
Model-Based Offline Reinforcement Learning with
Pessimism-Modulated Dynamics Belief

Kaiyang Guo∗ Yunfeng Shao Yanhui Geng
Huawei Noah’s Ark Lab

Abstract

Model-based offline reinforcement learning (RL) aims to find highly rewarding
policy, by leveraging a previously collected static dataset and a dynamics model.
While learned through reuse of static dataset, the dynamics model’s generalization
ability hopefully promotes policy learning if properly utilized. To that end, several
works propose to quantify the uncertainty of predicted dynamics, and explicitly
apply it to penalize reward. However, as the dynamics and the reward are intrinsi-
cally different factors in context of MDP, characterizing the impact of dynamics
uncertainty through reward penalty may incur unexpected tradeoff between model
utilization and risk avoidance. In this work, we instead maintain a belief distribu-
tion over dynamics, and evaluate/optimize policy through biased sampling from
the belief. The sampling procedure, biased towards pessimism, is derived based
on an alternating Markov game formulation of offline RL. We formally show that
the biased sampling naturally induces an updated dynamics belief with policy-
dependent reweighting factor, termed Pessimism-Modulated Dynamics Belief. To
improve policy, we devise an iterative regularized policy optimization algorithm
for the game, with guarantee of monotonous improvement under certain condition.
To make practical, we further devise an offline RL algorithm to approximately
find the solution. Empirical results show that the proposed approach achieves
state-of-the-art performance on a wide range of benchmark tasks.

1 Introduction

In typical paradigm of RL, the agent actively interacts with environment and receives feedback to
promote policy improvement. The essential trial-and-error procedure can be costly, unsafe or even
prohibitory in practice (e.g. robotics [1], autonomous driving [2], and healthcare [3]), thus constituting
a major impediment to actual deployment of RL. Meanwhile, for a number of applications, historical
data records are available to reflect the system feedback under a predefined policy. This raises the
opportunity to learn policy in purely offline setting.

In offline setting, as no further interaction with environment is permitted, the dataset provides a limited
coverage in state-action space. Then, the policy that induces out-of-distribution (OOD) state-action
pairs can not be well evaluated in offline learning phase, and deploying it online potentially attains
terrible performance. Recent studies have reported that applying vanilla RL algorithms to offline
dataset exacerbates such a distributional shift [4–6], making them unsuitable for offline setting.

To tackle the distributional shift issue, a number of offline RL approaches have been developed.
Specifically, one category of them propose to directly constrain the policy close to the one collecting
data [4, 5, 7, 8], or penalize Q-value towards conservatism for OOD state-action pairs [9–11]. While
they achieve remarkable performance gains, the policy regularizer and the Q-value penalty tightly
restricts the produced policy within the data manifold. Instead, more recent works consider to

∗Corresponding to: guokaiyang@huawei.com

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

mailto:guokaiyang@huawei.com

quantify the uncertainty of Q-value with neural network ensembles [12], where the consistent Q-value
estimates indicate high confidence and can be plausibly used during learning process, even for OOD
state-action pairs [13, 14]. However, the uncertainty quantification over OOD region highly relies
on how neural network generalizes [15]. As the prior knowledge of Q-function is hard to acquire
and insert into the neural network, the generalization is unlikely reliable to facilitate meaningful
uncertainty quantification [16]. Notably, all these works are model-free.

Model-based offline RL optimizes policy based on a constructed dynamics model. Compared to the
model-free approaches, one prominent advantage is that the prior knowledge of dynamics is easier
to access. First, the generic prior like smoothness widely exists in various domains [17]. Second,
the sufficiently learned dynamics models for relevant tasks can act as a data-driven prior for the
concerned task [18–20]. With richer prior knowledge, the uncertainty quantification for dynamics is
more trustworthy. Similar to the model-free approach, the dynamics uncertainty can be incorporated
to find reliable policy beyond data coverage. However, an additional challenge is how to characterize
the accumulative impact of dynamics uncertainty on the long-term reward, as the system dynamics is
with entirely different meaning compared to the reward or Q-value.

Although existing model-based offline RL literature theoretically bounds the impact of dynamics
uncertainty on final performance, their practical variants characterize the impact through reward
penalty [6, 21, 22]. Concretely, the reward function is penalized by the dynamics uncertainty for each
state-action pair [21], or the agent is enforced to a low-reward absorbing state when the dynamics
uncertainty exceeds a certain level [6]. While optimizing policy in these constructed MDPs stimulates
anti-uncertainty behavior, the final policy tends to be over-conservative. For example, even the
transition dynamics for a state-action pair is ambiguous among several possible candidates, these
candidates may generate the states from which the system evolves similarly.2 Then, such a state-action
pair should not be treated specially.

Motivated by the above intuition, we propose pessimism-modulated dynamics belief for model-based
offline RL. In contrast with the previous approaches, the dynamics uncertainty is not explicitly
quantified. To characterize its impact, we maintain a belief distribution over system dynamics, and
the policy is evaluated/optimized through biased sampling from it. The sampling procedure, biased
towards pessimism, is derived based on an alternating Markov game (AMG) formulation of offline
RL. We formally show that the biased sampling naturally induces an updated dynamics belief with
policy-dependent reweighting factor, termed Pessimism-Modulated Dynamics Belief. Besides, the
degree of pessimism is monotonously determined by the hyperparameters in sampling procedure.

The considered AMG formulation can be regarded as a generalization of robust MDP, which is
proposed as a surrogate to optimize the percentile performance in face of dynamics uncertainty
[23, 24]. However, robust MDP suffers from two significant shortcomings: 1) The percentile criterion
is over-conservative since it fixates on a single pessimistic dynamics instance [25, 26]; 2) Robust
MDP is constructed based on an uncertainty set, and the improper choice of uncertainty set would
further aggravate the degree of conservatism [27, 28]. The AMG formulation is kept from these
shortcomings. To solve the AMG, we devise an iterative regularized policy optimization algorithm,
with guarantee of monotonous improvement under certain condition. To make practical, we further
derive an offline RL algorithm to approximately find the solution, and empirically evaluate it on the
offline RL benchmark D4RL. The results show that the proposed approach obviously outperforms
previous state-of-the-art (SoTA) in 9 out of 18 environment-dataset configurations and performs
competitively in the rest, without tuning hyperparameters for each task. The proof of theorems in this
paper are presented in Appendix B.

2 Preliminaries

Markov Decision Process (MDP) A MDP is depicted by the tuple (S,A, T, r, ρ0, γ), where S,A
are state and action spaces, T (s′|s, a) is the transition probability, r(s, a) is the reward function,
ρ0(s) is the initial state distribution, and γ is the discount factor. The goal of RL is to find the policy
π : s→ ∆(A) that maximizes the cumulative discounted reward:

J(π, T) = Eρ0,T,π

[∞∑
t=0

γtr(st, at)

]
, (1)

2Or from these states, the system evolves differently but generates similar rewards.

2

where ∆(·) denotes the probability simplex. In typical RL paradigm, this is done via actively
interacting with environment.

Offline RL In offline setting, the environment is unaccessible, and only a static dataset D =
{(s, a, r, s′)} is provided, containing the previously logged data samples under an unknown behavior
policy. Offline RL aims to optimize the policy by solely leveraging the offline dataset.

To simplify the presentation, we assume the reward function r and initial state distribution ρ0 are
known. Then, the system dynamics is unknown only in terms of the transition probability T . Note
that the considered formulation and the proposed approach can be easily extend to the general case
without additional technical modification.

Robust MDP With the offline dataset, a straightforward strategy is first learning a dynamics model
τ(s′|s, a) and then optimizing policy via simulation. However, due to the limitedness of available data,
the learned model is inevitably imprecise. Robust MDP [23] is a surrogate to optimize policy with
consideration of the ambiguity of dynamics. Concretely, robust MDP is constructed by introducing an
uncertainty set T = {τ} to contain plausible transition probabilities. If the uncertainty set includes
the true transition with probability of (1 − δ), the performance of any policy π in true MDP can
be lower bounded by minτ∈T J(π, τ) with probability of at least (1 − δ). Thus, the percentile
performance for the true MDP can be optimized by finding a solution to

max
π

min
τ∈T

J(π, τ). (2)

Despite its popularity, Robust MDP suffers from two major shortcomings: First, the percentile
criterion overly fixates on a single pessimistic transition instance, especially when there are multiple
optimal policies for this transition but they lead to dramatically different performance for other
transitions [25, 26]. This behavior results in unnecessarily conservative policy.

Second, the level of conservatism can be further aggravated when the uncertainty set is inappropriately
constructed [27]. For a given policy π, the ideal situation is that T contains the (1− δ) proportion of
transitions with which the policy achieves higher performance than with the other δ proportion. Then,
minτ∈T J(π, τ) is exactly the δ-quantile performance. This requires the uncertainty set to be policy-
dependent, and during policy optimization the uncertainty set should change accordingly. Otherwise,
if T is predetermined and fixed, it is possible to have τ ′ /∈ T with non-zero probability and satisfying
J(π∗, τ ′) > minτ∈T J(π∗, τ), where π∗ is the optimal policy for (2). Then, adding τ ′ into T does
not affect the optimal solution of the problem (2). This indicates that we are essentially optimizing a
δ′-quantile performance, where δ′ can be much smaller than δ. In literature, the uncertainty sets are
mostly predetermined before policy optimization [23, 29–31].

3 Pessimism-Modulated Dynamics Belief

In short, robust MDP is over-conservative due to the fixation on a single pessimistic transition instance
and the predetermination of uncertainty set. In this work, we strive to take the entire spectrum of
plausible transitions into account, and let the algorithm by itself determine which part deserves more
attention. To this end, we consider an alternating Markov game formulation of offline RL, based on
which the proposed offline RL approach is derived.

3.1 Formulation

Alternating Markov game (AMG) The AMG is a specialization of two-player zero-sum game,
depicted by (S, S̄,A, Ā, G, r, ρ0, γ). The game starts from a state sampled from ρ0, then two players
alternatively choose actions a ∈ A and ā ∈ Ā under states s ∈ S and s̄ ∈ S̄, along with the game
transition defined by G(s̄|s, a) and G(s|s̄, ā). At each round, the primary player receives reward
r(s, a) and the secondary player receives its negative counterpart −r(s, a).

Offline RL as AMG We formulate the offline RL problem as an AMG, where the primary player
optimizes a reliable policy for our concerned MDP in face of stochastic disturbance from the
secondary player. The AMG is constructed by augmenting the original MDP. As both have the
transition probability, we use game transition and system transition to differentiate them.

3

For the primary player, its state space S, action space A and reward function r(s, a) are same with
those in the original MDP. After the primary player acts, the game emits a N -size set of system
transition candidates T sa, which later acts as the state of secondary player. Formally, T sa is generated
according to

G (s̄ = T sa|s, a) =
∏

τsa∈T sa

Psa
T (τsa), (3)

where τsa(·) re-denotes the plausible system transition τ(·|s, a) for short, and Psa
T is a given belief

distribution over τsa. According to (3), the elements in T sa are independent and identically dis-
tributed samples following Psa

T . The major difference to uncertainty set in robust MDP is that the set
introduced here is unfixed and stochastic for each step. To distinguish with uncertainty set, we call
it candidate set. The belief distribution Psa

T can be chosen arbitrarily to incorporate knowledge of
system transition. Particularly, when the prior distribution of system transition is accessible, Psa

T can
be obtained as the posterior by integrating the prior and the evidence D through Bayes’ rule.

The secondary player receives the candidate set T sa as state. Thus, its state space can be denoted by
S̄ = ∆N (S), i.e., the n-fold Cartesian product of probability simplex over S . Note that the state T sa

also takes the role of action space, i.e., Ā = T sa, meaning that the action of secondary player is to
choose a system transition from the candidate set. Given the chosen τsa ∈ T sa, the game evolves by
sampling τsa, i.e.,

G (s′|s̄ = T sa, ā = τsa) = τsa(s′), (4)

and the primary player receives s′ to continue the game. In the following, we use PN
T (T sa) to

compactly denote the game transition G (s̄ = T sa|s, a) in (3), and omit the superscript sa in τsa,
T sa and Psa

T when it is clear from the context.

For the above AMG, we consider a specific policy (explained below) for the secondary player, such
that the cumulative discounted reward of the primary player with policy π can be written as:

J(π) := E
ρ0,π,PN

T

⌊min⌋kτ0∈T0

[
E

τ0,π,PN
T

⌊min⌋kτ1∈T1
· · ·

[
E

τ∞,π

[∞∑
t=0

γtr(st, at)

]]]
, (5)

where the subscripts of τ and T denote time step, the expectation is over s0 ∼ ρ0, st>0 ∼
τt−1(·|st−1, at−1), at ∼ π(·|st) and Tt ∼ PN

T , and the operator ⌊min⌋kx∈X f(x) denotes finding
kth minimum of f(x) over x ∈ X . The policy of secondary player is implicitly defined by the
operator ⌊min⌋kx∈X f(x). When changing k ∈ {1, 2, · · · , N}, the secondary player exhibits various
degree of adversarial or aggressive disturbance to the future reward. From the view of original MDP,
this behavior raises flexible tendency ranging from pessimism to optimism when evaluating policy π.

The distinctions between the introduced AMG and the robust MDP are twofold: 1) With a belief
distribution over transitions, robust MDP will select only part of its supports into uncertainty set, and
the set elements are treated indiscriminatingly. It indicates that both the possibility of transitions out
of the uncertainty set and the relative likelihood of transitions within the uncertainty set are discarded.
However, in the AMG, the candidate set simply contains samples drawn from the belief distribution,
implying no information drop in an average sense. Intuitively, by keeping richer knowledge of the
system, the performance evaluation is more exact and away from excessive conservatism; 2) In
robust MDP, the level of conservatism is expected to be controlled by its hyperparameter δ. However,
as illustrated in Section 2, a smaller δ does not necessarily corresponds to a more conservative
performance evaluation, due to the extra impact from uncertainty set construction. In contrast, for
the AMG, the degree of conservatism is adjusted by the size of candidate size N and the order of
minimum k. When changing values of k or N , the impact to performance evaluation is ascertained,
as formalized in Theorem 3.

To evaluate J(π), we define the following Bellman backup operator:

BπN,kQ(s, a) = r(s, a) + γEPN
T

[
⌊min⌋kτ∈T Eτ,π [Q(s′, a′)]

]
. (6)

As the operator depends on N , k and we emphasize pessimism in offline RL, we call it (N, k)-
pessimistic Bellman backup operator. Compared to the standard Bellman backup operator in Q-
learning, BπN,k additionally includes the expectation over T ∼ PN

T and the k-minimum operator over
T . Despite these differences, we prove that BπN,k is still a contraction mapping, based on which J(π)
can be easily evaluated.

4

Theorem 1 (Policy Evaluation). The (N, k)-pessimistic Bellman backup operator BπN,k is a contrac-
tion mapping. By starting from any function Q : S × A → R and repeatedly applying BπN,k, the
sequence converges to Qπ

N,k, with which we have J(π) = Eρ0,π

[
Qπ

N,k(s0, a0)
]
.

3.2 Pessimism-Modulated Dynamics Belief

With the converged Q-value, we are ready to establish a more direct connection between the AMG
and the original MDP. The connection appears as the answer to a natural question: the calculation of
(6) encompasses biased samples from the dynamics belief distribution, can we treat these samples
as the unbiased ones sampling from another belief distribution? We give positive answer in the
following theorem.
Theorem 2 (Equivalent MDP with Pessimism-Modulated Dynamics Belief). The alternating Markov
game in (5) is equivalent to the MDP with tuple (S,A, T̃ , r, ρ0, γ), where the transition probability
T̃ (s′|s, a) = EP̃sa

T
[τsa(s′)] is defined with the reweighted belief distribution P̃sa

T :

P̃sa
T (τsa) ∝ w

(
Eτsa,π

[
Qπ

N,k(s
′, a′)

]
; k,N

)
Psa
T (τsa), (7)

w(x; k,N) =
[
F (x)

]k−1[
1− F (x)

]N−k
, (8)

and F (·) is cumulative density function. Furthermore, the value of w(x; k,N) first increases and

then decreases with x, and its maximum is obtained at the k−1
N−1 quantile, i.e., x∗ = F−1

(
k−1
N−1

)
.

In right-hand side of (7), τsa itself is random following the belief distribution, thus
Eτsa,π

[
Qπ

N,k(s
′, a′)

]
, as a functional of τsa, is also a random variable, whose cumulative density

function is determined by the belief distribution Psa
T . Intuitively, we can treat Eτsa,π

[
Qπ

N,k(s
′, a′)

]
as a pessimism indicator for transition τsa, with larger value indicating less pessimism.

From Theorem 2, the maximum of w is obtained at τ∗: F
(
Eτ∗,π

[
Qπ

N,k(s
′, a′)

])
= k−1

N−1 , i.e., the

transition with k−1
N−1 -quantile pessimism indicator. Besides, when Eτsa,π

[
Qπ

N,k(s
′, a′)

]
departs the

k−1
N−1 quantile, the reweighting coefficient for its τsa decreases. Considering the effect of w to

P̃sa
T and the equivalence between the AMG and the refined MDP, we can say that J(π) is a soft

percentile performance. Compared to the standard percentile criteria, J(π) is derived by reshaping
belief distribution towards concentrating around a certain percentile, rather than fixating on a single
percentile point. Due to this feature, we term P̃sa

T Pessimism-Modulated Dynamics Belief (PMDB).

Lastly, recall that all the above derivations are with hyperparameters k and N , we present the
monotonicity of Qπ

N,k over them in Theorem 3. Furthermore, by combining Theorem 1 with Theorem
3, we conclude that J(π) decreases with N and increases with k.
Theorem 3 (Monotonicity). The converged Q-function Qπ

N,k are with the following properties:

• Given any k, the Q-function Qπ
N,k element-wisely decreases with N ∈ {k, k + 1, · · · }.

• Given any N , the Q-function Qπ
N,k element-wisely increases with k ∈ {1, 2, · · · , N}.

• The Q-function Qπ
N,N element-wisely increases with N .

k

1 2 3 4 5 6 7 8 N

Robust
MDP

.MBRL

 N=k

Figure 1: Monotonicity of Q-values. The
arrows indicate the directions along which
Q-values increase.

Remark 1 (Special Cases). For N = k = 1, we have
P̃sa
T = Psa

T . Then, the performance is evaluated through sam-
pling the initial belief distribution. This resembles the com-
mon methodology in model-based RL (MBRL), with dynam-
ics belief defined by the uniform distribution over dynamics
model ensembles. For k = δ(N − 1) + 1 and N →∞, P̃sa

T
asymptotically collapses to be a delta function. Then, J(π)
degrades to fixate on a single transition instance. It is equiv-
alent to the robust MDP with the uncertainty set constructed
as
{
τsa : Psa

T (τsa) > 0,Eτsa,π

[
Qπ

N,k(s
′, a′)

]
≥ F−1(δ)

}
.

In this sense, the AMG is a successive interpolation between
MBRL and robust MDP.

5

4 Policy Optimization with Pessimism-Modulated Dynamics Belief

In this section, we optimize policy by maximizing J(π). The major consideration is that the
methodology should adapt well for both discrete and continuous action spaces. In continuous setting
of MDP, the policy can be updated by following stochastic/deterministic policy gradient [32, 33].
However, for the AMG, evaluating J(π) itself involves an inner dynamic programming procedure
as in Theorem 1. As each evaluation of J(π) can only produce one exact gradient, it is inefficient
to maximize J(π) via gradient-based method. In this section, we consider a series of sub-problems
with Kullback–Leibler (KL) regularization. Solving each sub-problem makes prominent update to
the policy, and the sequence of solutions for sub-problems monotonously improve regarding J(π).
Based on this idea, we further derive offline RL algorithm to approximately find the solution.

4.1 Iterative Regularized Policy Optimization

Define the KL-regularized return for the AMG by

J̄(π;µ) := E
ρ0,π,PN

T

⌊min⌋kτ0∈T0

[
E

τ0,π,PN
T

⌊min⌋kτ1∈T1
· · ·

[
E

τ∞,π

[∞∑
t=0

γt

(
r(st, at)

−αDKL

(
π(·|st)

∣∣∣∣ µ(·|st)))]]] , (9)

where α ≥ 0 is the strength of regularization, and µ is a reference policy to keep close with.

KL-regularized MDP is considered in previous works to enhance exploration, improve robustness
to noise or insert expert knowledge [34–38]. Here, the idea is to constrain the optimized policy in
neighbour of a reference policy so that the inner problem is adequately evaluated for such a small
policy region.

To optimize J̄(π;µ), we introduce the soft (N, k)-pessimistic Bellman backup operator:

B̄∗N,kQ(s, a) = r(s, a) + γEPN
T

[
⌊min⌋kτ∈T Eτ

[
α logEµ exp

(
1

α
Q(s′, a′)

)]]
. (10)

Theorem 4 (Regularized Policy Optimization). The soft (N, k)-pessimistic Bellman backup operator
B̄∗N,k is a contraction mapping. By starting from any function Q : S × A → R and repeatedly
applying B̄∗N,k, the sequence converges to Q̄∗

N,k, with which the optimal policy for J̄(π;µ) is obtained

as π̄∗(a|s) ∝ µ(a|s) exp
(

1
α Q̄

∗
N,k(s, a)

)
.

Apparently, the solved policy π̄∗ depends on the reference policy µ, and setting µ arbitrarily aforehand
can result in suboptimal policy for J(π). In fact, we can construct a sequence of sub-problems, with
µ chosen as an improved policy from last sub-problem. By successively solving them, the impact
from the initial reference policy is gradually eliminated.
Theorem 5 (Iterative Regularized Policy Optimization). By starting from any stochastic policy
π0 : s → ∆(A) and repeatedly finding πi+1 : J̄(πi+1;πi) > J̄(πi;πi), the sequence of {πi}
monotonically improves regarding J(π), i.e., J(πi+1) ≥ J(πi). Especially, when π0(a|s) > 0,∀s, a
and {πi} are obtained via regularized policy optimization in Theorem 4, we have πi(a|s)

πi(a′|s) →∞ for
any s, a, a′ such that limi→∞ Qπi

N,k(s, a) > limi→∞ Qπi

N,k(s, a
′).

Ideally, by combining Theorems 4 and 5, the policy for J(π) can be continuously improved by
infinitely applying soft pessimistic Bellman backup operator for each of the sequential sub-problems.

Remark 2 (Iterative Regularized Policy Optimization as Expectation–Maximization with Structured
Variational Posterior). According to Theorem 2, PMDB can be recovered with the converged Q-
function Qπ∗

N,k. From an end-to-end view, we have an initial dynamics belief Psa
T , then via the

calculation based on the belief samples and the reward function, we obtain the updated dynamics
belief P̃sa

T . It is likely that we are doing some form of posterior inference, where the evidence comes
from the reward function. In fact, the iterative regularized policy optimization can be formally recast
as an Expectation-Maximization algorithm for offline policy optimization, where the Expectation step
correponds to a structured variational inference procedure for dynamics. We elaborate it in Appendix
C.

6

4.2 Offline Reinforcement Learning with Pessimism-Modulated Dynamics Belief
While solving each sub-problem makes prominent update to policy compared with the policy gradient
method, we may need to construct several sub-problems before convergence, then exactly solving
each of them incurs unnecessary computation. For practical consideration, next we introduce a
smooth-evolving reference policy, with which the explicit boundary between sub-problems is blurred.
Based on this reference policy, and by further adopting function approximator, we devise an offline
RL algorithm to approximately maximize J(π).

The idea of smooth-evolving reference policy is inspired by the soft-updated target network in deep
RL literature [39, 40]. That is setting the reference policy as a slowly tracked copy of the policy
being optimized. Formally, consider a parameterized policy πϕ with the parameter ϕ. The reference
policy is set as µ = πϕ′ , where ϕ′ is the moving average of ϕ : ϕ′ ← ω1ϕ + (1 − ω1)ϕ

′. With
small enough ω1, the Q-value of the state-action pairs induced by πϕ′ (or its slight variant) can be
sufficiently evaluated, before being used to update the policy. Next, we detail the loss functions to
learn Q-value and policy with neural network approximators.

Denote the parameterized Q-function by Qθ with the parameter θ. It is trained by minimizing the
Bellman residual of both the AMG and the empirical MDP:

LQ(θ) =E(s,a,T)∼D′

[(
Qθ(s, a)−Q̂AMG(s, a)

)2]
+E(s,a,s′)∼D

[(
Qθ(s, a)−Q̂MDP(s, a)

)2]
, (11)

with
Q̂AMG(s, a) = r(s, a) + γ⌊min⌋kτ∈T Eτ

[
α logEπϕ′ exp

(
1

α
Qθ′(s′, a′)

)]
, (12)

Q̂MDP(s, a) = r(s, a) + γ · α logEπϕ′ exp

(
1

α
Qθ′(s′, a′)

)
, (13)

where Qθ′ represent the target Q-value softly updated for stability [40], i.e., θ′ ← ω2θ + (1− ω2)θ
′,

and D′ is the on-policy data buffer for the AMG. Since the game transition is known, the game can be
executed with multiple counterparts in parallel, and the buffer only collects the latest sample for each
of them. To promote direct learning from D, we also include the Bellman residual of the empirical
MDP in (11).

As with policy update, Theorem 4 states that the optimal policy for J̄(π;µ) is propotional to
µ(a|s) exp

(
1
α Q̄

∗
N,k(s, a)

)
. Then, we update πϕ by supervisedly learning this policy, with µ and

Q̄∗
N,k replaced by the smooth-evolving reference policy and the learned Q-value:

LP (ϕ) = Es∼D∪D′

[
DKL

(
πϕ′(·|s) exp

(
1
αQθ(s, ·)

)
Eπϕ′

[
exp

(
1
αQθ(s, a)

)] ∣∣∣∣∣
∣∣∣∣∣ πϕ(·|s)

)]

= A · Es∼D∪D′

a∼πϕ′

[
exp

(
1

α
Qθ(s, a)

)
log πϕ(a|s)

]
+B, (14)

where A and B are constant terms. In general, (14) can be replaced by any tractable function that
measures the similarity of distributions. For example, when πϕ is Gaussian, we can apply the recent
proposed β-NLL [41], in which each data point’s contribution to the negative log-likelihood loss is
weighted by the β-exponentiated variance to improve learning heteroscedastic behavior.

To summarize, the algorithm alternates between collecting on-policy data samples in AMG and
updating the function approximators. In detail, the latter procedure includes updating the Q-value
with (11), updating the optimized policy with (14), and updating the target Q-value as well as the
reference policy with the moving-average rule. The complete algorithm is listed in Appendix D.

5 Experiments

Through the experiments, we aim to answer the following questions: 1) How does the proposed
approach compared to the previous SoTA offline RL algorithms on standard benchmark? 2) How
does the learning process in the AMG connect with the performance change in the original MDP? 3)
Section 3 presents the monotonicity of J(π) over N and k for any specified π, and it is easy to verify
that this statement also holds when considering optimal policy for each setting of (N, k). However,

7

with neural network approximator, our proposed offline RL algorithm approximately solves the AMG.
Then, how is the monotonicity satisfied in this case?

We consider the Gym domains in the D4RL benchmark [42] to answer these questions. As PMDB
relies on the initial dynamics belief, inserting additional knowledge into the initial dynamics belief
will result in unfair comparison. To avoid that, we consider an uniform distribution over dynamics
model ensembles as the initial belief. The dynamics model ensembles are trained in supervised
manner with the offline dataset. This is similar to previous model-based works [6, 21], where
the dynamics model ensembles are considered for dynamics uncertainty quantification. Since
hyperparameter tuning for offline RL algorithms requires extra online test for each task, we purposely
keep the same hyperparameters for all tasks, except when answering the last question. Especially,
the hyperparameters in sampling procedure are N = 10 and k = 2. The more detailed setup for
experiments and hyperparameters can be found in Appendix G. The code is available online3

5.1 Performance Comparison

We compare the proposed offline RL algorithm with the baselines including: BEAR [5] and BRAC
[7], the model-free approaches based on policy constraint, CQL [9], the model-free approach by
penalizing Q-value, EDAC [13], the previous SoTA on the D4RL benchmark, MOReL [6], the
model-based approach which terminates the trajectory if the dynamics uncertainty exceeds a certain
degree, and BC, the behavior cloning method. These approaches are evaluated on a total of eighteen
domains involving three environments (hopper, walker2d, halfcheetah) and six dataset types (random,
medium, expert, medium-expert, medium-replay, full-replay) per environment. We use the v2 version
of each dataset.

The results are summarized in Table 1. Our approach PMDB obviously improves over the previous
SoTA on 9 tasks and performs competitively in the rest. Although EDAC achieves better performance
in walker2d with several dataset types, its hyperparameters are tuned individually for each task. The
later experiments on the impact of hyperparameters indicate that larger k or smaller N could generate
better results for walker2d and halfcheetah. We also find that PMDB significantly outperforms
MOReL, another model-based approach. It is encouraging that our model-based approach achieves
competitive or better performance compared with the SoTA model-free approach, as model-based
approach naturally has better support for multi-task learning and transfer learning, where the offline
data from relevant tasks can be further leveraged.

Task Name BC BEAR BRAC CQL MOReL EDAC PMDB

hopper-random 3.7±0.6 3.6±3.6 8.1±0.6 5.3±0.6 38.1±10.1 25.3±10.4 32.7±0.1
hopper-medium 54.1±3.8 55.3±3.2 77.8±6.1 61.9±6.4 84.0±17.0 101.6±0.6 106.8±0.2
hopper-expert 107.7±9.7 39.4±20.5 78.1±52.6 106.5±9.1 80.4±34.9 110.1±0.1 111.7±0.3
hopper-medium-expert 53.9±4.7 66.2±8.5 81.3±8.0 96.9±15.1 105.6±8.2 110.7±0.1 111.8±0.6
hopper-medium-replay 16.6±4.8 57.7±16.5 62.7±30.4 86.3±7.3 81.8±17.0 101.0±0.5 106.2±0.6
hopper-full-replay 19.9±12.9 54.0±24.0 107.4±0.5 101.9±0.6 94.4±20.5 105.4±0.7 109.1±0.2

walker2d-random 1.3±0.1 4.3±1.2 1.3±1.4 5.4±1.7 16.0±7.7 16.6±7.0 21.8±0.1
walker2d-medium 70.9±11.0 59.8±40.0 59.7±39.9 79.5±3.2 72.8±11.9 92.5±0.8 94.2±1.1
walker2d-expert 108.7±0.2 110.1±0.6 55.2±62.2 109.3±0.1 62.6±29.9 115.1±1.9 115.9±1.9
walker2d-medium-expert 90.1±13.2 107.0±2.9 9.3±18.9 109.1±0.2 107.5±5.6 114.7±0.9 111.9±0.2
walker2d-medium-replay 20.3±9.8 12.2±4.7 40.1±47.9 76.8±10.0 40.8±20.4 87.1±2.3 79.9±0.2
walker2d-full-replay 68.8±17.7 79.6±15.6 96.9±2.2 94.2±1.9 84.8±13.1 99.8±0.7 95.4±0.7

halfcheetah-random 2.2±0.0 12.6±1.0 24.3±0.7 31.3±3.5 38.9±1.8 28.4±1.0 37.8 ± 0.2
halfcheetah-medium 43.2±0.6 42.8±0.1 51.9±0.3 46.9±0.4 60.7±4.4 65.9±0.6 75.6± 1.3
halfcheetah-expert 91.8±1.5 92.6±0.6 39.0±13.8 97.3±1.1 8.4±11.8 106.8±3.4 105.7± 1.0
halfcheetah-medium-expert 44.0±1.6 45.7±4.2 52.3±0.1 95.0±1.4 80.4±11.7 106.3±1.9 108.5±0.5
halfcheetah-medium-replay 37.6±2.1 39.4±0.8 48.6±0.4 45.3±0.3 44.5±5.6 61.3±1.9 71.7±1.1
halfcheetah-full-replay 62.9±0.8 60.1±3.2 78.0±0.7 76.9±0.9 70.1±5.1 84.6±0.9 90.0±0.8

Average 49.9 52.4 54.0 73.7 65.1 85.2 88.2

Table 1: Results for D4RL datasets. Each result is the normalized score computed as (score − random policy
score) / (expert policy score − random policy score), ± standard deviation. The score of our proposed approach
is averaged over 4 random seeds, and the results of the baselines are taken from [13].

5.2 Learning in Alternating Markov Game

Figure 2 presents the learning curves in the AMG, as well as the received return when deploying
the policy being learned in true MDP. The performance in the AMG closely tracks the true perfor-

3Code is released at https://github.com/huawei-noah/HEBO/tree/master/PMDB and https://
gitee.com/mindspore/models/tree/master/research/rl/pmdb.

8

https://github.com/huawei-noah/HEBO/tree/master/PMDB
https://gitee.com/mindspore/models/tree/master/research/rl/pmdb
https://gitee.com/mindspore/models/tree/master/research/rl/pmdb

mance from the lower side, implying that it can act as a reasonable surrogate to evaluate/optimize
performance for the true MDP. Besides, the performance in the AMG improves nearly monotonously,
verifying the effectiveness of the proposed algorithm to approximately solve the game.

0.00 0.25 0.50 0.75 1.00
Training Steps 1e6

0

1

2

3

R
et

ur
n

1e3 hopper-medium

MDP
AMG

0.0 0.5 1.0 1.5 2.0
Training Steps 1e6

0

1

2

3

4

1e3 walker2d-medium

0.0 0.5 1.0 1.5 2.0
Training Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0
1e4 halfcheetah-medium

Figure 2: Learning and test curves for medium datasets.

Recall that PMDB does not explicitly quantify dynamics uncertainty to penalize return, Figure 3
checks how the dynamics uncertainty and the Q-value of visited state-action pairs change during the
learning process. The uncertainty is measured by the logarithm of standard deviation of the predicted
means from the N dynamics samples, i.e., log (std (Eτ [s

′]; τ ∈ T)). The policy being learned is
periodically tested in the AMG for ten trials, and we collect the whole ten trajectories of state-action
pairs. The solid curves in Figure 3 denote the mean uncertainty and Q-value over the collected pairs,
and shaded regions denote the standard deviation. From the results, the dynamics uncertainty first
sharply decreases and then keeps a slowly increasing trend. Besides, in the long-term view, the
Q-value is correlated with the degree of uncertainty negatively in the first phase and positively in the
second phase. This indicates that the policy first moves to the in-distribution region and then tries to
get away by resorting to the generalization of dynamics model.

0.00 0.25 0.50 0.75 1.00
Training Steps 1e6

5.20

3.65

2.10

0.55

1.00

Lo
gs

td
 o

f p
re

di
ct

ed
 m

ea
ns

Uncertainty
Q-value

0

15

30

45

60hopper-medium

0.0 0.5 1.0 1.5 2.0
Training Steps 1e6

3.6

2.2

0.8

0.6

2.0

0

17

34

51

68walker2d-medium

0.0 0.5 1.0 1.5 2.0
Training Steps 1e6

1.80

1.05

0.30

0.45

1.20

0

27

54

81

108

Av
er

ag
e

Q
-v

al
ue

halfcheetah-medium

Figure 3: Change on the dynamics uncertainty and Q-value of the encountered state-action pairs during learning
process. The dynamics uncertainty of state-action pair (s, a) is measured by log

(
std

(
Eτ(·|s,a)[s

′]; τ ∈ T
))

.

In Figure 3, we also notice that the large dip of Q-value is accompanied with the sudden raise of
dynamics uncertainty. We suspect this is due to the optimized policy being far from the dataset.
We try to verify by checking the maximal return covered by the offline dataset. It shows that the
maximal normalized returns provided by offline datasets are 99.6, 92.0 and 45.0 respectively for
hopper, walker2d and halfcheetah, while the proposed approach achieves 106.8, 94.2 and 75.6. The
policy optimization is more significant for halfcheetah (where we observe the large dip), indicating
the policy should move further from the dataset.

The above finding also explains why the AMG performance in Figure 2 runs into large dip only
for halfcheetah: with the larger dynamics uncertainty, the secondary player can choose the more
pessimistic transition. However, we want to highlight that it is normal behavior of the proposed algo-
rithm and does not mean instability, as we are handling the alternating Markov game, a specialization
of zero-sum game. Besides, we can see that even when the AMG performance goes down the MDP
performance is still stable.

5.3 Practical Impact of Hyperparameters in Sampling Procedure

Table 2 lists the impact of k. In each setting, we evaluate the learned policy in both the true MDP and
the AMG. The performance in the AMGs improve when increasing k. This is consistent with the
theoretical result, even that we approximately solve the game. Regarding the performance in true
MDPs, we notice that k = 2 corresponds to the best performance for hopper, but for the others k = 3
is better. This indicates that tuning hyperparameter online can further improve the performance. The
impact of N is presented in Appendix H, suggesting the opposite monotonicity.

9

hopper-medium walker2d-medium halfcheetah-medium

k MDP AMG MDP AMG MDP AMG

1 106.2±0.2 91.6±2.2 82.6±0.5 33.3±2.6 70.7±0.8 63.1±0.2
2 106.8±0.2 105.2±1.6 94.2±1.1 77.2±3.7 75.6±1.3 67.3±1.1
3 90.8±17.5 106.6±2.1 105.1±0.2 82.5±0.5 77.3±0.5 70.1±0.2

Table 2: Impact of k, with N = 10.

6 Related Works
Inadequate data coverage is the root of challenge in offline RL. Existing works differ in their
methodology to reacting in face of limited system knowledge.

Model-free offline RL The prevalent idea is to find policy within the data manifold through
model-free learning. Analogous to online RL, both policy-based and value-based approaches are
devised to this end. Policy-based approaches directly constrain the optimized policy close to the
behavior policy that collects data, via various measurements such as KL divergence [7], MMD [5]
and action deviation [4, 8]. Value-based approaches instead reflect the policy regularization through
value function. For example, CQL enforces small Q-value for OOD state-action pairs [9], AlgaeDICE
penalizes return with the f -divergence between optimized and offline state-action distributions [11],
and Fisher-BRC proposes a novel parameterization of the Q-value to encourage the generated policy
close to the data [10]. Our proposed approach is more relevant to the value-based scope, and the
key difference to existing works is that our Q-value is penalized through an adversarial choice of
transition from plausible candidates.

Learning within the data manifold limits the degree to which the policy improves, and recent works
attempt to relieve the restriction. Along the model-free line, EDAC [13] and PBRL [14] quantify
uncertainty of Q-value via neural network ensemble, and assign penalty to Q-value depending on
the uncertainty degree. In this way, the OOD state-action pairs are touchable if they pose low
uncertainty on Q-value. However, the uncertainty quantification over OOD region highly relies
on how neural network generalizes [15]. As the prior knowledge of Q-function is hard to acquire
and insert into the neural network, the generalization is unlikely reliable to facilitate meaningful
uncertainty quantification [16].

Model-based offline RL Model-based approach is widely recognized due to its superior data
efficiency. However, directly optimizing policy based on an offline learned model is vulnerable to
model exploitation [22, 43]. A line of works improve the dynamics learning for seek of robustness
[44] or adaptation [45] to distributional shift. In terms of policy learning, several works extend the
idea from model-free approaches, and constrain the optimized policy close to the behavior policy
when applying the dynamics model for planing [46] or policy optimization [47, 48]. There are also
recent works incorporating uncertainty quantification of dynamics model to learn policy beyond
data coverage. Especially, MOPO [21] and MOReL [6] perform policy improvement in states that
may not directly occur in the static offline dataset, but can be predicted by leveraging the power
of generalization. Compared to them, our approach does not explicitly characterize the dynamics
uncertainty as reward penalty. There are also relevant works dealing with model ambiguity in light of
Bayesian decision theory, which are discussed in Appendix A.

7 Discussion
We proposed model-based offline RL with Pessimism-Modulated Dynamics Belief (PMDB), a
framework to reliably learn policy from offline dataset, with the ability of leveraging dynamics prior
knowledge. Empirically, the proposed approach outperforms the previous SoTA in a wide range
of D4RL tasks. Compared to the previous model-based approaches, we characterize the impact of
dynamics uncertainty through biased sampling from the dynamics belief, which implicitly induces
PMDB. As PMDB is with the form of reweighting an initial dynamics belief, it provides a principled
way to insert prior knowledge via the belief to boost policy learning. However, posing a valuable
dynamics belief for arbitrary task is challenging, as the expert knowledge is not always available.
Besides, an over-aggressive belief may still incur high-risk behavior in reality. Encouragingly, recent
works have done active research to learn data-driven prior from relevant tasks. We believe that
integrating them as well as developing safe criterion to design/learn dynamics belief would further
promote practical deployment of offline RL.

10

References
[1] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning

for robotic manipulation with asynchronous off-policy updates. In IEEE ICRA, 2017.

[2] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al Sallab, Senthil
Yogamani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey.
IEEE TITS, 2021.

[3] Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. Reinforcement learning in healthcare:
A survey. ACM Computing Surveys, 2021.

[4] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In ICML, 2019.

[5] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
Q-learning via bootstrapping error reduction. In NeurIPS, 2019.

[6] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. MOReL:
Model-based offline reinforcement learning. In NeurIPS, 2020.

[7] Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement
learning. arXiv preprint arXiv:1911.11361, 2019.

[8] Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu. EMaQ:
Expected-max Q-learning operator for simple yet effective offline and online RL. In ICML,
2021.

[9] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning for
offline reinforcement learning. In NeurIPS, 2020.

[10] Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement
learning with fisher divergence critic regularization. In ICML, 2021.

[11] Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. Al-
gaeDICE: Policy gradient from arbitrary experience. arXiv preprint arXiv:1912.02074, 2019.

[12] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. In NeurIPS, 2017.

[13] Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
reinforcement learning with diversified Q-ensemble. In NeurIPS, 2021.

[14] Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhihong Deng, Animesh Garg, Peng Liu, and
Zhaoran Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning.
arXiv preprint arXiv:2202.11566, 2022.

[15] Andrew G Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective
of generalization. In NeurIPS, 2020.

[16] Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon
Wilson. A simple baseline for Bayesian uncertainty in deep learning. In NeurIPS, 2019.

[17] Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez, and Thomas Funkhouser. Tossingbot:
Learning to throw arbitrary objects with residual physics. IEEE T-RO, 2020.

[18] Amy Zhang, Clare Lyle, Shagun Sodhani, Angelos Filos, Marta Kwiatkowska, Joelle Pineau,
Yarin Gal, and Doina Precup. Invariant causal prediction for block MDPs. In ICML, 2020.

[19] Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning
invariant representations for reinforcement learning without reconstruction. In ICLR, 2021.

[20] Philip J Ball, Cong Lu, Jack Parker-Holder, and Stephen Roberts. Augmented world models
facilitate zero-shot dynamics generalization from a single offline environment. In ICML, 2021.

11

[21] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. MOPO: Model-based offline policy optimization. In NeurIPS, 2020.

[22] Cong Lu, Philip J. Ball, Jack Parker-Holder, Michael A. Osborne, and Stephen J. Roberts.
Revisiting design choices in model-based offline reinforcement learning. In ICLR, 2022.

[23] Arnab Nilim and Laurent El Ghaoui. Robust control of Markov decision processes with
uncertain transition matrices. Operations Research, 2005.

[24] Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust Markov decision processes.
Mathematics of Operations Research, 2013.

[25] Elita A. Lobo, Mohammad Ghavamzadeh, and Marek Petrik. Soft-robust algorithms for batch
reinforcement learning. arXiv preprint arXiv:2011.14495, 2020.

[26] Esther Derman, Daniel J. Mankowitz, Timothy A. Mann, and Shie Mannor. Soft-robust actor-
critic policy-gradient. In UAI, 2018.

[27] Marek Petrik and Reazul Hasan Russel. Beyond confidence regions: Tight Bayesian ambiguity
sets for robust MDPs. In NeurIPS, 2019.

[28] Bahram Behzadian, Reazul Hasan Russel, Marek Petrik, and Chin Pang Ho. Optimizing
percentile criterion using robust MDPs. In AISTATS, 2021.

[29] Romain Laroche, Paul Trichelair, and Remi Tachet Des Combes. Safe policy improvement with
baseline bootstrapping. In ICML, 2019.

[30] Philip Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. High-confidence
off-policy evaluation. In AAAI, 2015.

[31] Chin Pang Ho, Marek Petrik, and Wolfram Wiesemann. Fast Bellman updates for robust MDPs.
In ICML, 2018.

[32] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In NeurIPS, 1999.

[33] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In ICML, 2014.

[34] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning
with deep energy-based policies. In ICML, 2017.

[35] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In ICML, 2018.

[36] Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized Markov decision
processes. In ICML, 2019.

[37] Alexandre Galashov, Siddhant M. Jayakumar, Leonard Hasenclever, Dhruva Tirumala, Jonathan
Schwarz, Guillaume Desjardins, Wojciech M. Czarnecki, Yee Whye Teh, Razvan Pascanu, and
Nicolas Heess. Information asymmetry in KL-regularized RL. In ICLR, 2019.

[38] Noah Y. Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael
Neunert, Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin A. Riedmiller. Keep doing
what worked: Behavioral modelling priors for offline reinforcement learning. In ICLR, 2020.

[39] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 2015.

[40] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
In ICLR, 2016.

12

[41] Maximilian Seitzer, Arash Tavakoli, Dimitrije Antic, and Georg Martius. On the pitfalls
of heteroscedastic uncertainty estimation with probabilistic neural networks. arXiv preprint
arXiv:2203.09168, 2022.

[42] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for
deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[43] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model:
Model-based policy optimization. In NeurIPS, 2019.

[44] Byung-Jun Lee, Jongmin Lee, and Kim Kee-Eung. Representation balancing offline model-
based reinforcement learning. In ICLR, 2020.

[45] Toru Hishinuma and Kei Senda. Weighted model estimation for offline model-based reinforce-
ment learning. In NeurIPS, 2021.

[46] Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. In ICLR, 2021.

[47] Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu.
Deployment-efficient reinforcement learning via model-based offline optimization. In ICLR,
2021.

[48] Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea
Finn. COMBO: Conservative offline model-based policy optimization. In NeurIPS, 2021.

[49] RT Rockafellar and Stanislav Uryasev. Optimization of conditional value-at-risk. Journal of
Risk, 2000.

[50] Aviv Tamar, Huan Xu, and Shie Mannor. Scaling up robust MDPs by reinforcement learning.
arXiv preprint arXiv:1306.6189, 2013.

[51] Romain Laroche, Paul Trichelair, and Remi Tachet Des Combes. Safe policy improvement with
baseline bootstrapping. In ICML, 2019.

[52] Daniel J. Mankowitz, Nir Levine, Rae Jeong, Abbas Abdolmaleki, Jost Tobias Springenberg,
Timothy A. Mann, Todd Hester, and Martin A. Riedmiller. Robust reinforcement learning for
continuous control with model misspecification. In ICLR, 2020.

[53] Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial
reinforcement learning. In ICML, 2017.

[54] Chen Tessler, Yonathan Efroni, and Shie Mannor. Action robust reinforcement learning and
applications in continuous control. In ICML, 2019.

[55] Elena Smirnova, Elvis Dohmatob, and Jérémie Mary. Distributionally robust reinforcement
learning. In ICML Workshop, 2019.

[56] Marc Rigter, Paul Duckworth, Bruno Lacerda, and Nick Hawes. Planning for risk-aversion and
expected value in MDPs. In ICAPS, 2022.

[57] Esther Derman, Daniel Mankowitz, Timothy Mann, and Shie Mannor. A Bayesian approach
to robust reinforcement learning. In Uncertainty in Artificial Intelligence Conference, pages
648–658, 2020.

[58] Marc Rigter, Bruno Lacerda, and Nick Hawes. Risk-averse Bayes-adaptive reinforcement
learning. In NeurIPS, 2021.

[59] H.A. David and H.N. Nagaraja. Order Statistics. Wiley, 2004.

[60] Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and
review. arXiv preprint arXiv:1805.00909, 2018.

[61] Marc Rigter, Bruno Lacerda, and Nick Hawes. RAMBO-RL: Robust adversarial model-based
offline reinforcement learning. arXiv preprint arXiv:2204.12581, 2022.

13

Checklist

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 7 and Appendix D,

we also point out the possible future directions to improve.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 7.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix B.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] See Appendix G.
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix G.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 5.
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

A Additional Related Works

Robust MDP and CVaR Criterion Bayesian decision theory provides a principled formalism for
decision making under uncertainty. Robust MDP [23, 24], Conditional Value at Risk (CVaR) [49]
and our proposed criterion can be deemed as the specializations of Bayesian decision theory, but
derived from different principles and with different properties.

Robust MDP is proposed as a surrogate to optimize the percentile performance. Early works mainly
focus on the algorithmic design and theoretical analysis in the tabular case [23, 24] or under linear
function approximation [50]. Recently, it has also been extended to continuous action spaces and
nonlinear cases, by integrating the advances of deep RL [51, 52]. Meanwhile, a variety of works
generalize the uncertainty in regard to system disturbance [53] and action disturbance [54, 55].
Although robust MDP produces robust policy, it purely focuses on the percentile performance, and
ignoring the other possibilities is reported to be over-conservative [25–27].

CVaR instead considers the average performance of the worst δ-fraction possibilities. Despite
involving more information about the stochasticity, CVaR is still solely from the pessimistic view.
Recent works propose to improve by maximizing the convex combination of mean performance
and CVaR [25], or maximizing mean performance under CVaR constraint [56]. However, they are
intractable regarding policy optimization, i.e., proved as an NP-hard problem or relying on heuristic.
As comparison, the proposed AMG formulation presents an alternative way to tackle the entire
spectrum of plausible transitions while also give more attention on the pessimistic parts. Besides, the
policy optimization is with theoretical guarantee.

Apart from offline RL, Bayesian decision theory is also applied in other RL settings. Particularly,
Bayesian RL considers that new observations are continually received and utilized to make adaptive
decision. The goal of Bayesian RL is to fast explore and adapt, while that of offline RL is to
sufficiently exploit the offline dataset to generate the best-effort policy supported or surrounded by
the dataset. Recently, Bayesian robust RL [57] integrates the idea of robust MDP in the setting of
Bayesian RL, where the uncertainty set is constructed to produce robust policy, and will be updated
upon new observations to alleviate the degree of conservativeness. Besides, CVaR criterion is also
considered in Bayesian RL [58].

B Theorem Proof

We first present and prove the fundamental inequalities applied to prove the main theorem, and then
present the proofs for Sections 3 and 4 respectively. For conciseness, the subscripts N, k are omitted
in Q-value and Bellman backup operator when clear from the context.

B.1 Preliminaries

Lemma 1. Let ⌊min⌋ki xi denote the kth minimum in {xi}, then

min
i

(xi − yi) ≤ ⌊min⌋ki xi − ⌊min⌋ki yi ≤ max
i

(xi − yi) , ∀k = 1, 2, · · · , N,

where N is the size of both {xi} and {yi}.

Proof of Lemma 1. Denote i∗ = arg⌊min⌋ki xi and j∗ = arg⌊min⌋ki yi. Next, we prove the first
inequality. The proof is done by dividing into two cases.

Case 1: yi∗ ≥ yj∗

It is easy to check

⌊min⌋ki xi − ⌊min⌋ki yi = xi∗ − yj∗ ≥ xi∗ − yi∗ ≥ min
i

(xi − yi) .

Case 2: yi∗ < yj∗

We prove by contradiction. Let Sx =
{
arg⌊min⌋li xi

∣∣∣ l = 1, 2, · · · , k − 1
}

. Assume

ys < yj∗ , ∀s ∈ Sx.

15

Since yj∗ is the kth minimum, the above assumption implies Sx ⊆ Sy. Meanwhile, according to
the condition of case 2, i∗ ∈ Sy. Put these together, we have {i∗} ∪ Sx ⊆ Sy. According to the
definition of i∗, we know i∗ /∈ Sx. This concludes that Sy has at least k elements, contradicting with
its definition.

Thus,

∃s̄ ∈ Sx : ys̄ ≥ yj∗ .

By applying the above inequality and xs̄ ≤ xi∗ , we have

⌊min⌋ki xi − ⌊min⌋ki yi = xi∗ − yj∗ ≥ xs̄ − ys̄ ≥ min
i

(xi − yi) .

In summary, we have mini (xi − yi) ≤ ⌊min⌋ki xi − ⌊min⌋ki yi for both cases.

The second inequality can be proved by resorting to the first one. By respectively replacing xi and yi
with −xi and −yi in first inequality, we obtain

min
i

(−xi + yi) ≤ ⌊min⌋ki (−xi)− ⌊min⌋ki (−yi),

which can be rewritten as

max
i

(xi − yi) ≥ −
(
⌊min⌋ki (−xi)− ⌊min⌋ki (−yi)

)
= ⌊min⌋N−k

i xi − ⌊min⌋N−k
i yi,

where the last equation is due to ⌊min⌋ki (−xi) = −⌊min⌋N−k
i xi. As the above inequalities holds

for any k ∈ {1, 2, · · · , N}, we can replace N − k by k, and this is right the second inequality in
Lemma 1.

Corollary 1. ∣∣∣⌊min⌋ki xi − ⌊min⌋ki yi

∣∣∣ ≤ max
i
|xi − yi|, ∀k = 1, 2, · · · , N.

Proof of Corollary 1. The inequality can be attained through simple derivation based on Lemma 1,
i.e.,

⌊min⌋ki xi − ⌊min⌋ki yi ≥ min
i

(xi − yi) ≥ min
i

(− |xi − yi|) = −max
i
|xi − yi|

and

⌊min⌋ki xi − ⌊min⌋ki yi ≤ max
i

(xi − yi) ≤ max
i
|xi − yi| .

Put them together, we obtain∣∣∣⌊min⌋ki xi − ⌊min⌋ki yi

∣∣∣ ≤ max
i
|xi − yi| .

16

B.2 Proofs for Section 3

Proof of Theorem 1. Let Q1 and Q2 be two arbitrary Q function, then

∥BπQ1 − BπQ2∥∞

= γmax
s,a

∣∣∣∣∣EPN
T

[
⌊min⌋kτ∈T Eτ,π

[
Q1(s

′, a′)
]]
− EPN

T

[
⌊min⌋kτ∈T Eτ,π

[
Q2(s

′, a′)
]]∣∣∣∣∣

= γmax
s,a

∣∣∣∣∣EPN
T

[
⌊min⌋kτ∈T Eτ,π

[
Q1(s

′, a′)
]
− ⌊min⌋kτ∈T Eτ,π

[
Q2(s

′, a′)
]]∣∣∣∣∣

≤ γmax
s,a

(
EPN

T

∣∣∣∣⌊min⌋kτ∈T Eτ,π

[
Q1(s

′, a′)
]
− ⌊min⌋kτ∈T Eτ,π

[
Q2(s

′, a′)
]∣∣∣∣
)

≤ γmax
s,a

(
EPN

T

[
max
τ∈T

∣∣∣Eτ,π

[
Q1(s

′, a′)−Q2(s
′, a′)

]∣∣∣])
≤ γmax

s,a

(
EPN

T
∥Q1 −Q2∥∞

)
= γ∥Q1 −Q2∥∞,

where the second inequality is due to Corollary 1. Thus, the pessimistic Bellman update operator Bπ
is a contraction mapping.

After convergence, it is easy to check J(π) = Eρ0,π

[
Qπ(s0, a0)

]
by recursively unfolding Q-

function.

Proof of Theorem 2. For conciseness, in this proof we drop the superscript sa in τsa,Psa
T and P̃sa

T .

The proof is based on the definition and the probability density function of order statistic [59]. For any
random variables X1, X2, · · · , XN , their kth order statistic is defined as ⌊min⌋kn∈{1,··· ,N}Xn, which
is another random variable. Particularly, when X1, X2, · · · , XN are independent and identically
distributed following a probability density function P(x), the order statistic is with the probability
density function

PN,k(x) =
N !

(k − 1)!(N − k)!︸ ︷︷ ︸
C

P(x)
[
F (x)

]k−1[
1− F (x)

]N−k
,

where F (x) is the cumulative distribution corresponding to P(x).

Let g(τ) = Eτ,π

[
Qπ(s′, a′)

]
for short. As τ is random following the belief distribution, g as the

functional of τ is also a random variable. Its sample can be drawn by

g = g(τ), τ ∼ PT (τ).

As the elements in T are independent and identically distributed samples from PT (τ), the elements
in G = {g(τ) | τ ∈ T } are also independent and identically distributed. Thus, ⌊min⌋kg∈G g is their
kth order statistic, and we have

EPN
T

[
⌊min⌋kτ∈T g(τ)

]
= EPN

T

[
⌊min⌋kg∈G g

]
=

∫ ∞

−∞
PN,k(g)gdg

= C

∫ ∞

−∞
P(g)

[
F (g)

]k−1[
1− F (g)

]N−k
gdg,

= C

∫ ∞

−∞

[∫
τ :g(τ)=g

PT (τ)dν(τ)

] [
F (g)

]k−1[
1− F (g)

]N−k
gdg,

= C

∫ ∞

−∞

∫
τ :g(τ)=g

PT (τ)
[
F (g)

]k−1[
1− F (g)

]N−k
gdν(τ)dg,

17

(∗)
= C

∫
τ

∫
g=g(τ)

PT (τ)
[
F (g)

]k−1[
1− F (g)

]N−k
gdgdν(τ),

=

∫
τ

C PT (τ)
[
F
(
g(τ)

)]k−1[
1− F

(
g(τ)

)]N−k

︸ ︷︷ ︸
P̃T (τ)

g(τ)dν(τ)

= EP̃T
[g(τ)],

where ν(τ) is the reference measure based on which the belief distribution PN
T is defined, and the

equation (∗) is obtained by exchanging the orders of integration. The above equation can rewritten as

EPN
T

[
⌊min⌋kτ∈T Eτ,π [Q(s′, a′)]

]
= EP̃T

Eτ,π [Q(s′, a′)] .

Taking this into consideration, the pessimistic Bellman backup operator in (6) is exactly the vanilla
Bellman backup operator for the MDP with transition probability T̃ (s′|s, a) = EP̃T

[τ(s′)]. Then,
evaluating/optimizing policy in the AMG is equivalent to evaluating/optimizing in this MDP.

To prove the property of w, we treat it as a composite function with form of w
(
F (x)

)
. Then, the

derivative of w over F is

δw

δF
= F k−2(1− F)N−k−1 [(k − 1)− (N − 1)F] . (15)

It is easy to check that δw
δF ≥ 0 for F ≤ k−1

N−1 and δw
δF ≤ 0 for F ≥ k−1

N−1 . Thus, w(F) reaches the
maximum at F = k−1

N−1 . Besides, as F (·) is the PDF of x, it monotonically increases with x. Put
the monotonicity of w and F together, we know w(F (x)) first increases, then decreases with x and
achieves the maximimum at x∗ = F−1

(
k−1
N−1

)
.

Lemma 2 (Monotonicity of Pessimistic Bellman Backup Operator). Assume that Q1 ≥ Q2 holds
element-wisely, then BπQ1 ≥ BπQ2 element-wisely.

Proof of Lemma 2.

BπQ1(s, a)− BπQ2(s, a)

= γEPN
T

[
⌊min⌋kτ∈T Eτ,π

[
Q1(s

′, a′)
]
− ⌊min⌋kτ∈T Eτ,π

[
Q2(s

′, a′)
]]

≥ γEPN
T

[
min
τ∈T

Eτ,π

[
Q1(s

′, a′)−Q2(s
′, a′)

]]
≥ 0, ∀s, a,

where the first inequality is due to Lemma 1.

Proof of Theorem 3. It is sufficient to prove Qπ
N,k+1 ≥ Qπ

N,k, Q
π
N+1,k ≤ Qπ

N,k and Qπ
N+1,N+1 ≥

Qπ
N,N element-wisely. The idea is to first show BπN,k+1Q

π
N,k ≥ Qπ

N,k,BπN+1,kQ
π
N,k ≤ Qπ

N,k and
BπN+1,N+1Q

π
N,N ≥ Qπ

N,N . Then, the proof can be finished by recursively applying Lemma 2, for
example:

Qπ
N,k+1 = lim

n→∞

(
BπN,k+1

)n
Qπ

N,k ≥ · · · ≥ BπN,k+1Q
π
N,k ≥ Qπ

N,k.

Next, we prove the three inequalities in sequence.

18

BπN,k+1Q
π
N,k ≥ Qπ

N,k

BπN,k+1Q
π
N,k(s, a)

= r(s, a) + γEPn
T

[
⌊min⌋k+1

τ∈T Eτ,π

[
Qπ

N,k(s
′, a′)

]]
≥ r(s, a) + γEPn

T

[
⌊min⌋kτ∈T Eτ,π

[
Qπ

N,k(s
′, a′)

]]
= BπN,kQ

π
N,k(s, a)

= Qπ
N,k(s, a), ∀s, a,

BπN+1,kQ
π
N,k ≤ Qπ

N,k

BπN+1,kQ
π
N,k(s, a)

= r(s, a) + γET ∼PN+1
T

[
⌊min⌋kτ∈T Eτ,π

[
Qπ

N,k(s
′, a′)

]]
= r(s, a) + γET ′∼PN

T

[
Eτ ′∼PT

[
⌊min⌋kτ∈T ′∪{τ ′}Eτ,π

[
Qπ

N,k(s
′, a′)

]]]

≤ r(s, a) + γET ′∼PN
T

[
⌊min⌋kτ∈T ′Eτ,π

[
Qπ

N,k(s
′, a′)

]]
= BπN,kQ

π
N,k(s, a)

= Qπ
N,k(s, a), ∀s, a,

where we divide the (N + 1)-size set T into T ′ and {τ ′}, T ′ contains the first N elements and τ ′ is
the last element. The second equality is due to the independence among the set elements.

BπN+1,N+1Q
π
N,N ≥ Qπ

N,N

BπN+1,N+1Q
π
N,N (s, a)

= r(s, a) + γET ∼PN+1
T

[
max
τ∈T

Eτ,π

[
Qπ

N,k(s
′, a′)

]]
= r(s, a) + γET ′∼PN

T

[
Eτ ′∼PT

[
max

τ∈T ′∪{τ ′}
Eτ,π

[
Qπ

N,k(s
′, a′)

]]]

≥ r(s, a) + γET ′∼PN
T

[
max
τ∈T ′

Eτ,π

[
Qπ

N,k(s
′, a′)

]]
= BπN,kQ

π
N,k(s, a)

= Qπ
N,k(s, a), ∀s, a,

B.3 Proofs for Section 4

Analogous to the policy evaluation for non-regularized case, we define the KL-regularized Bellman
update operator for a given policy π by

B̄πN,kQ(s, a) = r(s, a) + γEPN
T

[
⌊min⌋kτ∈T Eτ,π

[
Q(s′, a′)− αDKL

(
π(·|s)

∣∣∣∣ µ(·|s))]]. (16)

It is easy to check all proofs in last subsection adapt well for the KL-regularized case. We state the
corresponding theorems and lemma as below, and apply them to prove the theorems in Section 4.
Theorem 6 (Policy Evaluation for KL-Regularized AMG). The regularized (N, k)-pessimistic
Bellman backup operator B̄πN,k is a contraction mapping. By starting from any function Q : S ×
A → R and repeatedly applying B̄πN,k, the sequence converges to Q̄π

N,k, with which we have

J̄(π;µ) = Eρ0,π

[
Q̄π

N,k(s0, a0)− αDKL

(
π(·|s0)

∣∣∣∣ µ(·|s0))].
19

Theorem 7 (Equivalent KL-Regularized MDP with Pessimism-Modulated Dynamics Belief). The
KL-regularized alternating Markov game in (9) is equivalent to the KL-regularized MDP with tuple
(S,A, T̃ , r, ρ0, γ), where the transition probability T̃ (s′|s, a) = EP̃sa

T
[τsa(s′)] is defined with the

reweighted belief distribution P̃sa
T :

P̃sa
T (τsa) ∝ w

(
Eτsa,π

[
Q̄π

N,k(s
′, a′)

]
; k,N

)
Psa
T (τsa), (17)

w(x; k,N) =
[
F (x)

]k−1[
1− F (x)

]N−k
, (18)

and F (·) is cumulative density function. Furthermore, the value of w(x; k,N) first increases and

then decreases with x, and its maximum is obtained at the k−1
N−1 quantile, i.e., x∗ = F−1

(
k−1
N−1

)
.

Similar to the non-regularized case, the reweighting factor w reshapes the initial belief distribution
towards being pessimistic in terms of Eτ,π

[
Q̄π

N,k(s
′, a′)

]
.

Lemma 3 (Monotonicity of Regularized Pessimistic Bellman Backup Operator). Assume that
Q1 ≥ Q2 holds element-wisely, then B̄πN,kQ1 ≥ B̄πN,kQ2 element-wisely.
Theorem 8 (Monotonicity in Regularized Alternating Markov Game). The converged Q-function
Q̄π

N,k are with the following properties:

• Given any k, the Q-function Q̄π
N,k element-wisely decreases with N ∈ {k, k + 1, · · · }.

• Given any N , the Q-function Q̄π
N,k element-wisely increases with k ∈ {1, 2, · · · , N}.

• The Q-function Q̄π
N,N element-wisely increases with N .

Proof of Theorem 4. The proof of contraction mapping basically follows the same steps in proof of
Theorem 1 Let Q1 and Q2 be two arbitrary Q function.∥∥B̄∗Q1 − B̄∗Q2

∥∥
∞

= γmax
s,a

∣∣∣∣∣EPN
T

[
⌊min⌋kτ∈T Eτ

[
α logEµ exp

(
1

α
Q1(s

′, a′)

)]

− ⌊min⌋kτ∈T Eτ

[
α logEµ exp

(
1

α
Q2(s

′, a′)

)]]∣∣∣∣∣
≤ γmax

s,a

(
EPN

T

∣∣∣∣∣⌊min⌋kτ∈T Eτ

[
α logEµ exp

(
1

α
Q1(s

′, a′)

)]

− ⌊min⌋kτ∈T Eτ

[
α logEµ exp

(
1

α
Q2(s

′, a′)

)] ∣∣∣∣∣
)

≤ γmax
s,a

(
EPN

T

[
max
τ∈T

∣∣∣∣∣Eτ

[
α logEµ exp

(
1

α
Q1(s

′, a′)

)]
− Eτ

[
α logEµ exp

(
1

α
Q2(s

′, a′)

)] ∣∣∣∣∣
])

= γmax
s,a

(
EPN

T

[
max
τ∈T

∣∣∣∣∣Eτ

[
α logEµ exp

(
1

α
Q1(s

′, a′)

)
− α logEµ exp

(
1

α
Q2(s

′, a′)

)] ∣∣∣∣∣
])

≤ γmax
s,a

(
EPN

T
∥Q1 −Q2∥∞

)
= γ ∥Q1 −Q2∥∞ ,

where the second inequality is obtained with Corollary 1, and the last inequality is due to∥∥α logEµ exp
(
1
αQ1(s, a)

)
− α logEµ exp

(
1
αQ2(s, a)

)∥∥
∞ ≤ ∥Q1 −Q2∥∞. We present its proof

by following [34]:

Suppose ϵ = ∥Q1 −Q2∥∞, then

α logEµ exp

(
1

α
Q1(s, a)

)
≤ α logEµ exp

(
1

α
Q2(s, a) +

ϵ

α

)
= α logEµ exp

(
1

α
Q2(s, a)

)
+ ϵ.

20

Similarly, α logEµ exp
(
1
αQ1(s, a)

)
≥ α logEµ exp

(
1
αQ2(s, a)

)
− ϵ. The desired inequality is

proved by putting them together.

Next, we prove π̄∗(a|s) ∝ µ(a|s) exp
(
1
α Q̄

∗(s, a)
)

is the optimal policy for J̄(π;µ).

First, for any policy π′,

B̄∗Q̄π′
(s, a)

= r(s, a) + γEPN
T

[
⌊min⌋kτ∈T Eτ

[
α logEµ exp

(
1

α
Q̄π′

(s′, a′)

)]]

= r(s, a) + γEPN
T

[
⌊min⌋kτ∈T Eτ

[
α logEµ exp

(
1

α
Q̄π′

(s′, a′)

)

−min
π

αDKL

(
π(·|s′)

∣∣∣∣∣
∣∣∣∣∣ µ(·|s′) exp 1

α Q̄
π′
(s′, ·)

Eµ exp
(
1
α Q̄

π′(s′, a′)
))]]

= r(s, a) + γEPN
T

[
⌊min⌋kτ∈T Eτ

[
max
π

(
Eπ

[
Q̄π′

(s′, a′)
]
− αDKL

(
π(·|s′)

∣∣∣∣ µ(·|s′)))]]

≥ r(s, a) + γEPN
T

[
⌊min⌋kτ∈T Eτ

[
Eπ′
[
Q̄π′

(s′, a′)
]
− αDKL

(
π′(·|s′)

∣∣∣∣ µ(·|s′))]]
= B̄π

′
Q̄π′

(s, a)

= Q̄π′
(s, a), ∀s, a.

By applying Lemma 3 recursively, we obtain

Q̄∗(s, a) = lim
n→∞

(
B̄∗
)n

Q̄π′
(s, a) ≥ · · · ≥ B̄∗Q̄π′

(s, a) ≥ Q̄π′
(s, a), ∀s, a. (19)

Besides,

B̄π̄
∗
Q̄∗(s, a)

= r(s, a) + γEPN
T

[
⌊min⌋kτ∈T Eτ,π̄∗

[
Q̄∗(s′, a′)− αDKL

(
π̄∗(·|s)

∣∣∣∣ µ(·|s))]]
= r(s, a) + γEPN

T

[
⌊min⌋kτ∈T Eτ

[
α logEµ exp

(
1

α
Q̄∗(s′, a′)

)]]
= Q̄∗(s, a), ∀s, a.

By repeatedly applying B̄π̄∗
to the above equation, we obtain

Q̄π̄∗
(s, a) = lim

n→∞

(
B̄π̄

∗
)n

Q̄∗(s, a) = · · · = B̄π̄
∗
Q̄∗(s, a) = Q̄∗(s, a), ∀s, a. (20)

By combining equations (19) and (20), we have

Q̄π̄∗
(s, a) ≥ Q̄π′

(s, a), ∀π′,∀s, a. (21)

Finally, by expanding J̄ as stated in Theorem 6 and applying (21), the proof is completed

J̄(π̄∗;µ) = Eρ0,π̄∗

[
Q̄π̄∗

(s0, a0)− αDKL

(
π̄∗(·|s0)

∣∣∣∣ µ(·|s0))]
≥ Eρ0,π̄∗

[
Q̄π′

(s0, a0)− αDKL

(
π̄∗(·|s0)

∣∣∣∣ µ(·|s0))]
≥ Eρ0,π′

[
Q̄π′

(s0, a0)− αDKL

(
π′(·|s0)

∣∣∣∣ µ(·|s0))]
= J̄(π′;µ), ∀π′.

21

Proof of Theorem 5. We first prove J(πi+1) > J(πi). As the iteration requires J̄(πi+1;πi) >
J̄(πi;πi) = J(πi), it is sufficient to prove J(πi+1) ≥ J̄(πi+1;πi). We do that by showing Qπi+1 ≥
Q̄πi+1 element-wisely.

First,
Bπi+1Q̄πi+1(s, a)− Q̄πi+1(s, a)

= Bπi+1Q̄πi+1(s, a)− B̄πi+1Q̄πi+1(s, a)

= γEPN
T

[
⌊min⌋kτ∈T Eτ,πi+1

[
Q̄πi+1(s′, a′)

]]
− γEPN

T

[
⌊min⌋kτ∈T Eτ,πi+1

[
Q̄πi+1(s′, a′)− αDKL

(
πi+1(·|s′)

∣∣∣∣ πi(·|s′)
)]]

≥ γEPN
T

[
min
τ

Eτ

[
αDKL

(
πi+1(·|s′)

∣∣∣∣ πi(·|s′)
)]]

≥ 0, ∀s, a, (22)
where the first inequality is due to Lemma 1, the second inequality is due to the non-negativity of
KL-divergence.

Then, by recursively applying Lemma 2 we obtain
Qπi+1(s, a) = lim

n→∞
(Bπi+1)

n
Q̄πi+1(s, a) ≥ · · · ≥ Bπi+1Q̄πi+1(s, a) ≥ Q̄πi+1(s, a), ∀s, a.

(23)

By substituting into J(πi+1) and J̄(πi+1;πi), we have
J(πi+1) = Eρ0,πi+1

Qπi+1(s0, a0)

≥ Eρ0,πi+1
Q̄πi+1(s0, a0)

≥ Eρ0,πi+1

[
Q̄πi+1(s0, a0)− αDKL(πi+1(·|s0) || πi(·|s0))

]
= J̄(πi+1;πi). (24)

To summarize, the proof is done via J(πi+1) ≥ J̄(πi+1;πi) > J̄(πi;πi) = J(πi).

Next, we consider the special case where {πi} are obtained via regularized policy optimization in
Theorem 4. For the (i+ 1)th step, πi+1 is the optimal solution for the sub-problem of maximizing
J(π;πi). Thus, according to (21), Q̄πi+1(s, a) ≥ Q̄π′

(s, a),∀π′,∀s, a. For π′ = πi, the KL term in
Q-value vanishes and we have Q̄πi+1(s, a) ≥ Qπi(s, a). By combining it with (23), we obtain

Qπi+1(s, a) ≥ Q̄πi+1(s, a) ≥ Qπi(s, a), ∀s, a. (25)
Then, the boundness of Q indicates the existence of limi→∞ Qπi(s, a) and also limi→∞ Qπi(s, a) =
limi→∞ Q̄πi(s, a),∀s, a.

For any s, a, a′ satisfying limi→∞ Qπi(s, a) > limi→∞ Qπi(s, a′), it satisfies limi→∞ Q̄πi(s, a) >
limi→∞ Q̄πi(s, a′). Thus,

∃N, ϵ > 0 ∀j ≥ N : Q̄πj (s, a)− Q̄πj (s, a′) ≥ ϵ. (26)

According to Theorem 4, the updated policy is with form of4

πi(a|s) ∝ πi−1(a|s) exp
(
1

α
Q̄πi(s, a)

)
.

Then, the policy ratio can be rewritten and bounded as

πi(a|s)
πi(a′|s)

=
πN (a|s)
πN (a′|s)

exp

 i∑
j=N

Q̄πj (s, a)− Q̄πj (s, a′)

α

 ≥ πN (a|s)
πN (a′|s)

exp

(
i−N

α
ϵ

)
, ∀i ≥ N.

(27)

With the prerequisite of π0(a|s) > 0,∀s, a and the form of policy update, we know πN (a|s) >

0,∀s, a, and further πN (a|s)
πN (a′|s) > 0. Then, as i approaches infinity in (27), we obtain πi(a|s)

πi(a′|s) →∞.
4Strictly speaking, Theorem 4 shows π̄∗(a|s) ∝ µ(a|s) exp

(
1
α
Q̄∗

N,k(s, a)
)
. Besides, we have shown

Q̄π̄∗
N,k(s, a) = Q̄∗

N,k(s, a) in (20). Thus, π̄∗(a|s) ∝ µ(a|s) exp
(

1
α
Q̄π∗

N,k(s, a)
)

.

22

C Iterative Regularized Policy Optimization as Expectation–Maximization
with Structured Variational Posterior

This section recasts the iterative regularized policy optimization as an Expectation-Maximization
algorithm for policy optimization, where the Expectation step corresponds to a structured variational
inference procedure for dynamics. To simplify the presentation, we consider the L-length horizon
and let γ = 1 (thus omitted in the derivation). For infinite horizon L → ∞, the discounted factor
γ can be readily recovered by modifying the transition dynamics, such that any action produces a
transition into an terminal state with probability 1− γ.

C.1 Review of RL as Probabilistic Inference

Huawei Proprietary - Restricted Distribution1

𝑠𝑠0 𝑠𝑠1 𝑠𝑠2

𝑎𝑎0 𝑎𝑎1 𝑎𝑎2

𝒪𝒪0 𝒪𝒪1 𝒪𝒪2

⋯

Figure 4: Probabilistic graphical
model for RL as inference.

We first review the general framework of casting RL as probabilistic
inference [60]. It starts by embedding the MDP into a probabilistic
graphical model, as shown in Figure 4. Apart from the basic elements
in MDP, an additional binary random variable Ot is introduced,
where Ot = 1 denotes that the action at time step t is optimal, and
Ot = 0 denotes the suboptimality. Its distribution is defined as5

p(Ot = 1|st, at) = exp

(
r(st, at)

α

)
, (28)

where α is the hyperparameter. As we focus on the optimality, in the following we drop = 1 and
use Ot to denote Ot = 1 for conciseness. The remaining random variables in the probabilistic
graphical model are st and at, whose distributions are defined by the system dynamics ρ0(s) and
T (s′|s, a) as well as a reference policy µ(a|s). Then, the joint distribution over all random variables
for t ∈ {1, 2, · · · , L} can be written as

P (s0:L, a0:L,O0:L) = ρ0(s0) ·
L−1∏
t=0

T (st+1|st, at)µ(at|st) · µ(aL|sL) exp

(
L∑

t=0

r(st, at)

α

)
. (29)

Regarding optimal control, a natural question to ask is what the trajectory should be like given the
optimality over all time steps. This raises the posterior inference of P (s0:L, a0:L|O0:L). According
to d-separation, the exact posterior follows the form of

P (s0:L, a0:L|O0:L) = P(s0|O0:L) ·
L−1∏
t=0

P(st+1|st, at,O0:L)P(at|st,O0:L) · P(aL|sL,O0:L).

(30)

Notice that the dynamics posterior P(s0|O0:L) and P(st+1|st, at,O0:L) depends on O0:L, and in
fact their concrete mathematical expressions are inconsistent with those of the system dynamics
ρ0(s0) and T (st+1|st, at) [60]. This essentially poses the assumption that the dynamics itself can be
controlled when referring to the optimality, unpractical in general.

Variational inference can be applied to correct this issue. Concretely, define the variational approxi-
mation to the exact posterior by

P̂ (s0:L, a0:L) = ρ0(s0) ·
L−1∏
t=0

T (st+1|st, at)π(at|st) · π(aL|sL). (31)

Its difference to (30) is enforcing the dynamics posterior to match the practical one. Under this
structure, the variational posterior can be adjusted by optimizing π to best approximate the exact

5Assume the reward function is non-positive such that the probability is not larger than one. If the assumption
is unsatisfied, we can subtract the reward function by its maximum, without changing the optimal policy.

23

posterior. The optimization is executed under measure of KL divergence, i.e.,

DKL

(
P̂ (s0:L, a0:L)

∣∣∣∣∣∣ P (s0:L, a0:L|O0:L)
)
=

∫
P̂ (s0:L, a0:L) log

P̂ (s0:L, a0:L)

P (s0:L, a0:L|O0:L)
ds0:Lda0:L

=

∫
P̂ (s0:L, a0:L) log

P̂ (s0:L, a0:L)

P (s0:L, a0:L,O0:L)
ds0:Lda0:L + logP(O0:L)

= Eρ0,T,π

[
L∑

t=0

(
−r(st, at)

α
+ log

π(at|st)
µ(at|st)

)]
+ logP(O0:L)

=
1

α
Eρ0,T,π

[
L∑

t=0

(
− r(st, at) + αDKL

(
π(·|st)

∣∣∣∣∣∣ µ(·|st)))]+ logP(O0:L), (32)

where the third equation is obtained by substituting (29) and (31). As the second term in (32) is
constant, minimizing the above KL divergence is equivalent to maximize the cumulative reward with
policy regularizer. Several fascinating online RL methods can be treated as algorithmic instances
based on this framework [34, 35].

To summarize, the structured variational posterior with form (31) is vital to ensure the inferred policy
meaningful in the actual environment.

C.2 Pessimism-Modulated Dynamics Belief as Structured Variational Posterior

Huawei Proprietary - Restricted Distribution2

𝑠𝑠0 𝑠𝑠1 𝑠𝑠2

𝑎𝑎0 𝑎𝑎1 𝑎𝑎2

𝒪𝒪0 𝒪𝒪1 𝒪𝒪2

⋯

𝜏𝜏0 𝜏𝜏1

Figure 5: Probabilistic graphical model
for offline RL as inference.

The probabilistic graphical model is previously devised for
online RL. In offline setting, the environment can not be
interacted to minimize (32). A straightforward modification
to reflect this is to add the transition dynamics as a random
variable in the graph, as shown in Figure 5. We assume
the transition follows a predefined belief distribution, i.e.,
Psa
T (τsa) introduced in Subsection 3.1. To make its depen-

dence on (s, a) explicit, let PT (τ
sa|s, a) redenote Psa

T (τsa).
For conciseness, we drop the superscript sa in τsa in the
remainder.

The joint distribution over all random variables in Figure 5 for t ∈ {1, 2, · · · , L} can be written as

P (s0:L, a0:L, τ0:L−1,O0:L) = ρ0(s0) ·
L−1∏
t=0

PT (τt|st, at)τt(st+1)µ(at|st)

· µ(aL|sL) exp

(
L∑

t=0

r(st, at)

α

)
. (33)

Similar to online setting, we wonder what the trajectory should be like given the optimality over
all time steps. By examining the conditional independence in the probabilistic graphical model, the
exact posterior follows the form of

P (s0:L, a0:L, τ0:L−1|O0:L) = P(s0|O0:L) ·
L−1∏
t=0

P(τt|st, at,O0:L)P(st+1|τt,O0:L)P(at|st,O0:L)

· P(aL|sL,O0:L). (34)

Unsurprisingly, s0:T and τ0:T again depend on O0:L, indicating that the system transition and its
belief can be controlled when referring to optimality. In other words, it leads to over-optimistic
inference.

To emphasize pessimism, we define a novel structured variational posterior:

P̂ (s0:L, a0:L, τ0:L−1) = ρ0(s0) ·
L−1∏
t=0

P̃T (τt|st, at)τt(st+1)π(at|st) · π(aL|sL), (35)

24

with P̃T being the Pessimism-Modulated Dynamics Belief (PMDB) constructed via the KL-regularized
AMG (see Theorem 7):

P̃T (τ |s, a) ∝ w
(
Eτ,π

[
Q̄π

N,k(s
′, a′)

]
; k,N

)
PT (τ |s, a), (36)

w(x; k,N) =
[
F (x)

]k−1[
1− F (x)

]N−k
, (37)

F (·) is cumulative density function and Q̄π
N,k is the Q-value for the KL-regularized AMG.

As discussed, w reshapes the initial belief distribution towards being pessimistic in terms of
Eτ,π

[
Q̄π

N,k(s
′, a′)

]
.

It seems that we need to solve the AMG to obtain Q̄π
N,k and further define P̃T . In fact, Q̄π

N,k is
also the Q-value for the MDP considered in (35). This can be verified by checking Theorem 7: the
KL-regularized AMG is equivalent to the MDP with transition T̃ (s′|s, a) = EP̃T

[τ(s′)], which can

be implemented by sampling first τ ∼ P̃T and then s′ ∼ τ , right the procedure in (35).

To best approximate the exact posterior, we optimize the variational posterior by minimizing

DKL

(
P̂ (s0:L, a0:L, τ0:L−1)

∣∣∣∣∣∣ P (s0:L, a0:L, τ0:L−1|O0:L)
)

=

∫
P̂ (s0:L, a0:L, τ0:L−1) log

P̂ (s0:L, a0:L, τ0:L−1)

P (s0:L, a0:L, τ0:L−1|O0:L)
ds0:Lda0:L

=

∫
P̂ (s0:L, a0:L, τ0:L−1) log

P̂ (s0:L, a0:L, τ0:L−1)

P (s0:L, a0:L, τ0:L−1,O0:L)
ds0:Lda0:L + logP(O0:L)

= Eρ0,P̃T ,τ0:L−1,π

[
L∑

t=0

(
−r(st, at)

α
+DKL

(
π(·|st)

∣∣∣∣∣∣ µ(·|st)))]︸ ︷︷ ︸
M(π;µ)

+ Eρ0,P̃T ,τ0:L−1,π

[
L−1∑
t=0

logw
(
Eτt,π

[
Q̄π

N,k(st+1, at+1)
]
; k,N

)]
+ (L− 1) · logC

(∗)
= M(π;µ) + (L− 1) · logC

+

L−1∑
t=0

Eρ0,π,P̂T

[
Eτ0,π,P̂T

· · ·

[
Eτt−1,π,P̃T

[
logw

(
Eτt,π

[
Q̄π

N,k(st+1, at+1)
]
; k,N

)]]]
≈M(π;µ) + (L− 1) · (logC ′ + logC), (38)

where the equation (∗) is by unfolding the expectation sequentially over each step, C = N !
(k−1)!(N−k)!

is the normalization constant in (36), and C ′ = (k−1)k−1(N−k)N−k

(N−1)N−1 is used to approximate w. To

clarify the approximation, recall Theorem 7 stating that a sample τt ∼ P̃T can be equivalently drawn
by finding τt = arg⌊min⌋kτ∈Tt

Eτ,π

[
Q̄π

N,k(st+1, at+1)
]

based on another sampling procedure Tt =
{τ}N ∼ PN

T . Then, given Tt, we observe that Eτt,π

[
Q̄π

N,k(st+1, at+1)
]

is the empirical k−1
N−1 quantile

of the random variable Eτ,π

[
Q̄π

N,k(st+1, at+1)
]
, i.e., F

(
Eτt,π

[
Q̄π

N,k(st+1, at+1)
])
≈ k−1

N−1 . By
substituting into w, we obtain w ≈ C ′.

Note that−αM(π;µ) is exactly the return of KL-regularized MDP in Theorem 7. By the equivalence
of this KL-regularized MDP and the KL-regularized AMG in (9), we have M(π;µ) = − J̄(π;µ)

α .
Thus, minimization of (38) is equivalent to maximization of J̄(π;µ).

C.3 Full Expectation-Maximization Algorithm

In previous subsection, the reference policy µ is assumed as a prior, and the optimized policy would
be constrained close to it through KL divergence. In practice, the prior of optimal policy can not

25

easily obtained, and a popular methodology to handle this is to learn the prior itself in the data-driven
way, i.e., the principle of empirical Bayes.

The prior learning is done by maximizing the log-marginal likelihood:

L(µ) = logP (O0:L) = log

∫
P (s0:L, a0:L, τ0:L−1,O0:L) ds0:Lda0:Ldτ0:L−1, (39)

where P (s0:L, a0:L, τ0:L−1,O0:L) is given in (33). As the log function includes a high-dimensional
integration, evaluating L(µ) incurs intensive computation. Expectation-Maximization algorithm
instead considers a lower bound of L(µ) to make the evaluation/optimization tractable:

L(µ) ≥ logP (O0:L)−DKL

(
P̂ (s0:L, a0:L, τ0:L−1)

∣∣∣∣∣∣ P (s0:L, a0:L, τ0:L−1|O0:L)
)

=

∫
P̂ (s0:L, a0:L, τ0:L−1) logP (s0:L, a0:L, τ0:L−1,O0:L) ds0:Lda0:Ldτ0:L−1

−H
[
P̂ (s0:L, a0:L, τ0:L−1)

]
, (40)

where the inequality is due to the non-negativity of KL divergence, and P̂ (s0:L, a0:L, τ0:L−1) is an
approximation to the exact posterior P (s0:L, a0:L, τ0:L−1|O0:L). The lower bound is tighter with
the more exact approximation for the posterior. In previous subsection, we introduce the structured
variational approximation with form of (35) to emphasize pessimism on the transition dynamics.
Although this variational posterior would lead to non-zero KL term, it promotes learning robust policy
as we discussed in previous subsection. Since that the variational posterior is with an adjustable
policy π, we denote the lower bound by L̄(µ;π).

By substituting (35) into (40), it follows

L̄(µ;π) =Eρ0,P̃T ,τ0:L−1,π

[
L∑

t=0

logµ(at|st)

]
+ C ′′

=Eρ0,P̃T ,τ0:L−1,π

[
L∑

t=0

logµ(at|st)− log π(at|st) + log π(at|st)

]
+ C ′′

=Eρ0,P̃T ,τ0:L−1,π

[
L∑

t=0

−DKL(π(·|st) || µ(·|st))

]
+ C ′′′, (41)

where C ′′ and C ′′′ includes the constant terms irrelevant to µ. According to the form of (41), given
fixed π, the optimal prior policy to maximize L̄(µ;π) is obtained as µ = π. Maximizing the lower
bound is known as Maximization step.

Recall π in the variational posterior is adjustable, we can optimize it by minimizing
DKL

(
P̂ (s0:L, a0:L, τ0:L−1)

∣∣∣∣∣∣ P (s0:L, a0:L, τ0:L−1|O0:L)
)

to tighten the bound. The minimiza-
tion procedure is known as Expectation step. In our case, the minimization problem is exactly the
one discussed in previous subsection.

When repeatedly and alternately applying the Expectation and Maximization steps, the iterative
regularized policy optimization algorithm is recovered. According to Theorem 5, both π and µ
continuously improve regarding the objective function.

D Algorithm and Implementation Details for Model-Based Offline RL with
PMDB

The pseudocode for model-based offline RL with PMDB is presented in Algorithm 1. As ρ0 is
unknown in practice, we uniformly sample states from D as the initial {s0}. In Step 4, the primary
players act according to the non-parametric policy π, rather than its approximated policy πϕ. This is
because during learning process πϕ is not always trained adequately to approximate π, then following
πϕ will visit unexpected states. In Step 11, the reference policy πϕ′ is returned as the final policy,
considering that it is more stable than πϕ.

26

Algorithm 1 Model-Based Offline RL with PMDB
Require: D,PT , N, k,M .

1: Approximator initialization: Randomly initialize Q-function Qθ(s, a) and policy πϕ(a|s);
Initialize target Q-function Qθ′(s, a) and reference policy πϕ′(a|s) with θ′ ← θ, ϕ′ ← ϕ.

2: Game initialization: Randomly sample C states from D, as the initial states for C paralleled
games {s}.

3: for step t = 1, 2, · · · ,M do
4: Primary players: Sample actions according to

π(a|s) ∝ πϕ′(a|s) exp
(
1

α
Qθ(s, a)

)
.

5: Game transitions: Sample candidate sets {T } according to (3).
6: Update: Sample a batch of transitions from D, together with the C-size game transitions

{(s, a, T)}, to update θ and ϕ via one-step gradient descent regarding (11) and (14).
7: Secondary players: Determine whether to exploit or explore: with probability of (1− ϵ),

τ̄ = arg⌊min⌋kτ∈T Eτ

[
α logEπϕ′ exp

(
1

α
Qθ(s

′, a′)

)]
,

otherwise randomly choose τ̄ from T .
8: Game transitions: Sample states following {τ̄} to update {s}. For terminal states in {s}, use

random samples from D to replace them.
9: Moving-average update: Update reference policy and target Q-function with

ϕ′ ← ω1ϕ+ (1− ω1)ϕ
′,

θ′ ← ω2θ + (1− ω2)θ
′.

10: end for
11: return πϕ′ .

Computing expectation Algorithm 1 involves the computation of expectation. In discrete domains,
the expectation can be computed exactly. In continuous domains, we use Monte Carlo methods to
approximate it. Concretely, for the expectation over states we apply vanilla Monte Carlo sampling,
while for the expectation over actions we apply importance sampling. To elaborate, the expectation
over actions can be written as

Eµ exp

(
1

α
Q(s, a)

)
=

1

2

[
Eµ exp

(
1

α
Q(s, a)

)
+ Eq

µ(a|s) exp
(
1
αQ(s, a)

)
q(a|s)

]

≈ 1

2n

 n∑
ai∼µ(·|s)

exp

(
1

α
Q(s, ai)

)
+

n∑
ai∼q(·|s)

µ(ai|s) exp
(
1
αQ(s, ai)

)
q(ai|s)

 ,

where q is the proposal distribution.

In Algorithm 1, the above expectation is computed for both s ∈ D and s ∈ D′. For s ∈ D, we choose

q(·|s) = N (· ; a, σ2I), where a|s ∼ D,

i.e., the samples are drawn close to the data points, and σ2 determines how much they keep close.
For example, in Step 6 a batch of {(s, a, s′)} are sampled from D to calculate (14), then we construct
the proposal distribution as above for each (s, a) in the batch. The motivation of drawing actions
near the data samples is to enhance learning in the multi-modal scenario, where the offline dataset D
is collected by mixture of multiple policies. If µ is single-modal (say the widely adopted Gaussian
policy) and we solely draw samples from it to approximate the expectation, these samples will be
locally clustered. Then, applying them to update πθ in (14) can be easily get stuck at local optimum.

For s ∈ D′, we choose

q(·|s) = πθ(·|s).

27

The reason is that πθ is an approximator to the improved policy with higher Q-value, and sampling
from it hopefully reduces variance of the Monte Carlo estimator.

Although applying Monte Carlo methods to approximate the expectation incurs extra computation, all
the operators can be executed in parallel. In the experiments, we use 10 and 20 samples respectively
for the expectations over state and action, and the algorithm is run on a single machine with one
Quadro RTX 6000 GPU. The results show that in average it takes 73.4 s to finish 1k training steps,
and the GPU memory cost is 2.5 GB.

Several future directions regarding the Monte Carlo method are worthy to explore. For example, by
reducing the sample size for the expectation over state, the optimized policy additionally tends to
avoid the risk due to aleatoric uncertainty (while in this work we focus on epistemic uncertainty).
Besides, the computational cost can be reduced by more aggressive Monte Carlo approximation, for
example only using mean action to compute the expectation in terms of policy. We leave these as
future work.

E Choice of Initial Dynamics Belief

In offline setting, extra knowledge is strongly desired to aggressively optimize policy. The initial
dynamics belief provides an interface to absorb the aforehand knowledge of system transition. In
what follows, we illustrate several potential usecases:

• Consider the physical system where the dynamics can be described as mathematical ex-
pression but with uncertain parameter. If we have a narrow distribution over the parameter
(according to expert knowledge or inferred from data), the system is almost known for
certain. Here, both the mathematical expression and narrow distribution provide more
information.

• Consider the case where we know the dynamics is smooth with probability of 0.7 and
periodic with probability of 0.3. Gaussian processes (GPs) with RBF kernel and periodic
kernel can well encode these prior knowledge. Then, the 0.7-0.3 mixture of the two GPs
trained with offline data can act as the dynamics belief to provide more information.

• In the case where multi-task datasets are available, we can train dynamics models using
each of the datasets and assign likelihood ratios to these models. If the likelihood ratio
well reflects the similarity between the concerned task and the offline tasks, the multi-task
datasets promote knowledge.

The performance gain is expected to monotonously increase with the amount of correct knowledge.
As an impractical but intuitive example, with the exact knowledge of system transition (the initial
belief is a delta function), the proposed approach is actually optimizing policy as in real system.

In practice, the expert knowledge is not available everywhere. When unavailable, the best we can
hope for is that the final policy stays close to the dataset, but unnecessary to be fully covered (as we
want to utilize the generalization ability of dynamics model at least around the data). To that end, the
dynamics belief is desired to be certain at the region in distribution of dataset, and turns more and
more uncertain when departing. It has been reported that the simple model ensemble leads to such a
behavior [12]. In this sense, the uniform distribution over learned dynamics ensemble can act as a
quite common belief. In the experiments, we apply it for fair comparison with baseline methods.

F Automatically Adjusting KL Coefficient

In Section 4, the KL regularizer is introduced to restrict πϕ in a small region near πϕ′ , such that
the Q-value can be evaluated sufficiently before policy improvement. Apart from fixing the KL
coefficient α throughout, we provide a strategy to automatically adjust it.

Note that the optimal policy to minimize LP in (14) is
πϕ′ (·|s) exp(1

αQθ(s,·))
Eπ

ϕ′ [exp(1
αQθ(s,a))]

. The criterion of choosing

α is to constrain the KL divergence between this policy and πϕ′ smaller than a specified constant, i.e.,

DKL

(
πϕ′(·|s) exp

(
1
αQθ(s, ·)

)
Eπϕ′

[
exp

(
1
αQθ(s, a)

)] ∣∣∣∣∣
∣∣∣∣∣ πϕ′(·|s)

)
≤ d. (42)

28

Finding α to satisfy the above inequation is intractable, instead we consider a surrogate of the KL
divergence:

DKL

(
πϕ′(·|s) exp

(
1
αQθ(s, ·)

)
Eπϕ′

[
exp

(
1
αQθ(s, a)

)] ∣∣∣∣∣
∣∣∣∣∣ πϕ′(·|s)

)

= Eπϕ′

[
exp

(
1
αQθ(s, a)

)
Eπϕ′

[
exp

(
1
αQθ(s, a)

)] · 1
α
Qθ(s, a)

]
− logEπϕ′

[
exp

(
1

α
Qθ(s, a)

)]

≤ 1

α

Eπϕ′

 exp
(

1
α0

Qθ(s, a)
)

Eπϕ′

[
exp

(
1
α0

Qθ(s, a)
)] ·Qθ(s, a)

− Eπϕ′ [Qθ(s, a)]

 ,

where α0 is a predefined lower bound of α.

Then, (42) can be satisfied by setting

α ≥ 1

d

Eπϕ′

 exp
(

1
α0

Qθ(s, a)
)

Eπϕ′

[
exp

(
1
α0

Qθ(s, a)
)] ·Qθ(s, a)

− Eπϕ′ [Qθ(s, a)]

 .

Combining with the predefined lower bound, we choose α as

α = max

1

d

Eπϕ′

 exp
(

1
α0

Qθ(s, a)
)

Eπϕ′

[
exp

(
1
α0

Qθ(s, a)
)] ·Qθ(s, a)

− Eπϕ′ [Qθ(s, a)]

 , α0

 .

In practice, the expectation can be estimated over Monte Carlo samples. Note that the coefficient can
be computed individually for each state, picking d is hopefully easier than picking α suitable for all
states.

G Additional Experimental Setup

Task Domains We evaluate the proposed methods and the baselines on eighteen domains involving
three environments (hopper, walker2d, halfcheetah), each with six dataset types. The dataset types
are collected by different policies, denoted by random: a randomly initialized policy, expert: a policy
trained to completion with SAC, medium: a policy trained to approximately 1/3 the performance of
the expert, medium-expert: 50-50 mixture of medium and expert data, medium-replay: the replay
buffer of a policy trained up to the performance of the medium agent, full-replay: the replay buffer of
a policy trained up to the performance of the expert agent.

Dynamics Belief We adopt an uniform distribution over dynamics model ensemble as the initial
belief. The ensemble contains 100 neural networks, each is with 4 hidden layers and 256 hidden units
per layer. All the neural networks are trained independently with the sample dataset D and in parallel.
The training process stops after the average training loss does not change obviously. Specifically, the
number of epochs for hopper-random and walker2d-medium are 2000, and those for other tasks are
1000. Note that the level of pessimism depends on the candidate size N (= 10 by default), rather
than the ensemble size.

Policy Network and Q Network The policy network is with 3 hidden layers and 256 hidden units
per layer. It outputs the mean and the diagonal variance for a Gaussian distribution, which is then
transformed via tanh function to generate the policy. When evaluating our approach, we apply the
deterministic policy, where the action is the tanh transformation of the Gaussian mean. The Q network
is with the same architecture as the policy network except the output layer. Similar to existing RL
approaches [35], we make use of two Q networks and apply the minimum of them for calculation in
Algorithm 1, in order to mitigate over-estimation when learning in the AMG. The policy learning
stops after the performance in AMG does not change obviously. Specifically, the gradient steps for
walker2d-random, halfcheetah-random and hopper with all dataset types are 1 million, and those for
other tasks are 2 millon.

29

Hyperparameters We list the detailed hyperparameters in Table 3.

Parameter Value

dynamics learning rate 10−4

policy learning rate 3 · 10−5

Q-value learning rate 3 · 10−4

discounted factor (γ) 0.99
smoothing coefficient for policy (ω1) 10−5

smoothing coefficient for Q-value (ω2) 5 · 10−3

Exploration ratio for secondary player (ϵ) 0.1
KL coefficient (α) 0.1
variance for important sampling (σ2) 0.01
Batch size for dynamics learning 256
Batch size for AMG and MDP 128
Maximal horizon of AMG 1000

Table 3: Hyperparameters

H Practical Impact of N

Table 4 lists the impact of N . The performance in the AMGs improve when decreasing k. Regarding
the performance in true MDPs, we notice that N = 15 corresponds to the best performance for
hopper, but for the others N = 5 is better.

hopper-medium walker2d-medium halfcheetah-medium

N MDP AMG MDP AMG MDP AMG

5 90.2±25.4 108.6±2.2 112.7±0.9 101.7±5.7 79.8±0.4 69.5±1.6
10 106.8±0.2 105.2±1.6 94.2±1.1 77.2±3.7 75.6±1.3 67.3±1.1
15 107.3±0.2 103.1±1.8 92.1±0.3 68.3±6.7 75.4±0.4 63.2±2.3

Table 4: Impact of N , with k = 2.

I Ablation of Randomness of T

Compared to the standard Bellman backup operator in Q-learning, the proposed one additionally
includes the expectation over T ∼ PN

T and the k-minimum operator over τ ∈ T . We report the
impact of choosing different k in Table 2, and present the impact of the randomness of T as below.
Fixed T denotes that after sampling once T from the belief distribution we keep it fixed during policy
optimization.

Task Name Stochastic T Fixed T
hopper-medium 106.8 ± 0.2 106.2 ± 0.3
walker2d-medium 94.2 ± 1.1 90.1 ± 4.3
halfcheetah-medium 75.6 ± 1.3 73.1 ± 2.8

Table 5: Impact of randomness of T

We observe that the randomness of T has a mild effect on the performance in average. The reason can
be that we apply the uniform distribution over dynamics ensemble as initial belief (without additional
knowledge to insert). The model ensemble is reported to produce low uncertainty estimation in
distribution of data coverage and high estimation when departing the dataset [12]. This property
makes the optimized policy keep close to the dataset, and it does not rely on the randomness of
ensemble elements. However, involving the randomness can lead to more smooth variation of the
estimated uncertainty, which benefits the training process and results in better performance. Apart
from these empirical results, we highlight that in cases with more informative dynamics belief, only
picking several fixed samples from the belief distribution as T will result in the loss of knowledge.

30

J Weighting AMG Loss and MDP Loss in (11)

In (11), the Q-function is trained to minimize the Bellman residuals of both the AMG and the
empirical MDP, equipped with the same weight (both are 1). In the following table, we show
experiment results to check the impact of different weights.

Task Name 0.5:1.5 1.0:1.0 1.5:0.5
hopper-medium 106.6 ± 0.3 106.8 ± 0.2 106.5 ± 0.3
walker2d-medium 93.8 ± 1.5 94.2 ± 1.1 93.1 ± 1.3
halfcheetah-medium 75.2 ± 0.8 75.6 ± 1.3 76.1 ± 1.0

Table 6: Impact of weights in (11)

The results suggests that the performance does not obviously depend on the weights. But in cases
with available expert knowledge about dynamics, the weights can be adjusted to match our confidence
on the knowledge, i.e., the less confidence, the smaller weight for AMG.

K Comparison with RAMBO

We additionally compared the proposed approach with RAMBO [61], a concurrent work that also
formulates offline RL as a two-player zero-sum game. The results of RAMBO for random, medium,
medium-expert and medium-replay are taken from [61]. For the other two dataset types, we run the
official code and follow the hyperparameter search procedure reported in its paper.

Task Name BC BEAR BRAC CQL MOReL EDAC RAMBO PMDB

hopper-random 3.7±0.6 3.6±3.6 8.1±0.6 5.3±0.6 38.1±10.1 25.3±10.4 25.4±7.5 32.7±0.1
hopper-medium 54.1±3.8 55.3±3.2 77.8±6.1 61.9±6.4 84.0±17.0 101.6±0.6 87.0±15.4 106.8±0.2
hopper-expert 107.7±9.7 39.4±20.5 78.1±52.6 106.5±9.1 80.4±34.9 110.1±0.1 50.0±8.1 111.7±0.3
hopper-medium-expert 53.9±4.7 66.2±8.5 81.3±8.0 96.9±15.1 105.6±8.2 110.7±0.1 88.2±20.5 111.8±0.6
hopper-medium-replay 16.6±4.8 57.7±16.5 62.7±30.4 86.3±7.3 81.8±17.0 101.0±0.5 99.5±4.8 106.2±0.6
hopper-full-replay 19.9±12.9 54.0±24.0 107.4±0.5 101.9±0.6 94.4±20.5 105.4±0.7 105.2 ±2.1 109.1±0.2

walker2d-random 1.3±0.1 4.3±1.2 1.3±1.4 5.4±1.7 16.0±7.7 16.6±7.0 0.0±0.3 21.8±0.1
walker2d-medium 70.9±11.0 59.8±40.0 59.7±39.9 79.5±3.2 72.8±11.9 92.5±0.8 84.9 ±2.6 94.2±1.1
walker2d-expert 108.7±0.2 110.1±0.6 55.2±62.2 109.3±0.1 62.6±29.9 115.1±1.9 1.6±2.3 115.9±1.9
walker2d-medium-expert 90.1±13.2 107.0±2.9 9.3±18.9 109.1±0.2 107.5±5.6 114.7±0.9 56.7±39.0 111.9±0.2
walker2d-medium-replay 20.3±9.8 12.2±4.7 40.1±47.9 76.8±10.0 40.8±20.4 87.1±2.3 89.2±6.7 79.9±0.2
walker2d-full-replay 68.8±17.7 79.6±15.6 96.9±2.2 94.2±1.9 84.8±13.1 99.8±0.7 88.3±4.9 95.4±0.7

halfcheetah-random 2.2±0.0 12.6±1.0 24.3±0.7 31.3±3.5 38.9±1.8 28.4±1.0 39.5±3.5 37.8 ± 0.2
halfcheetah-medium 43.2±0.6 42.8±0.1 51.9±0.3 46.9±0.4 60.7±4.4 65.9±0.6 77.9 ±4.0 75.6± 1.3
halfcheetah-expert 91.8±1.5 92.6±0.6 39.0±13.8 97.3±1.1 8.4±11.8 106.8±3.4 79.3±15.1 105.7± 1.0
halfcheetah-medium-expert 44.0±1.6 45.7±4.2 52.3±0.1 95.0±1.4 80.4±11.7 106.3±1.9 95.4 ±5.4 108.5±0.5
halfcheetah-medium-replay 37.6±2.1 39.4±0.8 48.6±0.4 45.3±0.3 44.5±5.6 61.3±1.9 68.7± 5.3 71.7±1.1
halfcheetah-full-replay 62.9±0.8 60.1±3.2 78.0±0.7 76.9±0.9 70.1±5.1 84.6±0.9 87.0±3.2 90.0±0.8

Average 49.9 52.4 54.0 73.7 65.1 85.2 68.0 88.2

Table 7: Extended Results for D4RL datasets.

The results show our approach outperforms RAMBO on most of considered tasks. One reason can be
that the problem formulation of RAMBO is based on robust MDP, whose defects are discussed in
Section 2 and Appendix A.

31

	Introduction
	Preliminaries
	Pessimism-Modulated Dynamics Belief
	Formulation
	Pessimism-Modulated Dynamics Belief

	Policy Optimization with Pessimism-Modulated Dynamics Belief
	Iterative Regularized Policy Optimization
	Offline Reinforcement Learning with Pessimism-Modulated Dynamics Belief

	Experiments
	Performance Comparison
	Learning in Alternating Markov Game
	Practical Impact of Hyperparameters in Sampling Procedure

	Related Works
	Discussion
	Additional Related Works
	Theorem Proof
	Preliminaries
	Proofs for Section 3
	Proofs for Section 4

	Iterative Regularized Policy Optimization as Expectation–Maximization with Structured Variational Posterior
	Review of RL as Probabilistic Inference
	Pessimism-Modulated Dynamics Belief as Structured Variational Posterior
	Full Expectation-Maximization Algorithm

	Algorithm and Implementation Details for Model-Based Offline RL with PMDB
	Choice of Initial Dynamics Belief
	Automatically Adjusting KL Coefficient
	Additional Experimental Setup
	Practical Impact of N
	Ablation of Randomness of T
	Weighting AMG Loss and MDP Loss in (11)
	Comparison with RAMBO

