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Abstract

Recent studies show that transformer has strong capability of building long-range1

dependencies, yet is incompetent in capturing high frequencies that predomi-2

nantly convey local information. To tackle this issue, we present a novel and3

general-purpose Inception Transformer, or iFormer for short, that effectively learns4

comprehensive features with both high- and low-frequency information in visual5

data. Specifically, we design an Inception mixer to explicitly graft the advantages6

of convolution and max-pooling for capturing the high-frequency information7

to transformers. Different from recent hybrid frameworks, the Inception mixer8

brings greater efficiency through a channel splitting mechanism to adopt parallel9

convolution/max-pooling path and self-attention path as high- and low-frequency10

mixers, while having the flexibility to model discriminative information scattered11

within a wide frequency range. Considering that bottom layers play more roles in12

capturing high-frequency details while top layers more in modeling low-frequency13

global information, we further introduce a frequency ramp structure, i.e., gradually14

decreasing the dimensions fed to the high-frequency mixer and increasing those to15

the low-frequency mixer, which can effectively trade-off high- and low-frequency16

components across different layers. We benchmark the iFormer on a series of17

vision tasks, and showcase that it achieves impressive performance on image classi-18

fication, COCO detection and ADE20K segmentation. For example, our iFormer-S19

hits the top-1 accuracy of 83.4% on ImageNet-1K, much higher than DeiT-S by20

3.6%, and even slightly better than much bigger model Swin-B (83.3%) with only21

1/4 parameters and 1/3 FLOPs. Code and models will be released.22

1 Introduction23

Transformer [1] has taken the natural language processing (NLP) domain by storm, achieving surpris-24

ingly high performance in many NLP tasks, e.g., machine translation [2] and question-answering [3].25

This is largely attributed to its strong capability of modeling long-range dependencies in the data with26

self-attention mechanism. Its success has led researchers to investigate its adaptation to the computer27

vision field, and Vision Transformer (ViT) [4] is a pioneer. This architecture is directly inherited28

from NLP [1], but applied to image classification with raw image patches as input. Later, many ViT29

variants [5–13] have been developed to boost performance or scale to a wider range of vision tasks,30

e.g., object detection [10, 11] and segmentation [12, 13].31

ViT and its variants are highly capable of capturing low-frequencies in the visual data [14], mainly32

including global shapes and structures of a scene or object, but are not very powerful for learning33

high-frequencies, mainly including local edges and textures. This can be intuitively explained: self-34

attention, the main operation used in ViTs to exchange information among non-overlap patch tokens,35
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Figure 1: (a) Fourier spectrum of ViT [18] and iFormer. (b) Relative log amplitudes of Fourier
transformed feature maps. (c) Performance of transformers on ImageNet-1K validation set. (a)
and (b) show that iFormer captures more high-frequency signals.

is a global operation and much more capable of capturing global information (low frequencies) in the36

data than local information (high frequencies). As shown in Fig. 1(a) and 1(b), the Fourier spectrum37

and relative log amplitudes of the Fourier show that ViT tends to well capture low-frequency signals38

but few high-frequency signals. This observation also accords with the empirical results in [14],39

which shows ViT presents the characteristics of low-pass filters. This low-frequency preferability40

impairs the performance of ViTs, as 1) low-frequency information filling in all the layers may41

deteriorate high-frequency components, e.g., local textures, and weakens modeling capability of42

ViTs; 2) high-frequency information is also discriminative and can benefit many tasks, e.g., (fine-43

grained) classification. Actually, human visual system extracts visual elementary features at different44

frequencies [15–17]: low frequency provides global information about a visual stimulus, and high45

frequency conveys local spatial changes in the image (e.g., local edges/textures). Hence, it is necessary46

to develop a new ViT architecture for capturing both high and low frequencies in the visual data.47

CNNs are the most fundamental backbone for general vision tasks. Unlike ViTs, they cover more48

local information through local convolution within the receptive fields, thus effectively extracting49

high-frequency representations [19, 20]. Recent studies [21–25] have integrated CNNs and ViTs50

considering their complementary advantages. Some methods [21, 22, 24, 25] stack convolution and51

attention layers in a serial manner to inject the local information into global context. Unfortunately,52

this serial manner only models one type of dependency, either global or local, in one layer, and53

discards the global information during locality modeling, or vice versa. Other works [23, 26] adopt54

parallel attention and convolution to learn global and local dependencies of the input at the same55

time. However, it is found in [27] that part of the channels are for processing local information and56

the other for global modeling, meaning current parallel structures have information redundancy if57

processing all channels in each branch.58

To address this issue, we propose a simple and efficient Inception Transformer (iFormer), as shown59

in Fig. 2, which grafts the merit of CNNs for capturing high-frequencies to ViTs. The key component60

in iFormer is an Inception token mixer as shown in Fig. 3. This Inception mixer aims to augment the61

perception capability of ViTs in the frequency spectrum by capturing both high and low frequencies62

in the data. To this end, the Inception mixer first splits the input feature along the channel dimension,63

and then feeds the split components into high-frequency mixer and low-frequency mixer respectively.64

Here the high-frequency mixer consists of a max-pooling operation and a parallel convolution65

operation, while the low-frequency mixer is implemented by a vanilla self-attention in ViTs. In66

this way, our iFormer can effectively capture particular frequency information on the corresponding67

channel, and thus learn more comprehensive features within a wide frequency range compared with68

vanilla ViTs, which can be clearly observed in Fig. 1(a) and 1(b).69

Moreover, we find that lower layers often need more local information, while higher layers desire70

more global information, which also accords with the observations in [27]. This is because, like in71

human visual system, the details in high frequency components help lower layers to capture visual72
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elementary features and also to gradually gather local information for having a global understanding73

of the input. Inspired by this, we design a frequency ramp structure. In particular, from lower to74

higher layers, we gradually feed more channel dimensions to low-frequency mixer and fewer channel75

dimensions to high-frequency mixer. This structure can trade-off high-frequency and low-frequency76

components across all layers. Its effectiveness has been verified by experimental results in Sec. 4.77

Experimental results show that iFormer surpasses state-of-the-art ViTs and CNNs on several vision78

tasks, including image classification, object detection and segmentation. For example, as shown79

in Fig. 1(c), with different model sizes, iFormer makes consistent improvements over popular80

frameworks on ImageNet-1K [28], e.g., DeiT [29], Swin [5] and ConvNeXt [30]. Meanwhile,81

iFormer outperforms recent frameworks on COCO [31] detection and ADE20K [32] segmentation.82

2 Related work83

Transformers [1] are firstly proposed for machine translation tasks and then become popular in84

other tasks like natural language understanding [33–35] and generation [36, 37] in NLP domain,85

as well as image classification [18, 29, 38], object detection [6, 39, 40] and semantic segmentation86

[41, 42] in computer vision. The attention module in transformers has an outstanding ability to87

capture global dependency, but it makes the models produce similar representations across layers88

[27]. Moreover, self-attention mainly captures low-frequency information and tends to neglect89

high-frequency components related to the detailed information [14].90

CNNs are the de-facto model for vision tasks due to their outstanding ability to model local depen-91

dency [43–45] as well as extract high-frequency [19]. With these advantages, CNNs are rapidly92

introduced into transformers in a serial or parallel manner [23–26, 46, 47]. For serial methods,93

convolutions are applied at different positions of the transformer. CvT [25] and PVT-v2 [48] replace94

the hard patch embedding with a layer of overlapping convolution. LV-ViT [46], LeViT [49] and95

ViTC [21] further stack several layers of convolutions as the stem for models, which is found helpful96

in training and achieving better performance. Besides the stem, ViT-hybrid [18], CoAtNet [24],97

Hybrid-MS [50] and UniFormer [22] design early stages with convolution layers. However, the com-98

bination of convolution and attention in a serial order means each layer can only process either high99

or low frequency and neglects the other part. To enable each layer to process different frequencies,100

we adopt the parallel manner to combine convolution and attention in a token mixer.101

Compared with serial methods, there are not many works combining attention and convolution in a102

parallel manner in literature. CoaT [26] and ViTAE [23] introduce convolution as a branch parallel to103

attention and utilize elementwise sum to merge the output of the two branches. However, Raghu et104

al. find that some channels tend to extract local dependency while others are for modeling global105

information [27], indicating redundancy for the current parallel mechanism to process all channels in106

different branches. In contrast, we split channels into branches of high and low frequencies. GLiT107

[47] also adopt parallel manner but it directly concatenate the features from convolution and attention108

branches as the mixer output, lacking the fusion of features in different frequencies. Instead, we109

design a explicit fusion module to merge the outputs from low- and high-frequency branches.110

3 Method111

3.1 Revisit Vision Transformer112

We first revisit the vision transformer. For vision tasks, transformers first split the input image into113

a sequence of tokens, and each patch token is projected into a hidden representation vector with a114

leaner layer, denoted as {x1,x2, ...,xN} or X ∈ RN×C , where N is the number of patch tokens115

and C indicates the dimension of features. Then, all of the tokens are combined with a positional116

embedding and fed into the transformer layers that contain multi-head self-attention (MSA) and a117

feed-forward network (FFN).118
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Figure 2: The overall architecture of iFormer and details of iFormer block . For each block,
yellow and green indicate low- and high-frequency information, respectively. Best viewed in color.

In MSA, the attention-based mixer exchanges information between all patch tokens so that it strongly119

focuses on aggregating the global dependency across all layers. However, excessive propagation120

of global information would strengthen the low-frequency representation. It can be seen from121

the visualization of Fourier spectrum in Fig. 1(a) that low-frequency information dominates the122

representations of ViT [18]. This actually impairs the performance of ViTs, as it may deteriorate123

the high-frequency components, e.g., local textures, and weakens the modeling capability of ViTs124

[14]. In the visual data, high-frequency information is also discriminative and can benefit many tasks125

[19, 20]. Hence, to address the issue, we propose a simple and efficient Inception Transformer, as126

shown in Fig. 2, with two key novelties, i.e., Inception mixer and frequency ramp structure.127

3.2 Inception token mixer128

Split

Fusion

MaxPool

Linear

Linear AvePool

Attention

Upsample

DWConv

Figure 3: The details of In-
ception mixer.

We propose an Inception mixer to graft the powerful capability of129

CNNs for extracting high-frequency representation to transformers.130

Its detailed architecture is depicted in Fig. 3. Instead of directly131

feeding image tokens into the MSA mixer, the Inception mixer132

first splits the input feature along the channel dimension, and then133

respectively feeds the split components into high-frequency mixer134

and low-frequency mixer. Here the high-frequency mixer consists of135

a max-pooling operation and a parallel convolution operation, while136

the low-frequency mixer is implemented by a self-attention.137

Technically, given the input feature map X ∈ RN×C , it is factor-138

ized X into Xh ∈ RN×Ch and X l ∈ RN×Cl along the channel139

dimension, where Ch + Cl = C. Then, Xh and X l are assigned to140

high-frequency mixer and low-frequency mixer respectively.141

High-frequency mixer. Considering the sharp sensitiveness of the maximum filter and the detail142

perception of convolution operation, we propose a parallel structure to learn the high-frequency143

components. We divide the input Xh into Xh1 ∈ RN×Ch
2 and Xh2 ∈ RN×Ch

2 along the channel.144

As shown in Fig. 3, Xh1 is embedded with a max-pooling and a linear layer, and Xh2 is fed into a145

linear and a depthwise convolution layer:146

Y h1 = FC (MaxPool (Xh1)) (1)
Y h2 = DwConv (FC (Xh2)) , (2)

where Y h1 and Y h2 denote the outputs of high-frequency mixers.147

Finally, the outputs of low- and high-frequency mixers are concatenated along the channel dimension:148

Yc = Concat (Y l,Y h1,Y h2) . (3)

The upsample operation in Eq. (7) selects the value of the nearest point for each position to be149

interpolated regardless of any other points, which results in excessive smoothness between adjacent150
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tokens. We design a fusion module to elegantly overcome this issue, i.e., a depthwise convolution151

exchanging information between patches, while keeping a cross-channel linear layer that works per152

location like in previous transformers. The final output can be expressed as153

Y = FC (Yc +DwConv (Yc)) . (4)

Like the vanilla transformer, our iFormer is equipped with a feed-forward network (FFN), and154

differently it also incorporates the above Inception token mixer (ITM); LayerNorm (LN) is applied155

before ITM and FFN. Hence the Inception transformer block is formally defined as156

Y = X + ITM(LN (X)) (5)
H = Y + FFN (LN (Y )) . (6)

Low-frequency mixer. We use the vanilla multi-head self-attention to communicate information157

among all tokens for the low-frequency mixer. Despite the strong capability of the attention for158

learning global representation, the large resolution of feature maps would bring large computation159

cost in lower layers. We therefore simply utilize an average pooling layer to reduce the spatial scale160

of X l before the attention operation and an upsample layer to recover the original spatial dimension161

after the attention. This design largely reduces the computational overhead and makes the attention162

operation focus on embedding global information. This branch can be defined as163

Y l = Upsample (MSA (AvePooling (X l))) , (7)

where Y l is the output of low-frequency mixer. Note that the kernel size and stride for the pooling164

and upsample layers are set to 2 only at the first two stages.165

3.3 Frequency ramp structure166

In the general visual frameworks, bottom layers play more roles in capturing high-frequency details167

while top layers more in modeling low-frequency global information, i.e., the hierarchical repre-168

sentations of ResNet [45]. Like humans, by capturing the details in high frequency components,169

lower layers can capture visual elementary features, and also gradually gather local information to170

achieve a global understanding of the input. We are inspired to design a frequency ramp structure171

which gradually splits more channel dimensions from lower to higher layers to low-frequency mixer172

and thus leave fewer channel dimensions to high-frequency mixer. Specifically, as shown in Fig. 2,173

our backbone has four stages with different channel and spatial dimensions. For each blocks, we174

define a channel ratio to better balance the high-frequency and low frequency components, i.e., Ch

C175

and Cl

C , where Ch

C + Cl

C = 1. In the proposed frequency ramp structure, Ch

C gradually decreases176

from shallow to deep layers, while Cl

C gradually increases. Hence, with the flexible frequency ramp177

structure, iFormer can effectively trade-off high- and low-frequency components across all layers.178

The configuration of different iFormer models will be described in the appendix.179

4 Experiments180

We evaluate our iFormer on several vision benchmark tasks, i.e., image classification, object detection181

and semantic segmentation, by comparing it with representative ViTs, CNNs and their hybrid variants.182

Ablation analysis is also conducted to show the contribution of each novelty in our method. More183

results will be reported in the appendix.184

4.1 Results on image classification185

Setup. For image classification, we evaluate iFormer on the ImageNet dataset [28]. We train the186

iFormer model with the standard procedure in [6, 22, 29]. Specifically, we use AdamW optimizer187

with an initial learning rate 1× 10−3 via cosine decay [58], a momentum of 0.9, and a weight decay188

of 0.05. We set the training epoch number as 300 and the input size as 224 × 224. We adopt the189

same data augmentations and regularization methods in DeiT [29] for fair comparison. We also use190
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LayerScale [59] to train deep models. Like previous studies [5, 55], we further fine tune iFormer on191

the input size of 384× 384, with the weight decay of 1× 10−8, learning rate of 1× 10−5, batch size192

of 512. For fairness, we adopt Timm [60] to implement and train iFormer.193

Results. Table 1 summarizes the image classification accuracy of all compared methods on ImageNet.194

For the small model size (∼20M), our iFormer surpasses both the SoTA ViTs and hybrid ViTs,195

although some ViTs, e.g., Swin [5], Focal [52] and CSwin [53], actually already introduce convolution-196

like inductive bias into their architectures, and hybrid ViTs directly integrate convolution into ViTs.197

Specifically, our iFormer-S respectively gains 0.7% and 0.5% top-1 accuracy advantage over SoTA198

ViTs ( i.e., CSwin-T) and hybrid ViTs ( i.e., UniFormer-S), while enjoying the same or smaller model199

size. For the medium model size (∼50M), iFormer-B achieves 84.6% top-1 accuracy, and improves200

over the SoTA ViTs and hybrid ViTs with similar model sizes by significant margins 1.0% and201

0.7% respectively. For CNNs, similar to comparison results on medium model size, our iFormer-B202

outperforms ConvNeXt-S by 1.5%. As for the large mode (∼100M), one can observe similar results203

on small and medium model sizes.204

Table 1: Comparison of different types of models on ImageNet-1K [28].

Model Size Arch. Method Params FLOPs Input Size ImageNet
(M) (G) Train Test Top-1 Top-5

sm
al

lm
od

el
si

ze
(∼

20
M

)

CNN RSB-ResNet-50 [45, 51] 26 4.1 224 224 80.4 -
ConvNeXt-T [30] 28 4.5 224 224 82.1 -

ViT

Deit-S [29] 22 4.6 224 224 79.8 95.0
PVT-S [6] 25 3.8 224 224 79.8 -
T2T-14 [38] 22 5.2 224 224 80.7 -
Swin-T [5] 29 4.5 224 224 81.3 95.5
Focal-T [52] 29 4.9 224 224 82.2 95.9
CSwin-T [53] 23 4.3 224 224 82.7 -

Hybrid

CvT-13 [25] 20 4.5 224 224 81.6 -
CoAtNet-0 [24] 25 4.2 224 224 81.6 -
Container [54] 22 8.1 224 224 82.7 -
ViTAE-S [23] 24 5.6 224 224 82.0 95.9
ViTAEv2-S [55] 19 5.7 224 224 82.6 96.2
UniFormer-S [22] 22 3.6 224 224 82.9 -
iFormer-S 20 4.8 224 224 83.4 96.6

m
ed

iu
m

m
od

el
si

ze
(∼

50
M

)

CNN
RSB-ResNet-101 [45, 51] 45 7.9 224 224 81.5 -
RSB-ResNet-152 [45, 51] 60 11.6 224 224 82.0 -
ConvNeXt-S [30] 50 8.7 224 224 83.1 -

ViT

PVT-L [6] 61 9.8 224 224 81.7 -
T2T-24 [38] 64 13.2 224 224 82.2 -
Swin-S [5] 50 8.7 224 224 83.0 96.2
Focal-S [52] 51 9.1 224 224 83.5 96.2
CSwin-S [53] 35 6.9 224 224 83.6 -

Hybrid

CvT-21 [25] 32 7.1 224 224 82.5 -
CoAtNet-1 [24] 42 8.4 224 224 83.3 -
ViTAEv2-48M [55] 49 13.3 224 224 83.8 96.6
UniFormer-B [22] 50 8.3 224 224 83.9 -
iFormer-B 48 9.4 224 224 84.6 97.0

la
rg

e
m

od
el

si
ze

(∼
10

0M
)

CNN RegNetY-16GF [29, 56] 84 16.0 224 224 82.9 -
ConvNeXt-B [30] 89 15.4 224 224 83.8 -

ViT

DeiT-B [29] 86 17.5 224 224 81.8 95.6
Swin-B [5] 88 15.4 224 224 83.3 96.5
Focal-B [52] 90 16.0 224 224 83.8 96.5
CSwin-B [53] 78 15.0 224 224 84.2 -

Hybrid

BoTNet-T7 [57] 79 19.3 256 256 84.2 -
CoAtNet-3 [24] 168 34.7 224 224 84.5 -
ViTAEv2-B [55] 90 24.3 224 224 84.6 96.9
iFormer-L 87 14.0 224 224 84.8 97.0
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Table 2: Fine-tuning Results with larger resolution (384 × 384) on ImageNet-1K [28]. The models
in gray color are trained with larger input size.

Method Params FLOPs Input Size ImageNet
(M) (G) Train Test Top-1

EfficientNet-B5 [61] 30 9.9 456 456 83.6
EfficientNetV2-S [62] 22 8.5 384 384 83.9
CSwin-T↑384 [53] 23 14.0 224 384 84.3
CvT-13↑384 [25] 20 16.3 224 384 83.0
CoAtNet-0↑384 [24] 20 13.4 224 384 83.9
ViTAEv2-S↑384 [55] 19 17.8 224 384 83.8
iFormer-S↑384 20 16.1 224 384 84.6

EfficientNet-B7 [61] 66 39.2 600 600 84.3
EfficientNetV2-M [62] 54 25.0 480 480 85.1
ViTAEv2-48M ↑384 [55] 49 41.1 224 384 84.7
CSwin-S↑384 [53] 35 22.0 224 384 85.0
CoAtNet-1↑384 [24] 42 27.4 224 384 85.1
iFormer-B↑384 48 30.5 224 384 85.7

EfficientNetV2-L [62] 121 53 480 480 85.7
Swin-B↑384 [5] 88 47.0 224 384 84.2
CSwin-B↑384 [53] 78 47.0 224 384 85.4
ViTAEv2-B↑384 [55] 90 74.4 224 384 85.3
CoAtNet-2↑384 [24] 75 49.8 224 384 85.7
iFormer-L↑384 87 45.3 224 384 85.8

Table 3: Performance of object detection and instance segmentation on COCO val2017 [31]. AP b

and APm represent bounding box AP and mask AP, respectively. All models are based on Mask
R-CNN [63] and trained by 1× training schedule. The FLOPs are measured at resolution 800×1280.

Method Params FLOPs Mask R-CNN 1 ×
(M) (G) AP b AP b

50 AP b
70 APm APm

50 APm
75

ResNet50 [45] 44 260 38.0 58.6 41.4 34.4 55.1 36.7
PVT-S [6] 44 245 40.4 62.9 43.8 37.8 60.1 40.3
TwinsP-S [64] 44 245 42.9 65.8 47.1 40.0 62.7 42.9
Twins-S [64] 44 228 43.4 66.0 47.3 40.3 63.2 43.4
Swin-T [5] 48 264 42.2 64.6 46.2 39.1 61.6 42.0
ViL-S [65] 45 218 44.9 67.1 49.3 41.0 64.2 44.1
Focal-T [52] 49 291 44.8 67.7 49.2 41.0 64.7 44.2
UniFormer-Sh14 [22] 41 269 45.6 68.1 49.7 41.6 64.8 45.0
iFormer-S 40 263 46.2 68.5 50.6 41.9 65.3 45.0

ResNet101 [45] 63 336 40.4 61.1 44.2 36.4 57.7 38.8
X101-32 63 340 41.9 62.5 45.9 37.5 59.4 40.2
PVT-M [6] 64 302 42.0 64.4 45.6 39.0 61.6 42.1
TwinsP-B [64] 64 302 44.6 66.7 48.9 40.9 63.8 44.2
Twins-B [64] 76 340 45.2 67.6 49.3 41.5 64.5 44.8
Swin-S [5] 69 354 44.8 66.6 48.9 40.9 63.4 44.2
Focal-S [52] 71 401 47.4 69.8 51.9 42.8 66.6 46.1
CSWin-S [53] 54 342 47.9 70.1 52.6 43.2 67.1 46.2
UniFormer-B [22] 69 399 47.4 69.7 52.1 43.1 66.0 46.5
iFormer-B 67 351 48.3 70.3 53.2 43.4 67.2 46.7

Table 2 reports the fine-tuning accuracy on the larger resolution, i.e., 384×384. One can observe that205

iFormer consistently outperforms the counterparts by a significant margin across different computation206

settings. These results clearly demonstrate the advantages of iFormer on image classifications.207

4.2 Results on object detection and instance segmentation208

Setup. We evaluate iFormer on the COCO object detection and instance segmentation tasks [31],209

where the models are trained on 118K images and evaluated on validation set with 5K images.210

Here, we use iFormer as the backbone in Mask R-CNN [63]. In the training phase, we use iFormer211

pretrained on ImageNet to initialize the detector, and adopt AdamW to train with an initial learning212
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rate of 1× 10−4, a batch size of 16, and 1× training schedule with 12 epochs. For training, the input213

images are resized to be 800 pixels on the shorter side an no more than 1,333 pixels on the longer214

side. For the test image, its shorter side is fixed to 800 pixels. All experiments are implemented on215

mmdetection [66] codebase.216

Results. Table 3 reports the box mAP (APb) and mask mAP (APm) of the compared models. Under217

similar computation configurations, iFormers outperforms all previous backbones. Specifically,218

compared with popular ResNet [45] backbones, our iFormer-S brings 8.2 points of APb and 7.5219

points APm improvements over ResNet50. Compared with various transformer backbones, our220

iFormers still maintain the performance superiority over their results. For example, our iFormer-B221

surpasses UniFormer-B [22], Swin-S [5] by 0.9 points of APb and 3.5 points of APb respectively.222

4.3 Results on semantic segmentation223

Setup. We further evaluate the generality of iFormer through a challenging scene parsing benchmark224

on semantic segmentation, i.e., ADE20K [32]. The dataset contains 20K training images and 2K225

validation images. We adopt iFormer pretrained on ImageNet as the backbone of the Semantic226

FPN [67] framework. Following PVT [6] and UniFormer [22], we use AdamW with an initial227

learning rate of 2× 10−4 with cosine learning rate schedule to train 80k iterations. All experiments228

are implemented on mmsegmentation [68] codebase.229

Table 4: Semantic segmentation with semantic
FPN [67] on ADE20K [32]. The FLOPs are mea-
sured at resolution 512×2048.

Method Params FLOPs mIoU
(M) (G) (%)

ResNet50 [45] 29 183 36.7
PVT-S [6] 28 161 39.8
TwinsP-S [64] 28 162 44.3
Twins-S [64] 28 144 43.2
Swin-T [5] 32 182 41.5
UniFormer-Sh32 [22] 25 199 46.2
UniFormer-S [22] 25 247 46.6
UniFormer-B [22] 54 471 48.0
iFormer-S 24 181 48.6

Results. In Table 4, we report the mIoU re-230

sults of different backbones. On the Seman-231

tic FPN [67] framework, our iFormer consis-232

tently outperforms previous backbones on this233

task, including CNNs and (hybrid) ViTs. For in-234

stance, iFormer-S achieves 48.6 mIoU, surpass-235

ing UniFormer-S [22] by 2.0 mIoU, while using236

less computation complexity. Moreover, com-237

pared with UniFormer-B [22], our iFormer-S238

still achieves 0.6 mIoU improvement with only239

1/2 parameters and nearly 1/3 FLOPs.240

4.4 Ablation study and visualization241

In this section, we conduct experiments to better understand iFormer. All the models are trained for242

100 epochs on ImageNet, with the same training setting as described in Sec. 4.1.243

Inception token mixer. The Inception mixer is proposed to augment the perception capability of244

ViTs in the frequency spectrum. To evaluate the effects of the components in the Inception mixer, we245

increasingly remove each branch from the full model and then report the results in Table 5, where246

!and%denote whether or not the corresponding branch is enabled. Observably, combining attention247

with convolution and max-pooling can achieve better accuracy than the attention-only mixer, while248

using less computation complexity, which implies the effectiveness of Inception Token Mixer. To249

Table 5: Ablation study of Inception mixer and frequency ramp structure on ImageNet-1K. All the
models are trained for 100 epochs.

Mixer

Attention MaxPool DwConv Params (M) FLOPs (G) Top-1(%)

! % % 21 5.2 80.8
! ! % 20 4.9 81.0
! ! ! 20 4.8 81.2

Structure
Cl/C ↓, Ch/C ↑ 19 4.7 80.5
Cl/C = Ch/C 19 4.7 80.7
Cl/C ↑, Ch/C ↓ 20 4.8 81.2
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AttentionMaxPool DwConv

(a) 4-th layer

AttentionMaxPool DwConv

(b) 8-th layer
Figure 4: (a) (b) Fourier spectrum of iFormer-S for the MaxPool, DwConv and Attention
branches in the Inception mixer. We can observe that attention mixer tends to reduce high-
frequencies, while MaxPool and DwConv enhance them.

(a) Input (b) Swin-T (c) iFormer-S
Figure 5: Grad-CAM [69] activation maps of Swin-T [5] and iFormer-S trained on ImageNet.

further explore this scheme, Fig. 4 visualizes the Fourier spectrum of the Attention, MaxPool and250

DwConv branches in Inception mixer. We can see the attention mixer has higher concentrations on251

low frequencies; with the high-frequency mixer, i.e., convolution and max-pooling, the model is252

encouraged to learn high frequency information. Overall, these results prove the effectiveness of the253

Inception mixer for expanding the perception capability of the transformer in the frequency spectrum.254

Frequency ramp structure. Previous investigations [27] show requirement of more local information255

at lower layers of the transformer and more global information at higher layers. We accordingly256

assume that a frequency ramp structure, i.e., decreasing dimensions at high-frequency components257

and increasing dimensions at low-frequency components from lower to higher layers, has a better258

trade-off between high-frequency and low-frequency components across all layers. In order to justify259

this hypothesis, we investigate the effects of the channel ratio (Ch

C and Cl

C ) in Table 5. It can be clearly260

seen that the model with Cl/C ↑, Ch/C ↓ outperforms the other two models, which is consistent261

with the previous investigations. Hence, this indicates the rationality of the frequency ramp structure262

and its potential for leaning discriminating vision representations.263

Visualization. We visualize the Grad-CAM [69] activation maps of iFormer-S as well as Swin-T [5]264

models trained on ImageNet-1K in Fig. 5. It can be seen that compared with Swin, iFormer can more265

accurately and completely locate the objects. For example, in the hummingbird image, iFormer skips266

the branch and accurately attends to the whole bird including the tail.267

5 Conclusion268

In this paper, we present an Inception Transformer (iFormer), a novel and general transformer back-269

bone. iFormer adopts a channel splitting mechanism to simply and efficiently couple convolution/max-270

pooling and self-attention, giving more concentrations on high frequencies and expanding the per-271

ception capability of the transformer in the frequency spectrum. Based on the flexible Inception272

token mixer, we further design a frequency ramp structure, enabling effective trade-off between273

high-frequency and low-frequency components across all layers. Extensive experiments show that274

iFormer outperforms representative vision transformers on image classification, object detection and275

semantic segmentation, demonstrating the great potential of our iFormer to serve as a general-purpose276

backbone for computer vision. We hope this study will provide valuable insights for the community277

to design efficient and effective transformer architectures.278

Limitation. One obvious limitation of the proposed iFormer is that it requires manually defined279

channel ratio in the frequency ramp structure i.e., Ch

C and Cl

C for each iFormer block, which needs280

rich experience to define better on different tasks. A straightforward solution would be to use neural281

architecture search.282
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