for selecting a group of regions, we use p(M|xk) =208 P
l02M p(l0|xk). This segmentation information is the fruits of the proposed DFF framework. It209

can be calculated at any 3D point without limiting resolution, so naturally used together with a210

radiance field and volume rendering. Note that the segmentation depends on only the 3D coordinate211

and the query1, so it and view synthesis with it are 3D consistent as well as the original NeRF.212

Unlike the proposed method, editing multiple synthesized images by image-based postprocessing213

breaks 3D consistency. In addition, importantly for user-friendly interactive editing, we can change214

1It is an interesting direction to introduce view dependency to the segmentation for discriminating view-
dependent query like referring expressions (e.g., “the chair left to the table”) [Chen et al., 2020, Achlioptas et al.,
2020, Liu et al., 2021a, Azuma et al., 2022], but left for future work.
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where R are sampled rays, and C(r) is the ground truth color of pixel ray r, � is the weight of the199

feature loss and is set to 0.04 to balance the losses [Zhi et al., 2021a]. We apply stop-gradient to200

density during rendering features F̂(r) in Equation 3, because teacher’s features fimg(I, r) are not201

completely multi-view consistent, which could harm reconstruction quality of geometry.202
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When we use multiple queries, M = {l1, l2, ...}, for selecting a group of regions, we use p(M|xk) =208 P
l02M p(l0|xk). This segmentation information is the fruits of the proposed DFF framework. It209

can be calculated at any 3D point without limiting resolution, so naturally used together with a210

radiance field and volume rendering. Note that the segmentation depends on only the 3D coordinate211

and the query1, so it and view synthesis with it are 3D consistent as well as the original NeRF.212

Unlike the proposed method, editing multiple synthesized images by image-based postprocessing213
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on supervised semantic segmentation image datasets. The text encoder fq(l) is frozen from the137
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propose to add a feature branch, whose output is a feature vector. This branch models a feature field161
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color/feature and ground-truth color/teacher’s feature, respectively.
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where L is a set of possible labels. If negative labels are not available, we may use other scores like139

thresholded cosine similarity to directly compute the probability of a label. During training, LSeg140

optimizes only the image encoder fimg(I, r) through SGD on minimizing cross entropy on supervised141

semantic segmentation image datasets. The text encoder fq(l) is obtained from a pre-trained CLIP142

model [56]. Recently, pre-trained CLIP has been leveraged as a backbone for a variety of tasks and143

has been extended with further training modules sharing the same latent space. For example, Reimers144

and Gurevych [61, 62] trains a multi-lingual (more than 50+ languages) text encoder, which enables145

CLIP and CLIP-inspired variants to use non-English queries like Japanese. In this work, we similarly146

use the latent space of a pre-trained CLIP, enabling decomposition of NeRFs with both English and147

non-English queries.148

Segmentation can further be performed with other types of queries. For example, we can use149

image, patch or pixel features as a query fq using a similar dot-product similarity formulation as150

in Eq. 2. Notably, DINO [7], a self-supervised vision model, unsupervisedly solves video instance151

segmentation (tracking) well by calculating similarity among the features in adjacent frames. Amir152

et al. [3] also demonstrate that DINO features work well on co-segmentation and point correspondence153

by similarity and clustering.154

In our experiments, we use these two publicly available models, LSeg and DINO, for producing155

image or text features of observed view images or users’ queries for 3D decomposition.156

4 Neural Perceptual Fields157

4.1 Distilling Foundation Modules into 3D Feature Fields via Volume Rendering158

NeRF learns a neural field to compute the density and the view-dependent color of a point, �(x)159

and c(x,d). We may extend NeRF by adding decoders for other quantities of interest. For example,160

SemanticNeRF [86] adds a branch outputting a probability distribution of closed-set semantic labels,161

trained with supervision via images with ground-truth semantic labels. This enables prediction of162

semantic segmentation masks from novel views and use the model to produce more labeled images163

from novel views for augmenting the labeled dataset. Because ground-truth annotation is costly, the164

method is practically inefficient as a means of scene editing [81]. For specific domains like traffic165

scenes [20, 32], instead of ground truth, we could train a closed-set segmentation model and use its166

prediction for training object-aware neural fields. However, the method is possible only if types of167

objects are limited and the domain-specific supervised dataset is available; it limits the application of168

scene editing in terms of domain and flexibility of decomposition.169

We further extend such ideas and enable NeRF to perform 3D zero-shot segmentation using open-set170

text labels or other feature queries. Instead of a branch performing closed-set classification, we171

propose to add a feature branch outputting a feature vector itself. This branch models a 3D feature172

field describing semantics of each spatial point. We supervise the feature field by a pretrained pixel-173

level image encoder fimg as a teacher network. Specifically, given a 3D coordinate x, the new NeRF174

outputs a feature vector f(x) in addition to density �(x) and color c(x,d), as shown in Figure 1.175

Volume rendering is performed similarly in the feature field as follows176
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the teacher’s outputs fimg(I, r). This can be seen as distillation from 2D teacher network to 3D178

student network via the volume rendering trick. We call this model distilled feature field (DFF).179

We follow the original NeRF [46] for the training objective and the volume rendering strategy. In180

addition to the photometric loss, we add a new objective for minimizing the difference between181

rendered features F̂(r) and the teacher’s outputs fimg(I, r). For volume rendering, we use two182

networks for volume rendering with coarse-and-fine hierarchical sampling as well as the original183

NeRF does. We simultaneously train each network from scratch by minimizing photometric loss Lp184
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3.2 Pre-trained Models and Zero-shot Segmentation of Image125

Zero-shot semantic segmentation is a task of predicting target regions after training without infor-126

mation about what semantic concepts are targeted during test time. A typical approach is training127

encoders on large-scale datasets for obtaining generalizable features. Recent development of self-128

supervised learning improves the performance of such a feature-based approach.129

Li et al. [2022]’s LSeg employs an image feature encoder using dense prediction transformers [Ranftl130

et al., 2021] and a text label feature encoder using CLIP [Radford et al., 2021], which are trained on131

large-scale language-image contrastive learning. Probability of a label l of a pixel r in an image I ,132

p(l|I, r), are predicted by dot product of pixel-level image feature fimg(I, r) and queried text label133

feature fq(l) followed by softmax:134

p(l|I, r) =
exp(fimg(I, r)fq(l)T)P

l02L exp(fimg(I, r)fq(l0)T)
, (3)

where L is a set of possible labels. We omit the temperature parameter � in softmax. During135

training, LSeg optimizes only the image encoder fimg(I, r) through SGD on minimizing cross entropy136

on supervised semantic segmentation image datasets. The text encoder fq(l) is frozen from the137

pre-trained CLIP checkpoint [Radford et al., 2021]. The pre-trained CLIP becomes a platform138

and has been extended with further training another modules sharing the same latent space. For139

example, Reimers and Gurevych [2019, 2020] trains a multi-lingual (more than 50+ languages) text140

encoder, which enables CLIP and CLIP-inspired variants to use non-English queries like Japanese1.141

Because our work uses the same latent space, we can decompose NeRF with such non-English queries142

similarly.143

Segmentation can be performed with other types of query. For example, we can use image or pixel144

feature as a query fq in the same or similar formulation of Equation 3. For example, DINO [Caron145

et al., 2021], a self-supervised vision model, unsupervisedly solves video instance segmentation146

(tracking) by calculating similarity among the features in adjacent frames. Amir et al. [2021] also147

investigates co-segmentation and point correspondence by similarity and clustering of DINO features.148

In our experiments, we use these two publicly available models, LSeg and DINO, for producing149

image or text features of observed view images or users’ queries for 3D decomposition.150

4 Neural Perceptual Fields151

4.1 Learning Feature via Volume Rendering152

The basic NeRF learns a field to compute the density and the view-dependent color of a point, �(x) and153

c(x,d). We can extend NeRF by additionally modeling quantities. For example, SemanticNeRF [Zhi154

et al., 2021a, Fu et al., 2022] adds a branch, whose output is a probability distribution of closed-set155

semantic labels. They train the branch by supervision from images with ground-truth semantic labels156

and use the model to produce more labeled images from novel views for augmenting the labeled157

dataset.158

We further extend such ideas and enable NeRF to perform 3D zero-shot segmentation using open-set159

text labels or other feature queries. Instead of a branch performing closed-set classification, we160

propose to add a feature branch, whose output is a feature vector. This branch models a feature field161

describing some kind of characteristics of each spatial point. We supervise the feature field by a162

pretrained pixel-level image encoder fimg as a teacher network. Specifically, given a 3D coordinate x,163

the new NeRF outputs a feature vector f(x) in addition to density �(x) and color c(x,d). Volume164

rendering is also performed in the feature field as follows165

F̂(r) =
KX

k=1

T̂ (tk) ↵(�(xk)�k) f(xk) . (4)

We can optimize f through SGD on minimizing the difference between rendered features F̂(r) and166

the teacher’s outputs fimg(I, r). This can be seen as distillation from 2D teacher network to 3D student167

network via the volume rendering trick. We call this model Neural Perceptual Fields (NePeRF).168

1https://huggingface.co/sentence-transformers/clip-ViT-B-32-multilingual-v1
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Figure 1: Left: A Distilled Feature Field (DFF) maps a coordinate x and a viewing direction d to
density �, color c, and feature f . It is trained by minimizing the difference between rendered features
and features as predicted by a pre-trained image feature encoder, as well as the rendered color and
ground-truth pixel color. Right: At test time, we may decompose and edit 3D space via selecting and
manipulating different 3D regions with a variety of queries.

a pre-trained CLIP for LSeg via distillation, enabling decomposition of NeRFs with both English138

and non-English queries. Segmentation can further be performed with other modalities such as139

image, patch or pixel query features fq using a similar dot-product similarity formulation as in Eq. 2.140

Notably, DINO [10], a self-supervised vision model, solves video instance segmentation and tracking141

by calculating similarity among features in adjacent frames. Amir et al. [3] also demonstrate that142

DINO features work well on co-segmentation and point correspondence by similarity and clustering.143

In our experiments, we use these two publicly available models, LSeg and DINO, to obtain features144

of images and texts for 3D decomposition.145

4 Distilled Feature Fields146

4.1 Distilling Foundation Modules into 3D Feature Fields via Volume Rendering147

NeRF learns a neural field to compute the density and view-dependent color, �(x) and c(x,d). We148

may extend NeRF by adding decoders for other quantities of interest. For example, SemanticN-149

eRF [99] adds a branch outputting a probability distribution of closed-set semantic labels, trained with150

supervision via images with ground-truth semantic labels. This enables prediction of pairs of RGB151

and semantic segmentation masks from novel views, useful for data augmentation. However, because152

ground-truth annotation is costly, the method is inefficient as a means of scene editing [91]. For153

specific domains like traffic scenes [22, 36], we may instead train a closed-set segmentation model154

and use its prediction for training object-aware neural fields. However, this approach is possible only155

if types of objects are limited and the domain-specific supervised dataset is available; limiting the156

application of scene editing in terms of domain and flexibility of decomposition.157

We build on top of these ideas and perform 3D zero-shot segmentation of NeRFs using open-set text158

labels or other feature queries. Instead of a branch performing closed-set classification, we propose159

to add a feature branch outputting a feature vector itself. This branch models a 3D feature field160

describing semantics of each spatial point. We supervise the feature field by a pretrained pixel-level161

image encoder fimg as a teacher network. Given a 3D coordinate x, the feature field outputs a feature162

vector f(x) in addition to density �(x) and color c(x,d), as shown in Figure 1. Volume rendering of163

the feature field is similarly performed via164

F̂(r) =
KX

k=1

T̂ (tk) ↵(�(xk)�k) f(xk) . (3)

We can optimize f by minimizing the difference between rendered features F̂(r) and the teacher’s165

features fimg(I, r). Effectively, we are distilling [30] the 2D teacher network into our 3D student166

network via differentiable rendering, and thus dub this model a distilled feature field (DFF). We add167

a feature objective Lf penalizing the difference between rendered features F̂(r) and the teacher’s168

outputs fimg(I, r) to the photometric loss of the original NeRF. We use two networks for volume169
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rendering with coarse-and-fine hierarchical sampling. We thus minimize the sum of photometric loss170

Lp and feature loss Lf , in total, L:171

L = Lp + �Lf , Lp =
X

r2R

���Ĉ(r) � C(r)
���

2

2
, Lf =

X

r2R

���F̂(r) � fimg(I, r)
���

1
, (4)

where R are sampled rays, C(r) is the ground truth pixel color of ray r, � is the weight of the feature172

loss and is set to 0.04 to balance the losses [99]. We apply stop-gradient to density in rendering of173

features F̂(r) in Equation 3 as the teacher’s features fimg(I, r) are not fully multi-view consistent,174

which could harm the quality of reconstructed geometry.175

4.2 Query-based Decomposition and Editing176

A trained DFF model can perform 3D zero-shot segmentation by its feature field f and a query177

encoder fq. Probability of a label l of a point x in the 3D space, p(l|x), is calculated by dot product178

of the 3D feature f(x) and text label feature fq(l) followed by a softmax:179

p(l|x) =
exp(f(x)fq(l)T)P

l02L exp(f(x)fq(l0)T)
. (5)

This query-based segmentation field is at the core of the proposed method. It can be calculated180

at any 3D point without limiting resolution, naturally used in tandem with a radiance field and181

volume rendering. Note that the segmentation depends on only the 3D coordinate and the query1.182

As the original NeRF, it is thus multi-view consistent. In addition and important for interactive183

editing, we can change the segmentation via queries without re-training, which cannot be realized by184

closed-set methods using semantic [99] or instance segmentation annotation [91]. We may now use185

this query-conditional segmentation to identify a specific 3D region for editing. Various edits can be186

generalized to the merging of two NeRF scenes �1(x), c1(x,d) and �2(x), c2(x,d), where we use187

the segmentation field p for blending. In the experiments section, we simply modify Eq. 1 as a blend188

of two scenes based on the ratio of ↵:189

Ĉ(r) =
KX

k=1

T̂ (tk) (↵(�1(xk)�k) c1(xk,d)⇢k + ↵(�2(xk)�k) c2(xk,d)(1 � ⇢k)) , (6)

where ⇢k =
↵(�1(xk)�k)

↵(�1(xk)�k) + ↵(�2(xk)�k)
, T̂ (tk) =

k�1Y

k0=1

↵(�1(xk0)�k0) + ↵(�2(xk0)�k0) . (7)

For example, if we want to apply a geometric transformation g to a region of a query l in a NeRF190

scene (�, c), we can render the transformed scene via Eqs. 6 and 7 by setting ↵(�1(xk)�k) =191

(1 � p(l|xk))↵(�(xk)�k), ↵(�2(xk)�k) = p(l|g�1(xk))↵(�(g�1(xk))�k), c1(xk,d) = (1 �192

p(l|xk))c(xk,d), and c2(xk,d) = p(l|g�1(xk))c(g�1(xk),g�1(d)). We can combine this with193

more complex edits, including optimization-based methods like CLIPNeRF [84]. While CLIPNeRF194

itself cannot selectively edit specific regions in multi-object scenes, our decomposition method195

enables it to update only desired objects without breaking unintended areas.196

5 Experiments197

We first conduct a quantitative evaluation of the decomposition achieved by DFF. We demonstrate198

that DFF enables 3D semantic segmentation in a benchmark dataset using scanned point clouds199

with human-annotated semantic segmentation labels. We then investigate the capabilities of DFF for200

editing and subsequent novel-view synthesis on real-world datasets. We use two teacher networks,201

LSeg [39] and DINO [10], which are pre-trained and publicly available. Each training image is202

encoded by the image encoders of the networks and used as target feature maps, fimg(I, r), defined in203

Equation 4. Because the feature maps are of reduced sizes due to the limitation of the networks, we204

first resize them to the original image size. The implementation and settings of NeRF follow Zhi et al.205

[99]. In the experiments, an eight-layer MLP as shown in Fig. 1 is used and optimized via Adam206

minimizing the loss L in Equation 4. Positional encoding of lengths 10 and 4 is used for coordinate207

and view direction. See appendix A and B for further training details.208

1It is an interesting extension to introduce a user’s viewpoint to the function for recognizing view-dependent
queries like referring expressions (e.g., “the chair left to the table”) [14, 1, 42, 4]. We leave this to future work.
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Figure 2: Comparison of predictions by
coarse and fine MLPs.

Table 1: Performance of 3D semantic segmentation
on Replica dataset. DFF outperforms a supervised
point-cloud segmentation model MinkowskiNet42.

mIoU accuracy
Supervised 3DCNN 0.475 0.758

DFF (Coarse) 0.589 0.855
DFF (Fine) 0.583 0.855

Table 2: Performance of novel view synthesis on Replica dataset. PSNR, SSIM, and LPIPS are
metrics of image synthesis. �<1.25 and absrel are metrics of geometry (depth estimation).

PSNR" SSIM" LPIPS# �<1.25" absrel#
basic NeRF 32.87 0.934 0.148 0.993 0.018

DFF 32.85 0.932 0.150 0.993 0.017
DFF (overweighting �) 32.68 0.927 0.162 0.993 0.018

5.1 3D Semantic Segmentation209

We construct a 3D semantic segmentation benchmark from four scenes in the Replica dataset [76]210

with data split and posed images provided by [99]. See appendix C for further details of the dataset.211

We train DFF to reconstruct each scene with radiance and feature fields from training images and212

evaluate the quality of novel view synthesis and 3D segmentation of the annotated point clouds. We213

use LSeg as a teacher network. The LSeg text encoder encodes each label, and the probability of214

each point is calculated by Equation 22. Note that the training uses only the photometric and feature215

losses (Equation 4) and does not access any supervision via semantic labels.216

Semantic Segmentation Results. First, we show evaluation metrics of 3D semantic segmentation,217

mean intersection-over-union (mIoU) and accuracy in Table 1. For comparison, we also experiment218

with a sparse 3D convolution-based segmentation model, MinkowskiNet42 [15] taking a colored219

point cloud as input. It has a standard state-of-the-art architecture for point cloud segmentation220

and is trained on the ScanNet dataset [17], the largest annotated training dataset of 3D semantic221

segmentation3. Results demonstrate that DFF, taught by LSeg, achieves promising performance,222

even better than the supervised model. This indicates that DFF succeeds at distilling 3D semantic223

segmentation from the 2D teacher network.224

Impact of Sampling on Semantic Segmentation. NeRF employs two MLPs for hierarchical225

sampling, where the coarse MLP performs volume rendering with fewer points (64) using stratified226

sampling, and the fine MLP works with importance sampling (192 in total). So, we have two sampling227

options to train a feature field. Although fine sampling is critical for training accurate radiance fields,228

segmentation is of significantly lower spatial frequency than texture. We thus analyze the impact of229

coarse and fine training in Fig. 2. As expected, the coarse model produces smooth segmentations,230

while the fine version introduces high-frequency artifacts. This smoothness property is important for231

natural editable novel view synthesis and is discussed again later.232

Compatibility with View Synthesis. We also check and compare the quality of novel view synthesis233

with NeRF, which does not learn feature fields. Because the feature branch partially shares the layers234

with the radiance field (as shown in Fig. 1), learning feature fields could possibly harm the radiance235

field. Despite this concern, as shown in Tab. 2, the performance of view synthesis is not degraded.236

2While LSeg-DFF can perform zero-shot inference using text labels that are not seen during training, we do
not focus on thoroughly evaluating the zero-shot ability. The evaluation has been conducted in the original paper
on the teacher network, and DFF’s ability is expected to follow it due to distillation. Please refer to Li et al. [39]
for the detail of the zero-shot ability of LSeg.

3For a fair comparison, the label set follows the ScanNet dataset. We also manually tune the range and scale
of input point clouds for maximizing the performance of MinkowskiNet42 on the Replica dataset.
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Figure 3: Appearance edits of specific objects via different query modalities: an image patch or text.

Observed view ① deleteNovel view 

① ②

② delete② extract Inpainting③ delete 

Queries:
① patch:
② patch:
③ “flower”

Feature map “flower”

Figure 4: Extraction and deletion of specific objects via different query modalities, an image patch or
text. The edited views are 3D consistent, unlike an image inpainting baseline [77]

Thus, we can train and use the branch-based DFF with small computational and parameter overhead237

compared to the original NeRF. If we excessively increased the weight of the feature loss, � ⇥ 10, it238

hurt view synthesis while not improving segmentation performance further. We further confirm that239

independent, light-weight feature-field and radiance-field MLPs achieves for semantic segmentation240

results competitive with the branch-based approach (see appendix Tab. 3 for the result of all variants).241

This option is useful especially when we want to introduce DFF decomposition into arbitrary 3D242

scene representations, including off-the-shelf NeRF models, dynamic NeRFs [23, 60, 40], or meshes,243

without re-training of the radiance field.244

5.2 Editable Novel View Synthesis245

In the previous section, we quantitatively validated the ability of DFF to perform semantic decom-246

position. We now discuss the capability for editable view synthesis on real-world scenes, including247

the LLFF dataset [49] and our own dataset. Our method can be used even for LLFF scenes based on248

normalized device coordinates. Please see the supplemental material for further results, including249

video. In addition to LSeg using a text query, we also experiment with self-supervised DINO [10] as250

another teacher network to enable query-based decomposition using image patch queries. Here, we251

use thresholded cosine similarity to directly compute the probability of a query instead of softmax252

with negative queries in Eq. 5, and set p = 1 if the similarity exceeds the threshold, and p = 0253

otherwise for hard decomposition. We first train NeRFs without a feature branch for each scene for254

200K iterations (Lp), and then finetune them with a feature branch via distillation for 5K iterations255

(Lp + �Lf ), since we found that the feature loss converged significantly faster than the photometric256

loss and short training was thus sufficient. We use coarse sampling for training feature branches and257

use it for edited rendering with fine sampling. See appendix A for the details.258

Appearance Editing, Deletion, Extraction. We show qualitative evaluations of novel view syn-259

thesis in Fig. 3 and Fig. 4. Specific 3D regions in these scenes are identified and locally edited via260

decomposition depending on various query modalities. In these experiments, we use a text query for261

LSeg-DFF as in Section 5.1 and use an image patch query for DINO-DFF. Because DINO features262

capture the similarity and correspondences of regions well thanks to self-supervised learning [10, 3],263

image patch queries help select all semantically similar areas at once. The patch feature is then264

calculated by averaging the features of all pixels in the patch.265

In Figure 3, we demonstrate that the DFF enables convincing selective appearance edits. Because266

our focus is region selection via decomposition, we use simple color transformation for clarity here267

(e.g., flip RGB to BGR, blend colors). One might think that the MLP of a radiance field by the268

original NeRF also has hidden layers, and their features possibly could be used for decomposition.269

We confirm that the naive usage of NeRF features is not robust to decomposition, as shown in Fig. 5,270
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Figure 6: Comparison of predictions by a
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dent MLP with no positional encoding, each
of which is trained with coarse and fine sam-
pling.

especially in a complex multi-object scene. We use the 8th hidden layer of the fine radiance field271

network (i.e., the layer just before branching in Figure 1)4. NeRF features cannot clearly decompose272

even objects with simple shapes and colors. The region selections are leaked to other parts with273

similar colors, geometry, or positions while they do not entirely cover the targets. For example, floor274

selection is leaked to mainly walls, a table, bins, or ceilings. Chair selection is leaked to irrelevant275

black parts like television, cables, lighting equipment, or shadows. This indicates that the feature276

space of the original NeRF does not learn semantic similarity well and is entangled with unpredictable277

and more low-level factors like color or spatial adjacency.278

In Fig. 4, we demonstrate that the DFF also works well on deletion or extraction of objects, using two279

patch queries (query- 1� for leaves and ground, query- 2� for flowers) and a text query- 3� “flower”.280

For comparison with a baseline editing method, we show the results by a state-of-the-art image281

inpainting model, LaMa [77]. Because the model requires masks for inpainting regions, we manually282

annotate the views for the evaluation. As shown in the figure, the image inpainting model cannot283

generate clear and realistic images, and the different views are not consistent. On the other hand,284

DFF produces multi-view consistent plausible results, especially succeeding at extracting foreground285

objects. Although the performance on deleting foreground objects is high, a remaining shortcoming286

is the existence of floating artifacts and blurred volumes in the far distance behind the deleted object.287

“apple”, “banana”, “carrot” “apple”

Figure 7: Editing with warping, deformation,
shift, and rotation.

Priors for Smooth Decomposition We can orga-288

nize the challenges of editable NeRFs into several289

categories: surface decomposition, volume decom-290

position, lighting decomposition, and estimation of291

less or never observed parts. If we edit appearances292

only, it practically requires decomposing regions only293

near the surface of objects, i.e., surface decomposi-294

tion, because the color of a ray is determined mostly295

in a condensed interval around the surface. On the296

other hand, geometric transformations often require a297

higher level of decomposition. As shown in the dele-298

tion examples, geometric transformation may move299

or remove some surfaces and expose the space be-300

hind them. This forces models to render unknown regions less or never observed due to occlusions,301

including even the inside of objects. Thus, it is desirable to decompose volumes smoothly while302

synthesizing its inside and back5. Although these include the same challenges as novel view synthesis303

tackles, editability further highlights their importance.304

4Other layers or the coarse MLP of the NeRF also indicated similar behaviors but a little worse qualitatively.
5Note that this problem also arises when Yang et al. [91] used ground-truth instance segmentation masks and

trained multiple networks, although the authors did not investigate this issue.
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Apart from lighting decomposition discussed in prior work [6, 7, 98], we further investigate the305

new challenge of smooth volume decomposition by experimenting with different DFF setups. As306

discussed in Section 5.1, DFF has two sampling options to train feature fields. The coarse training307

may introduce smoothness regularization and help cohesive decomposition and smoother in-painting308

of unobserved regions. Another reasonable smoothness regularizer is to eliminate the high-frequency309

positional encoding (PE). We thus train an independent MLP network for a feature field without310

PE. We compare four combinations of renderings in Fig. 6. To better understand their behavior, we311

use the DINO-DFF, show k-means clusters of the rendered feature map, and delete the head of the312

Triceratops by a query choosing its corresponding clusters. As expected, coarsely trained models313

and no-PE models succeed in smoother volume decomposition, and this combination can minimize314

high-frequency floating artifacts. A side effect is the lack of high-frequency representation power,315

which sometimes deletes disparate background regions and misses to represent features of complex316

structures (e.g., see the cluster visualization of the thin frames of the window). Towards the best317

of both worlds, developing proper priors or inductive biases is an important direction for future318

work [63]. Otherwise, surface-aware representations like IDR [93, 85] could avoid problems with319

floating artifacts. Note that not all geometric edits suffer from these problems. For example, it is320

often less problematic to move objects closer to the camera, enlarge them, or warp them to other321

scenes, as shown in Figure 7.322

Raw NeRF 
rendering

CLIPNeRF
“white flower”

Composition of CLIPNeRF + our DFF-based method
“white flower” “yellow flower” “rainbow flower” “sunflower” “petunia”

Figure 8: Comparison of appearance editing by CLIPNeRF and our extension.

Localizing Optimization-based Editing. Finally, we show a combination with an optimization-323

based editing method. CLIPNeRF [84] optimizes the parameters of a radiance field so that its rendered324

images match with a text prompt via CLIP. While it is mainly designed for a single-object scene of325

specific categories, it is possible to apply to other real-world NeRFs. However, because it cannot326

control the scope of editing, a prompt like “white flower” may change the color of unintentional327

targets like leaves. Our DFF-based decomposition can upgrade such an optimization-based method328

to render a scene via the composition of a CLIP-optimized NeRF scene and the original NeRF scene.329

We show the results in Figure 86. Although the naive CLIPNeRF edits unintentional parts, our method330

helps it to locally edit intentional parts only. In addition to switching rendering, we can also use the331

decomposition for controlling training signals during backpropagation. These extensions broaden the332

application of CLIPNeRF or other optimization-based editing methods to various real-world scenes.333

6 Discussion and Conclusions334

In this work, we propose distilled feature field (DFF), a novel method of NeRF scene decomposition335

for selective editing. We present quantitative evaluations of segmentation and extensive qualitative336

evaluations of editable novel view synthesis. In addition to these promising results, DFF-based models337

will benefit from future improvements to self-supervised 2D foundation models. We also clarify338

future directions on editable view synthesis through our experiments, especially for smoothness339

priors and estimation of unobserved regions. Furthermore, while this work focuses on editable view340

synthesis, it is also intriguing to transfer DFF to other applications, including 3D registration of text341

queries [14, 1, 42, 4] or robot teaching [28, 70].342

As a possible negative societal impact, one might use our method for making realistic but fake content343

by editing NeRFs as desired. Automatic fake detection methods may help in preventing such misus.344

NeRFs are further computation-intense, leading to high electricity usage. Recent work on efficient345

NeRFs [20, 51, 13] may alleviate this concern.346

6Because the official implementation is not available, we implemented CLIPNeRF by ourselves for reproduc-
ing the experiment in Figure 14 of the paper to the best of our abilities. See appendix E for the details.
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