
Decentralized Training of Foundation Models in
Heterogeneous Environments

Anonymous Author(s)
Affiliation
Address
email

Abstract

Training foundation models, such as GPT-3 and PaLM, can be extremely expensive,1

often involving tens of thousands of GPUs running continuously for months. These2

models are typically trained in specialized clusters featuring fast, homogeneous3

interconnects and using carefully designed software systems that support both4

data parallelism and model/pipeline parallelism. Such dedicated clusters can be5

costly and difficult to obtain. Can we instead leverage the much greater amount of6

decentralized, heterogeneous, and lower-bandwidth interconnected compute? Pre-7

vious works examining the heterogeneous, decentralized setting focus on relatively8

small models that can be trained in a purely data parallel manner. State-of-the-art9

schemes for model parallel foundation model training, such as Megatron, only10

consider the homogeneous data center setting. In this paper, we present the first11

study of training large foundation models with model parallelism in a decentralized12

regime over a heterogeneous network. Our key technical contribution is a schedul-13

ing algorithm that allocates different computational “tasklets” in the training of14

foundation models to a group of decentralized GPU devices connected by a slow15

heterogeneous network. We provide a formal cost model and further propose16

an efficient evolutionary algorithm to find the optimal allocation strategy. We17

conduct extensive experiments that represent different scenarios for learning over18

geo-distributed devices simulated using real-world network measurements. In the19

most extreme case, across 8 different cities spanning 3 continents, our approach is20

4.8× faster than prior state-of-the-art training systems (Megatron).21

1 Introduction22

Recent years have witnessed the rapid development of deep learning models, particularly foundation23

models (FMs) [1] such as GPT-3 [2] and PaLM [3]. Along with these rapid advancements, however,24

comes computational challenges in training these models: the training of these FMs can be very25

expensive — a single GPT3-175B training run takes 3.6K Petaflops-days [2]— this amounts to $4M26

on today’s AWS on demand instances, even assuming 50% device utilization (V100 GPUs peak at27

125 TeraFLOPS)! Even the smaller scale language models, e.g., GPT3-XL (1.3 billion parameters),28

on which this paper evaluates, require 64 Tesla V100 GPUs to run for one week, costing $32K on29

AWS. As a result, speeding up training and decreasing the cost of FMs have been active research30

areas. Due to their vast number of model parameters, state-of-the-art systems (e.g., Megatron[4],31

Deepspeed[5], Fairscale[6]) leverage multiple forms of parallelism [4, 7, 8, 9, 10, 11]. However, their32

design is only tailored to fast, homogeneous data center networks.33

On the other hand, decentralization is a natural and promising direction. Jon Peddie Research reports34

that the PC and AIB GPU market shipped 101 million units in Q4 2021 alone [12]. Furthermore,35
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Figure 1: Given 1⃝ a set of computation tasklets involved in training foundation models (correspond-
ing to different micro-batches and layers), and 2⃝ a heterogeneous network between devices, the goal
is to find the optimal 3⃝ allocation of tasklets to devices.

many of these GPUs are underutilized. Leveraging this fact, volunteer computing projects such36

as Folding@Home [13] have sourced upwards of 40K Nvidia and AMD GPUs continuously [14].37

Moreover, The incremental electricity and HVAC costs of running a V100 GPU for a volunteer are38

50–100× lower than the spot prices for an equivalent device on AWS [15]. If we could make use39

of these devices in a decentralized open-volunteering paradigm for foundation model training, this40

would be a revolutionary alternative to the expensive solutions offered by data centers.41

This vision inspired many recent efforts in decentralized learning, including both those that are42

theoretical and algorithmic [16, 17, 18], as well as recent prototypes such as Learning@Home [19]43

and DeDLOC [20]. However, efforts to-date in decentralized training either focus solely on data44

parallelism [16, 17, 18, 20], which alone is insufficient for FMs whose parameters exceed the45

capacity of a single device, or orient around alternative architectures, e.g., mixture of experts [19].46

These alternative architectures provide promising directions for decentralized learning, however, they47

are currently only trained and evaluated on smaller datasets and at a smaller computational scale (e.g.,48

MNIST and WikiText-2 in [19]) than their state-of-the-art counterparts, e.g., GLaM [21]. In this49

paper, we focus on a standard GPT-style architecture, without considering any changes that might50

alter the model architecture or the convergence behaviour during training.51

To fulfill the potential of decentralization for the training of FMs, we need to be able to (1) take52

advantage of computational devices connected via heterogeneous networks with limited bandwidth53

and significant latency, and (2) support forms of parallelism beyond pure data parallelism. In this54

paper, we tackle one fundamental aspect of this goal — how can we assign different computational55

“tasklets”, corresponding to a macro-batch and a subset of layers, to a collection of geo-distributed56

devices connected via heterogeneous, slow networks? This is not an easy task — even for fast and57

homogeneous data center networks, such assignments are still an open ongoing research challenge [22,58

23, 24, 25, 26]. For the heterogeneous setting, it becomes even more challenging as the size of the59

search space increases dramatically. In the homogeneous setting, the homogeneity of the edges in the60

communication graph reduces the search space into many equivalent classes representing allocation61

strategies with the same communication costs, enabling efficient polynomial runtime algorithms [23,62

24, 22, 25, 26]; however, in the heterogeneous setting, one has to consider potentially exponentially63

many more distinct allocation strategies — as we will see later, because of the heterogeneity of the64

communication matrix, even the sub-problem of finding the best pipeline parallelism strategy equates65

to a hard open loop travelling salesman problem [27].66

In this paper, we focus on this challenging scheduling problem of decentralized training of FMs over67

slow, heterogeneous networks, and make the following contributions:68

• We study the problem of allocating distributed training jobs over a group of decentralized GPU69

devices connected via a slow heterogeneous network. More specifically:70

– To capture the complex communication cost for training FMs, we propose a natural, but71

novel, formulation involving decomposing the cost model into two levels: the first level is72

a balanced graph partitioning problem corresponding to the communication cost of data73
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parallelism, whereas the second level is a joint graph matching and traveling salesman74

problem corresponding to the communication cost of pipeline parallelism.75

– We propose a novel scheduling algorithm to search for the optimal allocation strategy given76

our cost model. Developing a direct solution to this optimization problem is hard; thus, we77

propose an efficient evolutionary algorithm based on a collection of novel heuristics, going78

beyond the traditional heuristics used in standard graph partitioning methods [28].79

• We carefully designed and implemented a collection of system optimizations to hide communi-80

cation within the computation to further reduce the impact of slow connections.81

• We conduct extensive experiments that represent different scenarios of collaborative decentral-82

ized learning, simulated by using network measurements from different geographical regions of83

AWS. In the worldwide setting with 64 GPUs across 8 regions (Oregon, Virginia, Ohio, Tokyo,84

Seoul, London, Frankfurt, Ireland), we show that our system is 3.8-4.8× faster, in end-to-end85

runtime, than the state-of-the-art system, Megatron, for training GPT3-XL, without any differ-86

ence in what is computed or convergence dynamics. In addition, we also provide careful ablation87

studies to show the individual effectiveness of the scheduler and system optimizations.88

• We shed light on the potential of decentralized learning — our prototype in the global heteroge-89

neous setting is only 1.7-3.5× slower than Megatron in data centers even though its network can90

be 100× slower. We hope this paper can inspire future explorations of decentralized learning91

for FMs, over geo-distributed servers, desktops, laptops, or even mobile devices.92

Limitations and Moving Forward. In this paper, we tackle one foundational aspect of decentralized93

learning but leave as future work many problems that are important for a practical system. We assume94

that communication between devices is relatively stable for a reasonable amount of time and that all95

devices are always online without failure or eviction. Note that we also do not train a full system to96

full convergence, instead running partial training to confirm intermediate result equivalence across97

regimes. Scheduling over a dynamic, heterogeneous environment and providing fault tolerance,98

potentially with checkpointing, while training to convergence are directions for future exploration.99

2 Decentralized Training of Foundation Models: Problem Formulation100
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We first introduce concepts, technical terms, and the procedure of101

decentralized training. Then we formally define the scheduling102

problem this paper tackles.103

Decentralized setting. We assume a group of devices (GPUs)104

participating in collaborative training of a foundation model. Each105

pair of devices has a connection with potentially different delay and106

bandwidth. These devices can be geo-distributed, as illustrated in107

Figure 1, with vastly different pairwise communication bandwidth108

and latency. In decentralized training, all layers of a model are109

split into multiple stages, where each device handles a consecutive sequence of layers, e.g., several110

transformer blocks [29]. In addition, since the input for foundation model pre-training is huge, e.g., a111

few millions of tokens, it is also split into multiple macro-batches that can be handled in parallel.112

Problem definition. We define tasklets as a collection of computational tasks in foundation model113

training — Tasklet ti,j is the forward and backward computation for a stage j with a macro-batch i114

of training data in a training iteration. We aim to design an effective scheduler to assign each tasklet115

to a particular device so that the training throughput is maximized in decentralized training.116

Parallelism. The above setting involves two forms of parallelism, pipeline and data. In pipeline117

parallelism, the compute in multiple stages is parallelized — each device handles activation or118

gradient computation for different macro-batches in parallel and the results can be communicated or119

passed to subsequent stages. Data parallelism means that devices compute the gradient for different120

macro-batches independently, but need to synchronize these gradients through communication. In121

a decentralized environment, the training procedure is communication-bounded. The scheduling122

problem is to accelerate the communication procedure by allocating tasklets that require high123

communication volumes between them to devices with faster connections.124
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Figure 2: (a) Communication graph G; and (b, c, d, e) an illustration of the cost model given G.

Formalization of the scheduling problem. Formally, our scheduling problem is as follows.125

• Let D = {d1 . . . dN} be a set of N devices; A ∈ RN×N
+ and B ∈ RN×N

+ be the communication126

matrix between these devices describing the delay and bandwidth respectively, where the delay127

and bandwidth between device d and d′ is αd,d′ and βd,d′ .128

• Given the communication matrix A and B, we construct a communication graph G (Figure 2(a))129

— each device corresponds to a node in G and each edge between d and d′ is labeled with the130

average latency and bandwidth between d and d′: ((αd,d′ + αd′,d)/2, (βd,d′ + βd′,d)/2). Even131

though A and B are asymmetric (i.e., upload and download speed might be different), the132

communication graph G is symmetric because in our workloads all communications between133

two devices happen to involve the same amount of upload and download.134

• The number of stages that a macro-batch needs to go through is DPP (noted as pipeline parallel135

degree); the number of batch partition that needs to run model gradient synchronization is DDP136

(noted as data parallel degree); we have DDP ×DPP = N , i.e., the total number of devices.137

• cPP (resp. cDP) represent the number of bytes of activations for a macro-batch (resp. parame-138

ters/gradients for a stage) communicated in pipeline parallelism (resp. data parallelism).139

• We denote a training tasklet as ti,j , where i ∈ {1, ..., DDP} and j ∈ {1, ..., DPP}, each of which140

corresponds to one specific macro-batch i and pipeline stage j.141

• An assignment strategy σ ∈ DDDP×DPP assigns, for each tasklet ti,j , a device σi,j ∈ D, which142

means that device σi,j runs the training tasklet ti,j . An valid assignment needs to be unique, i.e.,143

∀(i, j) ̸= (i′, j′): σi,j ̸= σi′,j′ . We use Σ to denote the set of all valid assignments.144

• An optimal assignment strategy is an assignment σ that minimizes the communication cost145

σ∗ = argmin
σ∈Σ

COMM-COST (σ)

Challenges and Goals. Our goal is to find the optimal assignment strategy, which involves two146

challenges: (1) How to effectively model the communication cost COMM-COST(σ) for a given147

assignment σ under a heterogeneous network environment? and (2) How to effectively search for the148

optimal assignment strategy that minimizes such a cost? We tackle these two questions in Section 3.149

3 Scheduling in Heterogeneous Environments150

Scheduling in the heterogeneous setting is a challenging task, as the size of the search space increases151

dramatically compared to that of the homogeneous case. In the homogeneous data-center case, the152

network delay can be usually ignored (e.g., A = 0) and the bandwidth B are assumed to be formed153

by just a few constants — e.g., the communication bandwidths between different machines on the154

same rack are assumed to be same [23, 24, 22, 22, 26]. This significantly constrains the search155

space — one can ignore the influence of communication given uniform connections [23, 24, 22], or156

organize the device with a hierarchical structure [22, 26], making the scheduling problem solvable in157

polynomial time in terms of the number of machines.158

In contrast, in the fully heterogeneous scenario the communication matrix A and B consists of159

distinct values, which can make the search space grows exponentially. In this section, we describe160

our scheduler that searches for an optimal strategy in the complex search space.161

3.1 Overview of the scheduler162

We carefully design a bi-level scheduling algorithm based on extended balanced graph partition163

problem (see Figure 2), and solve this problem by an evolutionary algorithm with a carefully designed164

local search strategy. Given an assignment strategy σ = {σi,j} for all tasklets {ti,j}, we first165

4



model its communication cost. During the training of FMs, the communication costs come from166

two different sources: (1) Data parallel: All devices that are assigned with the tasklets dealing167

with the same stage j (handling the same layers) of different macro-batches need to communicate168

within themselves to exchange gradients of these layers. For layer j, we call these devices its169

data parallel group: Cj = {σi,j | ∀i ∈ [DDP]}. We can implement the communication using170

different primitives, e.g., AllReduce [30], ScatterGatter [31], or other decentralized average171

protocols [16]. (2) Pipeline parallel: All devices that are assigned with the tasklets dealing with the172

same macro-batch i of different stages need to form a pipeline, communicating within themselves to173

exchange activations and backward gradients. For macro-batch i, these devices are Pi = {σi,j | ∀j ∈174

[DPP]}. Because these devices need to form a linear pipeline, any permutation over Pi corresponds175

one strategy of how these machines can conduct pipeline parallelism within them.176

Scheduling Problem. The goal of our scheduler is to minimize both costs. One design decision that177

we made is to decompose this complex optimization problem into two levels. At the first level, we178

consider the best way of forming Cj’s, incurring data parallel communication costs within them. At179

the second level, we consider the cost of pipeline parallelism given an layout from the first level:180

min
C1...CDPP

COMM-COST (C1...CDPP ) := DATAP-COST(C1...CDPP ) + PIPELINEP-COST(C1...CDPP )

s.t. |C1| = .... = |CDPP | = DDP, ∀j, j′ : Cj ∩Cj′ = ∅,C1 ∪ ... ∪CDPP = D
(1)

where computing PIPELINEP-COST(C1...CDPP
) involves finding the optimal pipeline structure.181

In Section 3.2 and Section 3.3, we provide details on COMM-COST (C1...CDPP
). Notice that this182

modified objective makes our problem different from the textbook graph partition problem; thus, we183

need a carefully designed evolutionary algorithm for finding such a solution introduced in Section 3.4.184

3.2 Modelling data parallel communication cost185

Given the communication graph G forming data parallel groups C1...CDPP
corresponds to a partition186

of G— In Figure 2(b), different colors correspond to devices in the same Cj . The data parallel187

cost within Cj only relies on all communication channels (edges in the communication graph)188

connecting devices in Cj . If we assume a colocated sharded parameter server [31] implementation189

for communicating within each Cj , and recall that cDP represents the total amount of data (in bytes)190

that needs to be exchanged during gradient aggregation — each device in Cj needs to manage191

cDP/DDP bytes of parameter shard. Once the gradient is ready, each device needs to send each of its192

local shards to the corresponding device; next, each device can aggregate the gradients it receives193

from all other devices in Cj ; and finally, each device will send the aggregated gradient shard to all194

other devices. Therefore, we can model the data parallel cost for Cj as follows:195

DATAP-COST(Cj) = max
d∈Cj

∑
d′∈Cj−{d}

2 ·
(
αd,d′ +

cdp

DDPβd,d′

)
. (2)

Here, the total cost is bounded by the slowest device (maxd∈Cj
), which needs to exchange data with196

all other machines (
∑

d′∈Cj−{d}). Because the communication of these different data parallel groups197

C1...CDPP
can be conducted in parallel and we are only bounded by the slowest data parallel group.198

This allows us to model the total communication cost for data parallelism as:199

DATAP-COST(C1...CDPP ) = max
j∈[DPP]

DATAP-COST(Cj)

3.3 Modeling pipeline parallel communication cost200

Given C1...CDPP
, to model the communication cost of pipeline parallelism, we need to consider201

two factors: (1) each permutation π of {C1...CDPP
} corresponds to a specific pipeline strategy —202

devices in Cπj and devices in Cπj+1 communicates to exchange activations (during forward pass) and203

gradients on activations (during backward pass); and (2) devices in Cπj
and devices in Cπj+1

need204

to be “matched” — only devices that are dealing with the same macro-batch needs to communicate.205

This makes modeling the cost of pipeline parallel communication more complex.206

To model the cost of pipeline parallel communication, we first consider the best possible way that207

devices in Cj and Cj′ can be matched. We do this by creating a coarsened communication graph208

(Figure 2(c)). A coarsened communication graph ĜC1...CDPP
is a fully connected graph, and each209

partition Cj in the original communication graph G corresponds to a node in ĜC1...CDPP
.210
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In the coarsened graph Ĝ, the weight on an edge between Cj and Cj′ corresponds to the following211

— if Cj and Cj′ need to communicate in a pipeline, what is the communicate cost of the optimal212

matching strategy between devices in Cj and devices in Cj′? Recall that cPP represents the amount213

of data between two devices for pipeline parallel communication, we can model this cost by214

min
M

max
(d,d′)∈M

2

(
αd,d′ +

cPP

βd,d′

)
(3)

where M is a perfect matching between Cj and Cj′ — (d, d′) ∈ M means that device d ∈ Cj will215

communicate with device d′ ∈ Cj′ (i.e., they deal with the same macro-batch). Computing this value216

is similar to the classical minimal sum weight perfect matching problem (MinSumWPM) in bipartite217

graphs [32], with the only difference being that we compute the max instead of the sum. As we will218

show in the supplementary material, similar to MinSumWPM, Eq 3 can also be solved in PTIME.219

The coarsened communication graph captures the pipeline parallel communication cost between two220

groups of devices, assuming they become neighbors in the pipeline. Given this, we need to find an221

optimal permutation of C1...CDPP
, corresponds to the structure of the pipeline. This becomes the222

open-loop traveling salesman problem [27] over this condensed graph (Figure 2(e)). Formally, we223

have the following definition of the pipeline parallel cost:224

PIPELINEP-COST (C1...CDPP ) = OPENLOOPTSP
(
ĜC1...CDPP

)
(4)

where ĜC1...CDPP
is the coarsened graph defined above.225

3.4 Searching via hybrid generic algorithm226

The scheduling problem solves the optimization problem in Eq 1, which corresponds to a balanced227

graph partition problem with a complex objective corresponding to the communication cost. Balanced228

graph partition problem is a challenging NP-hard problem [33]. Over the years, researchers have been229

tackling this problem via different ways [34, 35, 36]. We follow the line of research that uses hybrid230

genetic algorithm [37, 28] since it provides us the flexibility in dealing with complex objective.231

Hybrid Genetic Algorithm. A hybrid genetic algorithm for balanced graph partition usually follows232

a structure as as follows. The input is a set of candidate balanced graph partitions which serves as the233

initial population. The algorithm generates the next generation as follows. It first generates a new234

“offspring” o given two randomly selected “parents” p1 and p2. One popular way is to randomly swap235

some nodes between these two parents (we follow [28]). Given this offspring o, we then conduct local236

search starting at o to find a new balanced partitioning strategy o∗ that leads to better cost. We then237

add o∗ to the population and remove the worst partition candidate in the population if o∗ has a better238

cost. As suggested by [37], the combination of heuristic-based local search algorithms and generic239

algorithm can accelerate convergence by striking the balance between local and global optimum.240

Existing Local Search Strategy. The key in designing this algorithm is to come up with a good local241

search strategy. For traditional graph partitioning task, one popular choice is to use the Kernighan-Lin242

Algorithm [38]. Which, at each iteration, tries to find a pair of nodes: d in partition Cj and d′ in243

partition Cj′ , to swap. To find such a pair to swap, it uses the following “gain” function:244

GAINKL((d,Cj) ↔ (d
′
,Cj′ )) =

∑
d′′∈C

j′

wd,d′′ −
∑

d′′∈Cj−{d}

wd,d′′ +
∑

d′′∈Cj

wd′,d′′ −
∑

d′′∈C
j′−{d′}

wd′,d′′ − 2wd,d′

where wi,j corresponds to the weight between node i and j in the graph. However, directly applying245

this local search strategy, as we will also show in the experiment (Section 4) does not work well.246

Greedily following GAINKL does not decrease the communication cost of foundation model training.247

Therefore, we have to design a new local search strategy tailored to our cost model.248

Improving Local Search Strategy. Our local search strategy is inspired by two observations:249

1. Removing the device d1 with a fast connection (say with d2) within partition Cj will not tend to250

change the data parallel cost within Cj , since it is only bounded by the slowest connections.251

2. Once d1 is moved to Cj′ , highly likely the pipeline parallel matching between Cj and Cj′ will252

consist of the link d1 ↔ d2, since it is a fast connection.253
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Therefore, in our local search strategy we only consider the fastest connection within Cj : d1 ↔ d2254

and the fastest connection within Cj′ : d′1 ↔ d′2 and generate four swap candidates: d1 ↔ d′1,255

d1 ↔ d′2, d2 ↔ d′1, d2 ↔ d′2. We use the following gain function (take d1 ↔ d′1 as an example):256

GAIN((d,Cj) ↔ (d′,Cj′)) =
1

|Cj′ |
∑

d′′∈Cj′

wd1,d′′ − wd1,d2 +
1

|Cj |
∑

d′′∈Cj

wd′1,d
′′ − wd′1,d

′
2

where 1
|Cj′ |

∑
d′′∈Cj′

wd1,d′′ measures the expected pipeline parallel cost of connecting d1 with257

other devices in Cj′ before the swap, and wd1,d2
is the cost of connecting d1 with other devices in258

Cj′ after the swap, assuming this fast link d1 ↔ d2 will now be used for pipeline parallelism.259

Just like how Kernighan-Lin Algorithm [38] can be extended to a circular version [28] to swap260

multiple nodes beyond a pair, we can also extend our method into a circular one, following procedure261

as circular KL with our new gain function.262

3.5 Other System Optimizations263

We also have some system optimizations to further improve the performance. The most important264

optimization involves pipelining of communications and computations. We divide each stage in the265

pipeline into three slots: a receiving slot, a computation slot, and a sending slot. The receiving slot of266

stage j needs to build connections to receive activations from the stage j − 1 in forward propagation267

and to receive gradients of activations from stage j+1. The computation slot handles the computation268

in forward and backward propagation. Symmetric to the receiving slot, the sending slot of stage j269

needs to build connections to send activations to stage j + 1 in the forward propagation and send270

gradients of activations to stage j − 1 in the backward propagations. These three slots are assigned to271

three CUDA streams so that they will be further pipelined efficiently; as a result, communication will272

overlap with computation. In the decentralized scenario (communication bound), computation can be273

fully hidden inside the communication time.274

4 Evaluation275

We demonstrate that our system can speed up foundation model training in decentralized setting.276

Specifically, (1) We show that our system is 4.8× faster, in end-to-end runtime, than the state-of-the-277

art system Megatron training GPT3-XL in world-wide geo-distributed setting. Surprisingly, it is only278

1.7− 2.3× slower than Megatron in data centers. This indicates that we can bridge the gap between279

decentralized and data center training (up to 100× slower networks) through scheduling and system280

optimization; (2) We demonstrate the necessity of our scheduler through an ablation study. We show281

that with the scheduler, our system is 2.7× faster in world-wide geo-distributed setting.282

Experimental Setup To simulate the decentralized setting, we use 8 different AWS regions (Oregon,283

Virginia, Ohio, Tokyo, Seoul, London, Frankfurt, and Ireland) and measure the latency and bandwidth284

between these regions (we consider the bandwidth that we can realistically obtain using NCCL and285

UDP hole punching between these regions). Given these measurements, we use 64 Tesla V100 GPUs286

and control their pairwise communication latency and bandwidth for five different cases:287

Case 1. Data center on demand. This is a standard setting that a user can obtain to train foundation288

models. we use 8 AWS p3.16xlarge nodes (each with 8 V100 GPUs); the intra-node connection289

has a bandwidth of 100 Gbps, and the inter-node connection has a bandwidth of 25 Gbps. We do not290

manually control latency and bandwidth in this case.291

Case 2. Data center spot instances. Spot GPUs are cheaper in a data center, but can be located on292

different types of machine. In this case, we rent 4 AWS p3.8xlarge nodes (each with 4 V100) and293

32 p3.2xlarge nodes (each with 1 V100); the intra- p3.8xlarge node connection has a bandwidth294

of 100 Gbps, and the inter-node connection has a bandwidth of 10 Gbps. We do not manually control295

latency and bandwidth in this case.296

Case 3. Multiple Data Centers. We consider two organizations, one in Ohio and another in Virginia,297

each organization contributes 32 V100 GPUs; within each organization, the bandwidth is 10 Gbps,298

and connections cross different campuses have a delay of 10 ms and bandwidth of 1.12 Gbps.299

Case 4. Regional geo-distributed. We consider individual GPUs cross four different regions in US300

(California, Ohio, Oregon, and Virginia) ; within each region, the delay is 5 ms and bandwidth is 2301

Gbps; cross different regions, the delay is 10∼70ms and the bandwidth is 1.0∼1.3 Gbps.302
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Figure 3: End to end compassion of our system with Megatron in 5 different scenarios. Column
(a) and (b) visualize the delay and bandwidth of 5 scenario respectively; Column (c) illustrate the
comparison of Megatron and our system w and w/o scheduler.

Case 5. World-wide geo-distributed. We consider individual GPUs cross eight different regions303

world-wide (Oregon, Virginia, Ohio, Tokyo, Seoul, London, Frankfurt, and Ireland); within each304

region, the delay is 5 ms and bandwidth is 2 Gbps; cross different regions, the delay is 10∼250ms305

and the bandwidth is 0.3∼1.3Gbps.306

Metrics and Model Architecture. Since we do not introduce any optimizations that might change307

the computation or convergence, we can compare all methods by its throughput, we can compare308

all systems by the total number of floating point operations per second (PFLOPS), which is inverse309

proportional to the runtime of each iteration (which we show in Appendix). We use the standard310

GPT3-XL architecture [2], while also benchmarked different number of layers {24, 32, 40}, and311

batch sizes {1024, 2048, 4096}. Tuning of Megatron. When comparing with Megatron, we did a312

careful grid search of different parallelism settings in Megatron and report the optimal results in each313

case—in Case 1, the optimal setting includes tensor model parallelism; all other cares the optimal314

settings are based on pipeline and data parallelism. We discuss more details in Appendix.315
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4.1 Results316

End-to-end Comparison. Figure 3(c) shows the end-to-end comparison between Megatron and our317

system in terms of averaged PFLOPS achieved across different settings and different batch sizes and318

number of layers. From the world-wide geo-distributed cases, we observe that our system achieves an319

4.8× speedup, as compared with Megatron. While in all other cases, our system can be 1.2− 2.5×320

faster. If we compare our system in Case 5 (world-wide geo-distributed) and Megatron in Case 1 (data321

center on demand), it is exciting to see that the performance slowdown caused by decentralization is322

only 1.7− 3.5×! This illustrates the great potential of decentralized training for foundation models.323

Additionally, Figure 3(c) illustrates another interesting behavior pattern. As increasing the batch size324

does not increases the communication cost of data parallelism and increasing # layers per device does325

not increases the communication cost of pipeline parallelism, with a larger batch size and a deeper326

model, the gap between centralized Megatron and our decentralized system is even smaller.327
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Figure 4: Comparison of Different Local
Search Strategies.

Effectiveness of Scheduler. To evaluate the effective-328

ness of the scheduler, we disable it and use a random329

assignment in all cases and the results are also illustrated330

in Figure 3(c). We see that with our scheduler provides up331

to 2.7× speeds up. To evaluate our local search strategy,332

we also compare our scheduler with a scheduler that uses333

the standard Kernighan-Lin algorithm for local search,334

illustrated in Figure 4 (a - e). We see that, while both335

outperform random, our carefully designed local search336

strategy significantly outperforms Kernighan-Lin.337

5 Related Work338

Foundation models. Foundation models[1] refer to models that are trained on large-scale data and339

can be adapted (e.g., fine-tuned) to a wide range of downstream tasks. Current examples include340

BERT [39], GPT-3 [2], and CLIP[40]. Foundation models are usually trained in a data center, where341

the connection between GPUs is fast and homogeneous. ML infrastructures such as Megatron[4]342

and ZeRO[10, 11] have been proposed to distribute the training of these foundation models in a data343

center. Megatron uses AllReduce to synchronize activations in tensor model parallelism; ZeRO344

adopts ScatterGather to dispatch sharded parameters for layer-wise data parallelism. However,345

such collective communication paradigms would cause serious performance problems with slow and346

heterogeneous connections (see Appendix for detailed discussions).347

Decentralized optimization. Decentralized training is first proposed within the scope of data paral-348

lelism, where each worker only synchronizes gradients with its neighbors (instead of all workers) to349

remove the latency bottleneck [17, 41, 16, 42, 43, 44]. Recently, [45] has also modified the imple-350

mentation of data parallelism to support training in an open collaborative environment. Varuna [46]351

is released by Microsoft to support the training of GPT models in spot instances from a cloud service352

provider, which has the potential to be extended to the open collective scenario, but there is limited353

consideration with respect to the challenges of heterogeneous connections.354

Volunteer computing. Distributing computationally intensive tasks over an open collaborative355

environment has been advocated for a few decades since the development of BOINC[47]; for356

example, the folding@home project [13] has been running simulations about protein dynamics on357

volunteers’ personal computers for more than 20 years. Recently, the learning@home project[19]358

starts to consider training of mixture-of-expert transformers in such a volunteer computing setting.359

6 Conclusion360

In this paper, we probe the opportunity to train foundation models via a decentralized training regime361

with devices connected over a heterogeneous network. We propose an effective scheduling algorithm362

to assign tasklets from the foundation model pre-train computation. Empirical studies suggest that, in363

the worldwide geo-distributed scenario, our proposed scheduling algorithm enables a 4.8× speed-364

up compared to prior state-of-the-art training systems. We believe that the decentralization and365

democratization of the training of FMs can shift the balance of power positively, but also necessitate366

new governance structures to help ensure the responsible development and deployment of FMs.367
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The checklist follows the references. Please read the checklist guidelines carefully for information on511

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or512

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing513

the appropriate section of your paper or providing a brief inline description. For example:514

• Did you include the license to the code and datasets? [N/A]515

• Did you include the license to the code and datasets? [N/A]516

• Did you include the license to the code and datasets? [N/A]517

Please do not modify the questions and only use the provided macros for your answers. Note that the518

Checklist section does not count towards the page limit. In your paper, please delete this instructions519

block and only keep the Checklist section heading above along with the questions/answers below.520

1. For all authors...521

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s522

contributions and scope? [Yes]523

(b) Did you describe the limitations of your work? [Yes] In lines 122-124 of the Problem524

Formulation, we highlight the core limitations and simplifying assumptions.525

(c) Did you discuss any potential negative societal impacts of your work? [Yes] In lines526

364-366 of the Conclusion, we discuss the potential negative impact of decentralization527

and democratization, noting that while there are positives, this can also lead to acceler-528

ation and lack of control. We look forward to actively engaging with the community529

on questions of governance.530

(d) Have you read the ethics review guidelines and ensured that your paper conforms to531

them? [Yes]532

2. If you are including theoretical results...533

(a) Did you state the full set of assumptions of all theoretical results? [N/A]534

(b) Did you include complete proofs of all theoretical results? [N/A]535

3. If you ran experiments...536

(a) Did you include the code, data, and instructions needed to reproduce the main experi-537

mental results (either in the supplemental material or as a URL)? [Yes]538

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they539

were chosen)? [Yes] We fully follow the standard settings for GPT3-XL training.540

(c) Did you report error bars (e.g., with respect to the random seed after running experi-541

ments multiple times)? [Yes] We repeated all the experiments for at least three times542

and reported the average in the paper. Details are reported in Appendix.543

(d) Did you include the total amount of compute and the type of resources used (e.g., type544

of GPUs, internal cluster, or cloud provider)? [Yes]545

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...546

(a) If your work uses existing assets, did you cite the creators? [Yes]547

(b) Did you mention the license of the assets? [Yes] Our systems was built on PyTorch and548

CuPy and was evaluated using publicly available abstracts. All of them use open-source549

licenses and can be used for non-commercial educational purposes.550

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]551

(d) Did you discuss whether and how consent was obtained from people whose data you’re552

using/curating? [N/A]553

(e) Did you discuss whether the data you are using/curating contains personally identifiable554

information or offensive content? [N/A]555
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5. If you used crowdsourcing or conducted research with human subjects...556

(a) Did you include the full text of instructions given to participants and screenshots, if557

applicable? [N/A]558

(b) Did you describe any potential participant risks, with links to Institutional Review559

Board (IRB) approvals, if applicable? [N/A]560

(c) Did you include the estimated hourly wage paid to participants and the total amount561

spent on participant compensation? [N/A]562
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