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Abstract

Emerging neural radiance fields (NeRF) are a promising scene representation
for computer graphics, enabling high-quality 3D reconstruction and novel view
synthesis from image observations. However, editing a scene represented by a
NeRF is challenging, as the underlying connectionist representations such as MLPs
or voxel grids are not object-centric or compositional. In particular, it has been
difficult to selectively edit specific regions or objects. In this work, we tackle
the problem of semantic scene decomposition of NeRFs to enable query-based
local editing of the represented 3D scenes. We propose to distill the knowledge
of off-the-shelf, self-supervised 2D image feature extractors such as CLIP-LSeg
or DINO into a 3D feature field optimized in parallel to the radiance field. Given
a user-specified query of various modalities such as text, an image patch, or a
point-and-click selection, 3D feature fields semantically decompose 3D space
without the need for re-training, and enables us to semantically select and edit
regions in the radiance field. Our experiments validate that the distilled feature
fields can transfer recent progress in 2D vision and language foundation models
to 3D scene representations, enabling convincing 3D segmentation and selective
editing of emerging neural graphics representations.

1 Introduction

Emerging neural implicit representations or neural fields have been shown to be a promising approach
for representing a variety of signals [72, 47, 59, 93, 50]. In particular, they play an important role
in 3D scene reconstruction and novel view synthesis from a limited number of context images.
Neural radiance fields (NeRF) [50] enabled the recovery of a continuous volume density and radiance
field from a limited number of observations, producing high-quality images from arbitrary views
via volume rendering with promising applications in computer graphics. However, editing a scene
reconstructed by NeRF is non-obvious because the scene is not object-centric and is implicitly encoded
in the weights of a connectionist representation such as an MLP [50] or a voxelgrid [20]. Although
we can transform the scene in input or output space or via optimization-based editing [33, 84], this
does not enable selective object-centric or semantic, local edits, such as moving a single object.
Prior work has addressed this challenge via coordinate-level, semantic decompositions which allow
to selectively move, deform, paint, or optimize parts of a NeRF, but relies on costly annotation of
instance segmentations and training of instance-specific networks [91]. While this can be alleviated
with pre-trained segmentation models [22, 36], such models require pre-defined closed label sets and
domains (e.g., traffic scenes), limiting decomposition and editing. Local editing of NeRFs ideally
requires an efficient, open-set method for coordinate-level decomposition.

In this work, we present distilled feature fields (DFFs), a novel approach to query-based scene
decomposition for local, interactive editing of NeRFs. We focus on 3D neural feature fields, which
map every 3D coordinate to a semantic feature descriptor of that coordinate. Conditioned on a
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user query such as a text or image patch, this 3D feature field can compute a decomposition of a
scene without re-training. We train a scene-specific DFF via teacher-student distillation [30], using
supervision from feature encoders pre-trained in a self-supervised framework on the image domain.
Unlike the domain of 3D scenes, the image domain boasts massive high-quality datasets and abundant
prior work on self-supervised training of effective feature extraction models. Notably, recently
proposed transformer-based models [83, 19] have demonstrated impressive capabilities across various
vision- and text-based tasks (e.g., CLIP [62], LSeg [39], DINO [10]). Such feature spaces capture
semantic properties of regions and make it possible to correspond and segment them well by text,
image queries, or clustering. We employ these models as teacher networks and distill them into 3D
feature fields via volume rendering. The trained feature field enables us to semantically select and
edit specific regions in 3D NeRF scenes and render multi-view consistent images from the locally
edited scenes.

In extensive experiments, we investigate the applications of neural feature fields with two different
pre-trained teacher networks, (1) LSeg [39], a CLIP-inspired language-driven semantic segmentation
network, and (2) DINO [10, 3], a self-supervised network aware of various object boundaries and
correspondences. LSeg and DINO features allow us to select 3D regions by a simple text query
or an image patch, respectively. We first quantitatively demonstrate that LSeg-based DFFs with
label queries can have high 3D segmentation performance compared with an existing point-cloud
based 3D segmentation baseline trained on ScanNet [17], a supervised point-cloud dataset. We then
demonstrate a variety of 3D appearance and geometry edits across real-world NeRF scenes with no
annotations of segmentation; and show that we may edit regions with a single query of text, image,
pixel, or cluster choice.

2 Related Work

Neural Implicit Representations. Neural implicit representations or neural fields have recently
advanced neural processing for 3D data and multi-view 2D images [72, 47, 59, 93, 50]. For a review
of this emerging space we point the reader to the reports by Kato et al. [34], Tewari et al. [80], and
Xie et al. [89]. In particular, a neural radiance field (NeRF) can be fit to a set of posed 2D images and
maps a 3D point coordinate and a view direction to an RGB color and density. When observations
are limited, NeRF often overfits and fails to synthesize novel views with correct geometry and
appearance. Pre-trained vision models have been used for regularizing NeRF via flows [56], multi-
view consistency [31], perceptual loss [97], or depth estimation [87, 69]. Some pre-trained models
operate not only on the visual world, but also on other modalities such as language. The recently
proposed CLIP model [62] has demonstrated impressive performance in image-and-text alignment,
with strong generalization to various textual and visual concepts. Wang et al. [84] and Jain et al.
[32] use CLIP to edit or generate a single-object NeRF with a text prompt query by optimizing the
NeRF parameters to generate images matched with the text. While such methods are promising, they
do not enable selective editing of specific scene regions. For example, the prompt “yellow flowers”
may affect unintended scene regions, such as the leaves of a plant. Our proposed decomposition
method leverages pre-trained foundation models to enable selective editing of real-world NeRF
scenes. Neural descriptor fields [70] use intermediate features that emerge in a 3D occupancy field
network [47] for efficiently teaching robots object grasping. Instead of a pre-trained object-centric
3D model, we use 2D vision models as teacher networks via distillation, exploiting recent progress in
pre-trained foundation models [5].

Geometric Decomposition of Neural Scene Representations Kohli et al. [35] and Zhi et al. [99]
show that neural implicit representations can be combined with supervision of semantic labels. Yang
et al. [91] demonstrate that, given view-consistent ground-truth instance segmentation masks during
training, NeRF can be trained to represent each object with different parameters, although such an
annotation is expensive in practice. Conditional [44, 33, 18, 57] and generative models [54, 55, 27]
enable a degree of category-specific decomposition (e.g., human bodyparts) and editing on constrained
domains with large datasets. Regular structures such as voxelgrids or octrees [11, 43, 12, 78, 81, 79,
38,71, 94, 53, 54] or unsupervised decomposition [66, 75, 96, 73] enable editability via manipulation
of localized parameters. However, the decomposition is limited due to the inflexibly structured
boundaries or strong assumptions about scenes; self-supervised object-centric learning is a difficult
task. Other studies also explored reconstruction with more structured hybrid representations via
pipelines specialized to a domain (e.g., traffic scene) [58, 22, 36] or situation (e.g., each object data is
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independently accessible) [25, 24, 92]. Note that this line of work defines and constrains domains
or the types of segmentation during or before training, and thus limits the degrees of freedom for
editable scenes and objects. In contrast, our method can decomposes scene-specific NeRFs into
arbitrary semantic units via text and image queries, enabling versatile scene edits without re-training.

Zero-shot Semantic Segmentation. Zero-shot semantic segmentation is a challenging task [21,
2, 8] where a model has to predict semantic labels of pixels in images without a-priori information
of the categories. A typical solution is to use vision-and-language cross-modal encoders. They
are trained to encode images (pixels) and text labels into the same semantic space, and perform
zero-shot prediction based on similarity or alignments of the two inputs. Recent development of
image encoder architectures [83, 19, 64] and large-scale training [62, 10] have improved the ability
and generalization of vision models, including zero-shot models [39, 46, 86, 90, 100, 65]. On the
other hand, zero-shot perception in 3D still suffers from the lack of effective architectures and
large-scale datasets [48, 29, 26, 88]. Our method is a new approach to perform zero-shot semantic
segmentation on scene-specific 3D fields by exploiting progress in the image domain, without
semantic 3D supervision. We note that the goal of this paper is not to achieve state-of-the-art
performance on 3D semantic segmentation tasks. Instead, our goal is the decomposition of neural
scene representations for editing, which requires smooth segmentation results on continuous 3D
space rather than segmentation of discrete point clouds or voxelgrids.

3 Preliminaries

3.1 Neural Radiance Fields (NeRF)

NeRF [50] uses MLPs to output density ¢ and color ¢ given a point coordinate x = (z,y, z) in a 3D
scene. This simple scene representation can be rendered and optimized via volume rendering. Given
a pixel’s camera ray r(t) = o + td, depth ¢ with bounds [tnear, tfar], camera position o, and its view
direction d, NeRF calculates the color of a ray using quadrature of K sampled points {x; }£_, with
depths {t;} 5, as

K k—1
C(r) =) T(tx) a(o(xk)d) c(xk,d),  T(t) = exp <— > U(Xk/)(Sk/) ; (1

k=1 k'=1

where o () = 1 — exp(—x), and §, = 11 — ty is the distance between adjacent point samples.
NeRFs are optimized solely on a dataset of images and their camera poses by minimizing a re-
rendering loss.

3.2 Pre-trained Models and Zero-shot Segmentation of Images

Most semantic segmentation models pre-define a closed set of labels, and cannot flexibly change the
segmentation categories or boundaries without supervised training. In contrast, zero-shot semantic
segmentation predicts target regions given open-set queries. Li et al. [39] proposes LSeg, a model to
perform zero-shot semantic segmentation by aligning pixel-level features and a text query feature.
LSeg employs an image feature encoder with the DPT architecture [64] and a CLIP-based text label
feature encoder [62], trained via large-scale language-image contrastive learning. The probability of
a text label [ given a pixel r in an image I, p(I|I,r), is then calculated via dot product of pixel-level
image feature fi,s (1, ) and queried text feature f, (1) followed by a softmax:

T

p(U1,r) = e LG @)

>ver exP(fimg (1, 7)E4 (1))

where L is a set of possible labels. If negative labels are not available, we may use other scores like
thresholded cosine similarity to directly compute the probability of a label. During training, LSeg
optimizes only the image encoder fim ([, ) by minimizing cross-entropy on supervised semantic
segmentation datasets. The text encoder f;([) is obtained from a pre-trained CLIP model [62].
Recently, pre-trained CLIP has been leveraged as backbone for a variety of tasks and has been
extended with additional modules sharing the same latent space. For example, Reimers and Gurevych
[67, 68] trains a multi-lingual (more than 50+ languages) text encoder, which enables CLIP and
CLIP-inspired variants to use non-English queries like Japanese. We similarly use the latent space of
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Figure 1: Left: A Distilled Feature Field (DFF) maps a coordinate x and a viewing direction d to
density o, color c, and feature f. It is trained by minimizing the difference between rendered features
and features as predicted by a pre-trained image feature encoder, as well as the rendered color and
ground-truth pixel color. Right: At test time, we may decompose and edit 3D space via selecting and
manipulating different 3D regions with a variety of queries.

a pre-trained CLIP for LSeg via distillation, enabling decomposition of NeRFs with both English
and non-English queries. Segmentation can further be performed with other modalities such as
image, patch or pixel query features f; using a similar dot-product similarity formulation as in Eq. 2.
Notably, DINO [10], a self-supervised vision model, solves video instance segmentation and tracking
by calculating similarity among features in adjacent frames. Amir et al. [3] also demonstrate that
DINO features work well on co-segmentation and point correspondence by similarity and clustering.
In our experiments, we use these two publicly available models, LSeg and DINO, to obtain features
of images and texts for 3D decomposition.

4 Distilled Feature Fields

4.1 Distilling Foundation Modules into 3D Feature Fields via Volume Rendering

NeRF learns a neural field to compute the density and view-dependent color, o(x) and c(x,d). We
may extend NeRF by adding decoders for other quantities of interest. For example, SemanticN-
eRF [99] adds a branch outputting a probability distribution of closed-set semantic labels, trained with
supervision via images with ground-truth semantic labels. This enables prediction of pairs of RGB
and semantic segmentation masks from novel views, useful for data augmentation. However, because
ground-truth annotation is costly, the method is inefficient as a means of scene editing [91]. For
specific domains like traffic scenes [22, 36], we may instead train a closed-set segmentation model
and use its prediction for training object-aware neural fields. However, this approach is possible only
if types of objects are limited and the domain-specific supervised dataset is available; limiting the
application of scene editing in terms of domain and flexibility of decomposition.

We build on top of these ideas and perform 3D zero-shot segmentation of NeRFs using open-set text
labels or other feature queries. Instead of a branch performing closed-set classification, we propose
to add a feature branch outputting a feature vector itself. This branch models a 3D feature field
describing semantics of each spatial point. We supervise the feature field by a pretrained pixel-level
image encoder fi,, as a teacher network. Given a 3D coordinate x, the feature field outputs a feature
vector f(x) in addition to density o(x) and color ¢(x, d), as shown in Figure 1. Volume rendering of
the feature field is similarly performed via
K
F(r) = T(ts) (o (xk)dr) F(x) - 3)

k=1

We can optimize f by minimizing the difference between rendered features F(r) and the teacher’s
features fimg(I , ). Effectively, we are distilling [30] the 2D teacher network into our 3D student
network via differentiable rendering, and thus dub this model a distilled feature field (DFF). We add
a feature objective £ penalizing the difference between rendered features F(r) and the teacher’s
outputs fine (1, 7) to the photometric loss of the original NeRF. We use two networks for volume
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rendering with coarse-and-fine hierarchical sampling. We thus minimize the sum of photometric loss
L, and feature loss Ly, in total, L:

o 2 ~
L=L,+ALs, Ly=Y HC(r) —co), =3 HF(r) ~ fing (1, 7)
reR 2 reR

) “4)
1

where R are sampled rays, C(r) is the ground truth pixel color of ray 7, A is the weight of the feature
loss and is set to 0.04 to balance the losses [99]. We apply stop-gradient to density in rendering of
features F'(r) in Equation 3 as the teacher’s features fing (7, 7) are not fully multi-view consistent,
which could harm the quality of reconstructed geometry.

4.2 Query-based Decomposition and Editing

A trained DFF model can perform 3D zero-shot segmentation by its feature field f and a query
encoder fy. Probability of a label [ of a point x in the 3D space, p(l|x), is calculated by dot product
of the 3D feature f(x) and text label feature f, (1) followed by a softmax:

(i) - CPECOROT) s

> vec exp(f(x)E(1)T)

This query-based segmentation field is at the core of the proposed method. It can be calculated
at any 3D point without limiting resolution, naturally used in tandem with a radiance field and
volume rendering. Note that the segmentation depends on only the 3D coordinate and the query’.
As the original NeRF, it is thus multi-view consistent. In addition and important for interactive
editing, we can change the segmentation via queries without re-training, which cannot be realized by
closed-set methods using semantic [99] or instance segmentation annotation [91]. We may now use
this query-conditional segmentation to identify a specific 3D region for editing. Various edits can be
generalized to the merging of two NeRF scenes 01 (x), ¢1(x,d) and o2(x), c2(x, d), where we use
the segmentation field p for blending. In the experiments section, we simply modify Eq. | as a blend
of two scenes based on the ratio of «:

K
C(r) =) T(tx) (a(o1(xk)dk) e1(xx, d)pr + a(o2(xk)d%) e2(xi, d) (1 — p1)) (6)
k=1
B (o (xx)0%) N y y
where  pj, = (o ()% + aloaxn)0r) | T(ty) = kl;Ila(Ul( k)0 ) + o (Xpr )0xr) - (7)

For example, if we want to apply a geometric transformation g to a region of a query / in a NeRF
scene (o, c), we can render the transformed scene via Egs. 6 and 7 by setting «(oy (X)) =
(1 - p(lxe))a(o(x1)d0), al(o2(x1)) = pllg"(xi))a(o(g " (xi))dr), e1(xx,d) = (1
p(l|x1))c(xk,d), and co(xx,d) = p(llg ™ (xx))c(g ™ (xx), g1 (d)). We can combine this with
more complex edits, including optimization-based methods like CLIPNeRF [84]. While CLIPNeRF
itself cannot selectively edit specific regions in multi-object scenes, our decomposition method
enables it to update only desired objects without breaking unintended areas.

S Experiments

We first conduct a quantitative evaluation of the decomposition achieved by DFF. We demonstrate
that DFF enables 3D semantic segmentation in a benchmark dataset using scanned point clouds
with human-annotated semantic segmentation labels. We then investigate the capabilities of DFF for
editing and subsequent novel-view synthesis on real-world datasets. We use two teacher networks,
LSeg [39] and DINO [10], which are pre-trained and publicly available. Each training image is
encoded by the image encoders of the networks and used as target feature maps, fime (7, ), defined in
Equation 4. Because the feature maps are of reduced sizes due to the limitation of the networks, we
first resize them to the original image size. The implementation and settings of NeRF follow Zhi et al.
[99]. In the experiments, an eight-layer MLP as shown in Fig. 1 is used and optimized via Adam
minimizing the loss L in Equation 4. Positional encoding of lengths 10 and 4 is used for coordinate
and view direction. See appendix A and B for further training details.

't is an interesting extension to introduce a user’s viewpoint to the function for recognizing view-dependent
queries like referring expressions (e.g., “the chair left to the table”) [14, 1, 42, 4]. We leave this to future work.



209

210
211
212
213
214
215
216

217
218
219
220
221
222
223
224

225
226
227
228
229
230
231
232

233
234
235
236

{ Table 1: Performance of 3D semantic segmentation
on Replica dataset. DFF outperforms a supervised
point-cloud segmentation model MinkowskiNet42.

coarse MLP

=

E

" Lafp o ¢ : mloU accuracy

§ Tible > Supervised 3DCNN  0.475 0.758

S oor & DFF (Coarse) 0.589  0.855
DFF (Fine) 0.583 0.855

Figure 2: Comparison of predictions by
coarse and fine MLPs.

Table 2: Performance of novel view synthesis on Replica dataset. PSNR, SSIM, and LPIPS are
metrics of image synthesis. § <1.25 and absrel are metrics of geometry (depth estimation).
PSNRT SSIMtT LPIPS| §<1.251 absrel)

basic NeRF 32.87 0934  0.148 0.993 0.018

DFF 32.85 0932  0.150 0.993 0.017
DFF (overweighting \) 32.68 0.927 0.162 0.993 0.018

5.1 3D Semantic Segmentation

We construct a 3D semantic segmentation benchmark from four scenes in the Replica dataset [76]
with data split and posed images provided by [99]. See appendix C for further details of the dataset.
We train DFF to reconstruct each scene with radiance and feature fields from training images and
evaluate the quality of novel view synthesis and 3D segmentation of the annotated point clouds. We
use LSeg as a teacher network. The LSeg text encoder encodes each label, and the probability of
each point is calculated by Equation 2°. Note that the training uses only the photometric and feature
losses (Equation 4) and does not access any supervision via semantic labels.

Semantic Segmentation Results. First, we show evaluation metrics of 3D semantic segmentation,
mean intersection-over-union (mloU) and accuracy in Table 1. For comparison, we also experiment
with a sparse 3D convolution-based segmentation model, MinkowskiNet42 [15] taking a colored
point cloud as input. It has a standard state-of-the-art architecture for point cloud segmentation
and is trained on the ScanNet dataset [17], the largest annotated training dataset of 3D semantic
segmentation®. Results demonstrate that DFF, taught by LSeg, achieves promising performance,
even better than the supervised model. This indicates that DFF succeeds at distilling 3D semantic
segmentation from the 2D teacher network.

Impact of Sampling on Semantic Segmentation. NeRF employs two MLPs for hierarchical
sampling, where the coarse MLP performs volume rendering with fewer points (64) using stratified
sampling, and the fine MLP works with importance sampling (192 in total). So, we have two sampling
options to train a feature field. Although fine sampling is critical for training accurate radiance fields,
segmentation is of significantly lower spatial frequency than texture. We thus analyze the impact of
coarse and fine training in Fig. 2. As expected, the coarse model produces smooth segmentations,
while the fine version introduces high-frequency artifacts. This smoothness property is important for
natural editable novel view synthesis and is discussed again later.

Compatibility with View Synthesis. We also check and compare the quality of novel view synthesis
with NeRF, which does not learn feature fields. Because the feature branch partially shares the layers
with the radiance field (as shown in Fig. 1), learning feature fields could possibly harm the radiance
field. Despite this concern, as shown in Tab. 2, the performance of view synthesis is not degraded.

>While LSeg-DFF can perform zero-shot inference using text labels that are not seen during training, we do
not focus on thoroughly evaluating the zero-shot ability. The evaluation has been conducted in the original paper
on the teacher network, and DFF’s ability is expected to follow it due to distillation. Please refer to Li et al. [39]
for the detail of the zero-shot ability of LSeg.

3For a fair comparison, the label set follows the ScanNet dataset. We also manually tune the range and scale
of input point clouds for maximizing the performance of MinkowskiNet42 on the Replica dataset.
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Figure 3: Appearance edits of specific objects via different query modalities: an image patch or text.
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Figure 4: Extraction and deletion of specific objects via different query modalities, an image patch or
text. The edited views are 3D consistent, unlike an image inpainting baseline [77]

Thus, we can train and use the branch-based DFF with small computational and parameter overhead
compared to the original NeRF. If we excessively increased the weight of the feature loss, A x 10, it
hurt view synthesis while not improving segmentation performance further. We further confirm that
independent, light-weight feature-field and radiance-field MLPs achieves for semantic segmentation
results competitive with the branch-based approach (see appendix Tab. 3 for the result of all variants).
This option is useful especially when we want to introduce DFF decomposition into arbitrary 3D
scene representations, including off-the-shelf NeRF models, dynamic NeRFs [23, 60, 40], or meshes,
without re-training of the radiance field.

5.2 [Editable Novel View Synthesis

In the previous section, we quantitatively validated the ability of DFF to perform semantic decom-
position. We now discuss the capability for editable view synthesis on real-world scenes, including
the LLFF dataset [49] and our own dataset. Our method can be used even for LLFF scenes based on
normalized device coordinates. Please see the supplemental material for further results, including
video. In addition to LSeg using a text query, we also experiment with self-supervised DINO [10] as
another teacher network to enable query-based decomposition using image patch queries. Here, we
use thresholded cosine similarity to directly compute the probability of a query instead of softmax
with negative queries in Eq. 5, and set p = 1 if the similarity exceeds the threshold, and p = 0
otherwise for hard decomposition. We first train NeRFs without a feature branch for each scene for
200K iterations (L), and then finetune them with a feature branch via distillation for 5K iterations
(Lp + ALy), since we found that the feature loss converged significantly faster than the photometric
loss and short training was thus sufficient. We use coarse sampling for training feature branches and
use it for edited rendering with fine sampling. See appendix A for the details.

Appearance Editing, Deletion, Extraction. We show qualitative evaluations of novel view syn-
thesis in Fig. 3 and Fig. 4. Specific 3D regions in these scenes are identified and locally edited via
decomposition depending on various query modalities. In these experiments, we use a text query for
LSeg-DFF as in Section 5.1 and use an image patch query for DINO-DFF. Because DINO features
capture the similarity and correspondences of regions well thanks to self-supervised learning [10, 3],
image patch queries help select all semantically similar areas at once. The patch feature is then
calculated by averaging the features of all pixels in the patch.

In Figure 3, we demonstrate that the DFF enables convincing selective appearance edits. Because
our focus is region selection via decomposition, we use simple color transformation for clarity here
(e.g., flip RGB to BGR, blend colors). One might think that the MLP of a radiance field by the
original NeRF also has hidden layers, and their features possibly could be used for decomposition.
We confirm that the naive usage of NeRF features is not robust to decomposition, as shown in Fig. 5,
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especially in a complex multi-object scene. We use the 8th hidden layer of the fine radiance field
network (i.e., the layer just before branching in Figure 1)*. NeRF features cannot clearly decompose
even objects with simple shapes and colors. The region selections are leaked to other parts with
similar colors, geometry, or positions while they do not entirely cover the targets. For example, floor
selection is leaked to mainly walls, a table, bins, or ceilings. Chair selection is leaked to irrelevant
black parts like television, cables, lighting equipment, or shadows. This indicates that the feature
space of the original NeRF does not learn semantic similarity well and is entangled with unpredictable
and more low-level factors like color or spatial adjacency.

In Fig. 4, we demonstrate that the DFF also works well on deletion or extraction of objects, using two
patch queries (query-(D for leaves and ground, query-Q) for flowers) and a text query-® “flower”.
For comparison with a baseline editing method, we show the results by a state-of-the-art image
inpainting model, LaMa [77]. Because the model requires masks for inpainting regions, we manually
annotate the views for the evaluation. As shown in the figure, the image inpainting model cannot
generate clear and realistic images, and the different views are not consistent. On the other hand,
DFF produces multi-view consistent plausible results, especially succeeding at extracting foreground
objects. Although the performance on deleting foreground objects is high, a remaining shortcoming
is the existence of floating artifacts and blurred volumes in the far distance behind the deleted object.

Priors for Smooth Decomposition We can orga-
nize the challenges of editable NeRFs into several
categories: surface decomposition, volume decom-
position, lighting decomposition, and estimation of
less or never observed parts. If we edit appearances
only, it practically requires decomposing regions only
near the surface of objects, i.e., surface decomposi-
tion, because the color of a ray is determined mostly
in a condensed interval around the surface. On the
other hand, geometric transformations often require a
higher level of decomposition. As shown in the dele-
tion examples, geometric transformation may move
or remove some surfaces and expose the space be-
hind them. This forces models to render unknown regions less or never observed due to occlusions,
including even the inside of objects. Thus, it is desirable to decompose volumes smoothly while
synthesizing its inside and back’. Although these include the same challenges as novel view synthesis
tackles, editability further highlights their importance.

Figure 7: Editing with warping, deformation,
shift, and rotation.

4Other layers or the coarse MLP of the NeRF also indicated similar behaviors but a little worse qualitatively.
>Note that this problem also arises when Yang et al. [91] used ground-truth instance segmentation masks and
trained multiple networks, although the authors did not investigate this issue.
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Apart from lighting decomposition discussed in prior work [6, 7, 98], we further investigate the
new challenge of smooth volume decomposition by experimenting with different DFF setups. As
discussed in Section 5.1, DFF has two sampling options to train feature fields. The coarse training
may introduce smoothness regularization and help cohesive decomposition and smoother in-painting
of unobserved regions. Another reasonable smoothness regularizer is to eliminate the high-frequency
positional encoding (PE). We thus train an independent MLP network for a feature field without
PE. We compare four combinations of renderings in Fig. 6. To better understand their behavior, we
use the DINO-DFF, show k-means clusters of the rendered feature map, and delete the head of the
Triceratops by a query choosing its corresponding clusters. As expected, coarsely trained models
and no-PE models succeed in smoother volume decomposition, and this combination can minimize
high-frequency floating artifacts. A side effect is the lack of high-frequency representation power,
which sometimes deletes disparate background regions and misses to represent features of complex
structures (e.g., see the cluster visualization of the thin frames of the window). Towards the best
of both worlds, developing proper priors or inductive biases is an important direction for future
work [63]. Otherwise, surface-aware representations like IDR [93, 85] could avoid problems with
floating artifacts. Note that not all geometric edits suffer from these problems. For example, it is
often less problematic to move objects closer to the camera, enlarge them, or warp them to other
scenes, as shown in Figure 7.

Raw NeRF CLIPNeRF Composition of CLIPNeRF + our DFF-based method

rendering “white flower” “white flower”  “yellow flower” “rainbow flower” “sunflower”
Y

“petunia”

Figure 8: Comparison of appearance editing by CLIPNeRF and our extension.

Localizing Optimization-based Editing. Finally, we show a combination with an optimization-
based editing method. CLIPNeRF [84] optimizes the parameters of a radiance field so that its rendered
images match with a text prompt via CLIP. While it is mainly designed for a single-object scene of
specific categories, it is possible to apply to other real-world NeRFs. However, because it cannot
control the scope of editing, a prompt like “white flower” may change the color of unintentional
targets like leaves. Our DFF-based decomposition can upgrade such an optimization-based method
to render a scene via the composition of a CLIP-optimized NeRF scene and the original NeRF scene.
We show the results in Figure 8°. Although the naive CLIPNeRF edits unintentional parts, our method
helps it to locally edit intentional parts only. In addition to switching rendering, we can also use the
decomposition for controlling training signals during backpropagation. These extensions broaden the
application of CLIPNeRF or other optimization-based editing methods to various real-world scenes.

6 Discussion and Conclusions

In this work, we propose distilled feature field (DFF), a novel method of NeRF scene decomposition
for selective editing. We present quantitative evaluations of segmentation and extensive qualitative
evaluations of editable novel view synthesis. In addition to these promising results, DFF-based models
will benefit from future improvements to self-supervised 2D foundation models. We also clarify
future directions on editable view synthesis through our experiments, especially for smoothness
priors and estimation of unobserved regions. Furthermore, while this work focuses on editable view
synthesis, it is also intriguing to transfer DFF to other applications, including 3D registration of text
queries [14, 1, 42, 4] or robot teaching [28, 70].

As a possible negative societal impact, one might use our method for making realistic but fake content
by editing NeRFs as desired. Automatic fake detection methods may help in preventing such misus.
NeRFs are further computation-intense, leading to high electricity usage. Recent work on efficient
NeRFs [20, 51, 13] may alleviate this concern.

SBecause the official implementation is not available, we implemented CLIPNeRF by ourselves for reproduc-
ing the experiment in Figure 14 of the paper to the best of our abilities. See appendix E for the details.
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