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ABSTRACT

Fine-tuning large-scale pretrained models has led to remarkable progress in
well-studied modalities such as vision and NLP. However, similar gains have not
been observed in many other tasks due to an assumed lack of relevant pretrained
models for these diverse modalities. In this work, we revisit this assumption by
studying the cross-modal transfer ability of large-scale pretrained models. We
introduce ORCA, a general cross-modal fine-tuning workflow that enables fast
and automatic exploitation of existing pretrained models for diverse tasks. ORCA
achieves task-specific adaptation by learning feature embeddings that minimize
an optimal transport distance metric to map the data distribution in the end-task
modality to the pretraining modality. We test ORCA on 13 tasks with varying
modalities and input-output types. ORCA performs the best on 10 of them and is
in the top three on the others. We further quantify the importance of embedding
distance for downstream performance, highlight ORCA’s utility for data-limited
tasks, and demonstrate its compatibility with same-modality transfer.

1 INTRODUCTION

The success of machine learning (ML) in vision and natural language processing (NLP) has spurred
its application beyond these traditional ML domains to diverse tasks such as solving partial differ-
ential equations (Li et al., 2021b), music modeling (Lewandowski et al., 2012), detecting cardiac
disease (Hong et al., 2020), and many others. However, progress in these less-explored areas can
be challenging due to (1) limited amounts of labeled data, (2) high computational cost and human
effort for developing models from scratch, and (3) a lack of relevant large-scale pretrained models,
which have in many cases obviated the first two issues in vision and NLP (e.g., Devlin et al., 2019;
Carion et al., 2020; Dosovitskiy et al., 2021; Liu et al., 2021b; Radford et al., 2021).

There are two common approaches for practitioners to handle these issues: automated machine
learning (AutoML) techniques (e.g., Roberts et al., 2021; Shen et al., 2022) that focus on designing
task-specific networks in a data-efficient manner; and multimodal general-purpose methods that
either propose flexible architectures applicable to various tasks (Jaegle et al., 2022a) or expand
the set of modalities for which pretrained models exist (e.g., Reed et al., 2022; Lu et al., 2022a).
However, both classes of approaches require training from scratch when applied to a new modality
and proceed under the assumption of a lack of relevant pretrained models for these diverse problems.

In this work, we re-examine this assumption by considering the general problem of cross-modal
transfer. Our goal is to exploit existing large-scale pretrained models in data-rich modalities for
solving diverse downstream tasks. A few recent works have demonstrated the potential promise of
cross-modal transfer by applying language transformers to vision (Kiela et al., 2019; Dinh et al.,
2022; Lu et al., 2022b), referential games (Li et al., 2020c), and reinforcement learning (Reid et al.,
2022). However, many of these approaches are ad-hoc (e.g., rely on manual prompt engineering
or hand-craft new architecture components to solve specific tasks), and none of them yield models
competitive with those trained from scratch. We tackle both shortcomings in our work.

We introduce a general-purpose, cross-modal transfer approach called ORCA (Optimal tRansport
Cross-modal Adaptation) that yields state-of-the-art results on a wide range of non-text and non-
vision problems using pretrained transformers. Our key insight is to learn a task-specific feature
embedding network before performing fine-tuning on the target task (see Figure 1 for the exact
ORCA workflow). We train the embedder network to minimize the optimal transport dataset distance
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Figure 1: ORCA’s three-stage cross-modal transfer workflow enables fast and automatic exploitation of large-
scale pretrained models in data-rich modalities for solving diverse tasks. First, given target data (xt, yt) and a
pretrained transformer body gs, ORCA constructs an embedder architecture f t to match the input dimension-
ality of gs, and a predictor architecture ht to convert the output of gs back to the appropriate output space for
the target task, e.g., classification logits or dense maps. Note that ORCA does not learn the weights for ft or ht

during this stage. Next, ORCA learns the parameters for the embedder f t by minimizing the OTDD between the
target dataset and an in-modality source dataset. Finally, ORCA fine-tunes the entire architecture {f t, gs, ht}.

(OTDD) (Alvarez-Melis & Fusi, 2020) between the feature-label distributions of the target data
and data from the same modality as the pretraining data.1 Intuitively, this step maps the feature
distribution of an unfamiliar, cross-modal dataset back to that of a familiar, in-modal dataset. Using
OTDD allows us to relax many distributional assumptions required by traditional domain adaptation
methods. Moreover, this feature embedding step differentiates us technically from previous works
that perform simple fine-tuning for cross-modal transfer (Lu et al., 2022b) and leads to significantly
improved downstream performance (see Section 4).

We evaluate ORCA on a diverse set of 13 tasks with different input dimensions (1D and 2D), predic-
tion types (point and dense), and modalities (vision, audio, electrocardiogram, mathematics, protein,
genomics, cosmic-ray, and music). Our results show that ORCA outperforms various competitors,
including task-specific hand-designed models, leading AutoML methods, and different fine-tuning
approaches, ranking first on 10 tasks and in the top three on all tasks. We further perform ex-
periments that reveal an empirical correlation between the embedding OTDD and the fine-tuning
performance. Besides, we demonstrate ORCA’s efficacy for both in-modal and limited-data tasks.
Overall, our work not only explores the cross-modal transfer ability of pretrained models, but also
establishes ORCA as a practical workflow for solving diverse prediction problems efficiently and
automatically.

2 RELATED WORK

In this section, we review several groups of related work in the areas of AutoML, in-modal trans-
fer learning (unimodal domain adaptation, unimodal/multimodal fine-tuning, and general purpose
methods), and cross-modal transfer learning (heterogeneous domain adaptation, task-specific fine-
tuning, and FPT). Table 1 summarizes these groups along relevant axes, and contrasts them to ORCA.

AutoML for diverse tasks is a growing research area, as evidenced by the NAS-Bench-360 bench-
mark (Tu et al., 2022), along with several recent neural architecture search (NAS) methods that target
this problem, e.g., AutoML-Zero (Real et al., 2020), XD (Roberts et al., 2021), and DASH (Shen
et al., 2022)). In contrast to these NAS methods, ORCA takes a transfer learning approach in order to
leverage existing pretrained models from data-rich modalities for more esoteric tasks, rather than re-
peatedly incurring the overhead of designing new architectures and training them from scratch. That
said, given the shared underlying motivation, our experimental evaluation makes use of the diverse
tasks comprising NAS-Bench-360, and compares ORCA with its expert and AutoML baselines. We
also compare against DASH, the state-of-the-art method on this benchmark.

Unimodal domain adaptation (DA) is a form of transductive transfer learning where the source and
target tasks are the same but the domains differ (Pan & Yang, 2009; Wang & Deng, 2018). Many DA
methods assume that the target data has the same input space and support as the source data, and are

1We do not assume access to the pretraining data due to practical concerns about data access and compu-
tational efficiency. We instead work with publicly available proxy data from the pretraining modality, e.g.,
CIFAR-10 for models pretrained on ImageNet and CoNLL-2003 for models pretrained on larger text corpora.
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Table 1: Summary of existing approaches aiming to develop models for diverse tasks.

Task-specific General-purpose Supports transfer to different:
adaptation? workflow? input dim? output dim? modality?

Task-specific Hand-designed models ✓
learning AutoML models ✓ ✓

In-modal
transfer

Unimodal DA ✓ ✓
Uni/Multimodal fine-tuning ✓ ✓ ✓

General-purpose models ✓ ✓ ✓ ✓

Cross-modal
transfer

Heterogeneous DA ✓ ✓ ✓
Task-specific fine-tuning ✓ ✓ ✓ ✓

FPT ✓ ✓ ✓ ✓
ORCA ✓ ✓ ✓ ✓ ✓

concerned with problems where the output spaces and the joint/marginal distributions differ, such
as covariate and label shifts. Recent work considers more general settings such as different feature
spaces (heterogeneous DA) or label spaces (universal DA). Our focus on cross-modal transfer goes
one step further to the case where neither the input-space nor the output-space support overlaps.

Unimodal fine-tuning of pretrained models is a more flexible transfer approach that can be applied
to downstream tasks with different label spaces or input spaces. Pretrained models are used for in-
modality fine-tuning in NLP (e.g., Aghajanyan et al., 2021; Jiang et al., 2020), vision (e.g., Wei et al.,
2022; Li et al., 2022), speech (e.g., Chen et al., 2022; Jiang et al., 2021), protein sequences (Jumper
et al., 2021) and robotics (Ahn et al., 2022). Prompting (Liu et al., 2022) and adapter networks
(He et al., 2022) have also been developed to improve the downstream performance of in-modality
transfer. Multimodal fine-tuning expands the applicable modalities of a single pretrained model
(e.g., Lu et al., 2019; Radford et al., 2021; Hu & Singh, 2021; Kim et al., 2021; Baevski et al., 2020;
Alayrac et al., 2022) by learning embeddings of several data-rich modalities together. However,
these approaches still focus on solving in-modality downstream tasks.

General-purpose models propose flexible architectures applicable to various tasks such as optical
flow, point clouds, and reinforcement learning (Jaegle et al., 2021; 2022a; Reed et al., 2022). These
approaches train multitask transformers from scratch using a large body of data from different tasks.
Though more versatile than unimodal models, they still focus on transferring to problems within the
pretraining modalities considered. Nonetheless, the success of transformers for in-modality fine-
tuning motivates us to focus on adapting transformer-type architectures for cross-modal transfer.

Heterogeneous DA (HDA) considers nonequivalent feature spaces between the source and target
domains. While most HDA methods are developed for same-modality-different-dimension transfer,
e.g., between images of different resolutions, there are indeed a few works studying cross-modal
tasks such as text-to-image (Yao et al., 2019; Li et al., 2020b). However, a crucial assumption that
HDA makes is that the target and source tasks are the same. Thus, we operate in a much more flexible
setting and consider knowledge transfer between drastically different domains with distinct tasks
and label sets, such as applying Swin Transformers (Liu et al., 2021c) to solving partial differential
equations or RoBERTa to classifying satellite images and electrocardiograms.

Cross-modal, task-specific fine-tuning is a recent line of research, with much of the work focused
on transferring NLP models to other modalities, e.g., vision (Kiela et al., 2019), referential games (Li
et al., 2020c), and reinforcement learning (Reid et al., 2022). These works provide initial evidence
of the cross-modal transfer capabilities of pretrained models. However, they focus on hand-tailoring
to a single modality, e.g., by adding ad-hoc encoders that transform agent messages (Li et al., 2020c)
or decision trajectories (Reid et al., 2022) into tokens. Even when not relying on fine-tuning, work
like LIFT (Dinh et al., 2022) that attempts cross-modal learning via prompting (Liu et al., 2021a)
still require ad-hoc conversion of tasks to natural text.

Frozen Pretrained Transformers (FPT) (Lu et al., 2022b) is a general cross-modal fine-tuning
workflow that transforms input features to be compatible with the pretrained models. Although FPT
and ORCA are both general-purpose workflows, FPT does not account for differences between the
target and pretraining modalities, which we show is necessary to achieve accurate predictive models
and outperform existing baselines.

3 ORCA WORKFLOW

In this section, we first formalize the problem setup and then introduce the ORCA workflow for
adapting pretrained transformers to diverse end tasks.
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Problem Setup. A domain D consists of a features space X , a label space Y , and a joint probability
distribution P (X ,Y). In the cross-modal setting we study, the target (end-task) domain Dt and
source (pretraining) domain Ds differ not only in the feature space but also the label space and by
extension have differing probability distributions, i.e., X t ̸= X s, Yt ̸= Ys, and P t(X t,Yt) ̸=
P s(X s,Ys). This is in contrast to the transductive transfer learning setting addressed by domain
adaptation, where source and target domains share the label space and end task (Pan & Yang, 2009).

Given target data {xt
i, y

t
i}i∈[nt] sampled from a joint distribution P t in domain Dt, our goal is to

learn a prediction model mt that correctly maps each input xt to its label yt. We are interested in
achieving this by leveraging pretrained transformers. Thus, we assume access to a model ms that
has been trained with data {xs

i , y
s
i }i∈[ns] in the source domain Ds, where (xs

i , y
s
i ) ∼ P s. Then,

given a predefined loss function l on the target data, we aim to develop mt based on ms such that
L(mt) = E(xt,yt)∼P t [l(mt(xt), yt)] is minimized.

This problem formulation does not define modality explicitly and includes both in-modal and cross-
modal transfer problems. Given the generality of the tasks we wish to explore, it is hard to provide a
precise mathematical definition, so we rely on semantics to differentiate the two settings. Intuitively,
cross-modal domains, such as natural images vs. protein sequences, should be more distinct to each
other than in-modal domains, such as photos taken in two different geographical locations.

Having defined the problem and learning objective, we can now introduce our methodology for
transfer learning across modalities, which consists of three stages: (1) architecture design to support
diverse input and output tensor dimensions, (2) embedder pretraining to match the source and target
domain feature distributions, and (3) fine-tuning to minimize the target task loss.

3.1 TASK-SPECIFIC ARCHITECTURE DESIGN

Applying pretrained models to another downstream problem usually requires addressing the prob-
lem of mismatched dimensions. To make ORCA work for input and output tensors of different
dimensions, we decompose a transformer-based learner m into three parts (Figure 1 stage 1): an
embedder f that transforms input x into a sequence of features, a model body g that applies a pre-
trained transformer (i.e., series of attention layers) to the embedded features, and a predictor h that
generates predictions with the desired output shape. ORCA uses pretrained architecture and weights
to initialize the model body g but replaces f and h with layers designed to match the target data with
the pretrained model’s embedding dimension. Next, we describe each module in detail.

Custom Embedding Network. Denote the feature space compatible with the pretrained model
body as Ẋ . For a transformer with maximum sequence length S and embedding dimension D,
Ẋ = RS×D. The embedding network f : X → Ẋ is designed to take in a tensor of arbitrary
dimension from X and transform it to the feature space Ẋ . In ORCA, f is composed of a convo-
lutional layer with input channel cin, output channel cout, kernel size k, and stride k, generalizing
the patching operations used in vision transformers. We set cin to the input channel of x and cout
to the embedding dimension D. To take full advantage of the representation power of the pretrained
model, we choose the smallest k for which the product of output shape excluding the channel di-
mension ≤ S. That is, when we flatten the non-channel dimensions of the output tensors after the
convolution, pad and then transpose it, we can obtain sequence features with shape S ×D. Finally,
we add a layer norm and a positional embedding to obtain ẋ.2

Pretrained Transformer Body. The model body g takes the embedding ẋ ∈ Ẋ as input and outputs
features ẏ ∈ Ẏ; the dot is used to differentiate these intermediate representations from the raw inputs
and labels. For transformer-based g, both the input and output feature spaces Ẋ , Ẏ are RS×D.

Custom Prediction Head. Finally, the prediction head h must take ẏ ∈ Ẏ as input and return a
task-dependent output tensor. Different tasks often specify different types of outputs, e.g., classi-
fication tasks require logits in RK where K is the number of classes, and dense prediction tasks
require dense maps with the same spatial dimension as the input and per index logits correspond-
ing to K classes. Thus, it is crucial to define task-specific output modules and fine-tune them when

2As a concrete example, consider an image tensor with shape (Cin, Hin,Win). We first choose stride k for
the convolution such that Hout × Wout ≈ S to get an output tensor with shape (D,Hout,Wout). Then, we
flatten it to shape (D,Hout ×Wout), pad along the last dimension to shape (D,S), and transpose.

4



Under review as a conference paper at ICLR 2023

transferring to new tasks. In our workflow, we use the simplest possible instantiation of the predictor
modules. For classification, we apply average pooling along the sequence length dimension (or take
the classification token of language models) to obtain 1D tensors with length D and then use a linear
layer that maps D to K. For dense prediction, we apply a linear layer to the sequence outputs so
the resulting tensor has shape (S, kdim(Y)−1K), where kdim(Y)−1 is the downsampling factor of the
embedder convolution kernel with stride k. This upsamples by the same factor that the embedder
convolution downsampled. Then, we can mold the tensor to the desired output dimension.3

With these modifications, we now have an architecture based on the pretrained model but is also
compatible with our target task. Next, we turn our attention to pretraining the embedder for task-
specific adaptation via matching source and target embedding distributions.

3.2 EMBEDDING LEARNING

Intuitively, transferring knowledge across similar modalities should be easier than across distant
ones. Hence, given a target task in a new modality, we aim to manipulate the task data so that
they become closer to the pretraining modality. We use the optimal transport dataset distance
(OTDD) (Alvarez-Melis & Fusi, 2020) to measure the closeness between datasets in different
domains. Unlike classic OT-based or maximum-mean-discrepancy-based metrics (Gretton et al.,
2012) which only measure the difference between feature distributions, OTDD allows us to compare
datasets using the label information, thus distinguishing us from unsupervised or semi-supervised
DA methods that utilize the OT distance (Courty et al., 2017; Yan et al., 2018). More importantly,
OTDD works even if the label sets are unrelated or disjoint, which makes it particularly suitable for
cross-modal distance estimation. OTDD has been studied for dataset transformation (Alvarez-Melis
& Fusi, 2021) but not for training or fine-tuning models as an optimization objective.

Formally, let fs : X s → Ẋ denote the pretrained embedder (the part of ms that transforms the
source data to sequence features) and f t : X t → Ẋ be a randomly initialized target embedder
with architecture discussed in the previous section. We train f t to minimize the expected OTDD
between the embedding-label distributions

(
f t(xt), yt

)
and

(
fs(xs), ys

)
. That is, for both datasets,

we first represent each class label as a distribution over the in-class features: y 7→ P (Ẋ |Y = y).
This transforms the source and target label sets into the shared space of distributions over Ẋ . Then,
we can define the distance dY(y

t, ys) between different labels using the p-Wasserstein distance
associated with a metric dẊ over the feature space, e.g., the l2 distance ∥ẋt − ẋs∥22. This allows us
to measure the difference between distributions in Ẋ ×Y using the following p-Wasserstein metric:

dẊ×Y
(
(ẋt, yt), (ẋs, ys)

)
=

(
dẊ (ẋt, ẋs)p + dY(y

t, ys)p
)1/p

. (1)

Plugging this into the OT formulation leads to the OTDD over Ẋ ×Y , which we optimize to learn f t.

In Appendix A.1, we provide a more detailed exposition on OTDD and its computational complexity.
We also show empirically that learning the embedder takes much shorter time than fine-tuning. We
additionally highlight two points for implementing embedding learning with OTDD in practice.
First, as stated in the introduction, we do not have to use the exact pretraining data to represent a
model’s source domain, as they are often not publicly available and can be too large to compute
OTDD efficiently. Instead, we can use a smaller in-modal dataset as the proxy dataset. Second,
classification tasks naturally come with discrete labels required for computing OTDD. For dense
prediction tasks where labels are high-dimensional maps, we perform clustering on the dense maps
to generate pseudo labels, which not only preserves the intrinsic distribution of the target data but
also speedups OTDD computation.

3.3 FINE-TUNING MODEL PARAMETERS

After training the embedder, we perform full fine-tuning by updating all model parameters to mini-
mize the target loss. This step further aligns the embedder and predictor with the pretrained model
to improve downstream performance. We perform an ablation study comparing ORCA to standard

3As a concrete example, for an image tensor with embedding convolution kernel size k, the linear layer will
yield an output of shape (S, k2K), which we transpose, pad, and reshape to (k2K,Hout,Wout). Finally, we
apply pixelshuffle (Shi et al., 2016) to get an output of shape (K,Hin,Win).

5



Under review as a conference paper at ICLR 2023

fine-tuning without feature matching in Section 4.2.1 and show that our approach improves predic-
tion accuracy and reduces performance variance. There are orthogonal lines of work that study how
to best fine-tune a pretrained model (e.g., Liu et al., 2022; He et al., 2022). We compare with one
strategy used in FPT (Lu et al., 2022b) in Section 4.2.2 but leave further exploration for future work.

4 EXPERIMENTS

Having introduced how ORCA addresses the dimension mismatch between the target and source
datasets via architecture design and tackles the distribution mismatch via embedder learning, we
now proceed with showing its empirical effectiveness by evaluating it on a diverse suite of tasks.
In the following, we will first demonstrate that ORCA can outperform hand-designed and AutoML-
discovered models often by a large margin. Then, we analyze key components of ORCA to better
understand the mechanism underlying cross-modal transfer.

Experiment Protocol. While our workflow accepts a wide range of pretrained transformers as
model bodies, we use RoBERTa (Liu et al., 2019b) and Swin Transformers (Liu et al., 2021c), which
are representatives of the most researched language and vision modalities, to exemplify ORCA’s
efficacy. We choose CoNLL-20034 for RoBERTa and CIFAR-10 for Swin as the proxy source
datasets. We use the base models for both architectures, which have around 100 million parameters.

For each task, we first apply the hyperparameter tuning algorithm ASHA (Li et al., 2020a) to the
standard fine-tuning baseline (“Fine-tuning” in Table 3) to identify suitable batch size, optimizer,
learning rate, and weight decay. These hyperparameters are then applied to all fine-tuning related
baselines as well as ORCA. We use the model implementations and pretrained weights available
in the Hugging Face transformers library (Wolf et al., 2019) and manage our experiments with the
Determined AI platform. All experiments are performed on NVIDIA V100 GPUs and results are
averaged over 5 random seeds. For other experiment details, see Appendix A.3.

4.1 CAN PRETRAINED MODELS TRANSFER ACROSS MODALITY TO SOLVE DIVERSE TASKS?

In this section, we highlight the most important observation of this work: cross-modal fine-tuning
with ORCA can solve a variety of tasks effectively and efficiently. To demonstrate this, we evaluate
ORCA on 13 tasks detailed below. We first include 10 tasks from NAS-Bench-3605, which covers
problems such as PDE solving, protein folding, and cardiac disease detection. This benchmark
contains tasks for 1D and 2D classification, 2D dense prediction, but not 1D dense prediction, so
we added JSB Chorales, a music modeling dataset widely used for evaluating recurrent networks
(Chung et al., 2017; Bai et al., 2018). We also added ListOps (parsing math expressions) (Tay et al.,
2021) and Homology (classifying protein structure) (Rao et al., 2019) for comparison with FPT.
Together, these 13 tasks represent a wide collection of modalities for comprehensive evaluation.
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Figure 2: Aggregate performance of ORCA
and baselines for Table 2 results measured
by performance profiles (Dolan & Moré,
2002). Larger values (larger fractions of
tasks on which a method is within τ -factor
of the best) are better. ORCA being in the
top left corner means it is often the best.

Following the taxonomy in Table 1, we consider three
classes of baselines: (1) hand-designed expert architec-
tures for each task, as identified by Tu et al. (2022),
Rao et al. (2019), and Tay et al. (2021); (2) general-
purpose models, as represented by Perceiver IO (Jaegle
et al., 2022b); and (3) AutoML baselines, as represented
by those evaluated in NAS-Bench-360 and DASH (Shen
et al., 2022). We will compare with FPT later, the only re-
maining approach with a general workflow from Table 1.

In Table 2, we report the prediction error for each method
on each task. ORCA achieves the lowest error rate on 10
of 13 tasks and is the most effective in terms of aggregated
performance. This is also supported by the performance
summary in Figure 2. More specifically, we outperform
all hand-designed architectures on all tasks except ECG,

4CoNLL-2003 is for named entity recognition. It is used to interpret language models (Jawahar et al., 2019).
5NAS-Bench-360 is designed for testing how well ML algorithms can generalize and is a core component

of the 2022 AutoML Decathlon competition. For a summary of included tasks, see Table 7 in the Appendix
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Table 2: Prediction errors (lower is better) for 13 tasks across diverse application domains. On 10/13 problems,
ORCA ranks the first among all hand-designed expert models, AutoML and general-purpose methods. NAS-
Bench-360 refers to the aggregated performance (task-wise best) of all baselines evaluated in the benchmark,
including DARTS (Liu et al., 2019a), DenseNAS (Fang et al., 2020), XGBoost (Chen & Guestrin, 2016), and
3 others. FPT refers to fine-tuning the layer norms of RoBERTa or Swin. For a list of hand-designed models,
see Table 7 in the Appendix. Bold numbers indicate the best average performance.

CIFAR-100 Spherical Darcy Flow PSICOV Cosmic NinaPro FSD50K
0-1 error (%) 0-1 error (%) relative ℓ2 MAE8 1-AUROC 0-1 error (%) 1- mAP

Hand-designed 19.39±0.20 67.41±0.76 8E-3±1E-3 3.35±0.14 0.24±0.015 8.73±0.9 0.62±0.004

NAS-Bench-360 23.39±0.01 48.23±2.87 2.6E-2±1E-3 2.94±0.13 0.22±0.035 7.34±0.76 0.60±0.001
DASH 24.37±0.81 75.44±2.38 7.9E-3±2E-3 3.30±0.16 0.25±0.02 6.60±0.33 0.60±0.008

Perceiver IO 70.04±0.44 82.57±0.19 2.4E-2±1E-2 8.06±0.06 0.48±0.01 22.22±1.80 0.72±0.002
FPT-Swin 10.11±1.18 76.38±4.89 2.1E-2±1.3E-3 4.66±0.054 0.32±0.0021 15.69±2.33 0.67±0.0068

ORCA-SWIN 6.53±0.079 29.85±0.72 7.3E-3±6.8E-5 1.91±0.038 0.21±0.0050 7.54±0.39 0.56±0.013

ECG Satellite DeepSEA JSB Chorales ListOps Homology
1 - F1 score 0-1 error (%) 1- AUROC NLL 0-1 error (%) 0-1 error (%)

Hand-designed 0.28±0.00 19.8±0.00 0.30±0.024 8.43±0.00 62.73±0.00 88±0.00

NAS-Bench-360 0.33±0.02 12.51±0.24 0.32±0.01 - - -
DASH 0.32±0.007 12.28±0.5 0.28±0.013 6.13±0.006 57.33±0.14 89.71±0.54

Perceiver IO 0.66±0.01 15.93±0.008 0.38±0.004 - - -
FPT-RoBERTa 0.50±0.0098 20.83±0.24 0.37±0.0002 2.72±0.026 64.35±0.79 91.48±1.14

ORCA-ROBERTA 0.29±0.0052 11.59±0.18 0.29±0.006 2.44±0.056 51.90±2.18 87.21±0.50

where we rank second but do much better than the other methods. We also beat all AutoML baselines
on all tasks except DeepSEA and NinaPro, where ORCA is second and third, respectively. The
improvements from ORCA come at a small computational overhead associated with pretraining the
embedder to match the source and target modalities. Table 6 in the Appendix shows the time needed
for embedder learning with OTDD, which is a small portion (10.2% on average) of the fine-tuning
time. ORCA’s efficiency and its state-of-the-art results on 10 tasks make it a practical tool for model
development in diverse areas.

Our experiments further validate the findings in Lu et al. (2021) that pretrained transformers can
learn knowledge transferable to seemingly unrelated tasks. In the following, we delve into the mech-
anism of ORCA to provide intuition for necessary components of successful cross-modal learning.

4.2 KEY FACTORS FOR SUCCESSFUL CROSS-MODAL TRANSFER

Here, we dissect the success of cross-modal transfer with ORCA through a series of ablation studies.
As a preview, we identify three aspects to be key to its success: feature embedding with OTDD, full
fine-tuning of all model weights, and suitable pretrained model selection.

4.2.1 MATCHING FEATURE DISTRIBUTIONS HELPS ADAPTATION

In our first set of experiments, we observe that OTDD can indeed represent the modality discrepancy
between the target and source data. For instance, using the vision model Swin as the model body,
the change in OTDD values before and after embedding learning is much larger for out-of-domain
tasks like Spherical (15.9→11.78) than the in-modality task CIFAR-100 where OTDD remains low
(2.01→1.94). We are thus interested in studying how minimizing OTDD can affect fine-tuning.

To isolate the impact of embedding learning, we compare the performance of ORCA with that of
standard fine-tuning (updating all weights without pretraining the embedder) on all evaluated tasks.
The top two rows of Table 3 show that ORCA consistently outperforms naive fine-tuning and often
by a large margin. This suggests that closing the gap between a new modality and the pretraining
modality can facilitate a model’s adaptation to a new task.

From a task-wise perspective, we also train the embedder for different number of epochs before
fine-tuning to see how optimizing the OTDD to various levels of convergence affects downstream
performance. Figure 3 plots the fine-tuning accuracy along with the final OTDD objective for differ-
ent levels of embedder pretraining. Evidently, as the dataset distance decreases, the final fine-tuning
accuracy increases. This correlation supports the effectiveness of embedder learning for cross-modal
transfer. In addition, we observe that learning the embedder prior to fine-tuning can stabilize train-
ing, as the performance variance of ORCA is consistently lower than that of standard fine-tuning.
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Table 3: Prediction errors of ORCA and standard fine-tuning on 13 tasks. We consider updating all parameters
(full fine-tuning setting) and updating only the layer norms (FPT setting). ORCA is better in both settings.

CIFAR-100 Spherical Darcy Flow PSICOV Cosmic NinaPro FSD50K

ORCA 6.53±0.079 29.85±0.72 7.3E-3±6.8E-5 1.91±0.038 0.21±0.0050 7.54±0.39 0.56±0.013
Fine-tuning 7.67±0.55 55.26±1.63 7.3E-3±1.1E-4 1.92±0.039 0.24±0.0080 8.35±0.75 0.63±0.014

ORCA (layernorm) 7.99±0.098 42.45±0.21 2.1E-2±7.4E-4 4.97±0.14 0.25±0.0020 15.99±1.92 0.64±0.0093
Fine-tuning (layernorm) 10.11±1.18 76.38±4.89 2.1E-2±1.3E-3 4.66±0.054 0.32±0.0021 15.69±2.33 0.67±0.0068

ECG Satellite DeepSEA JSB Chorales ListOps Homology

ORCA 0.29±0.0052 11.59±0.18 0.29±0.006 2.44±0.056 51.90±2.18 87.21±0.50
Fine-tuning 0.44±0.0056 13.86±1.47 0.51±0.0001 2.59±0.098 72.79±1.96 89.31±0.60

ORCA (layernorm) 0.47±0.007 20.54±0.49 0.36±0.0070 2.68±0.13 63.62±0.75 90.65±1.66
Fine-tuning (layernorm) 0.50±0.0098 20.83±0.24 0.37±0.0002 2.72±0.026 64.35±0.79 91.48±1.14
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Figure 3: Final model accuracy and embedding OTDD vs. number of embedding training epochs when
applying ORCA to four tasks. As the embedder learns to map the target data to the source modality better
(smaller final OTDD), we generally obtain models with better downstream performance.

4.2.2 FINE-TUNING ALL MODEL PARAMETERS WHEN COMPUTATION ALLOWS

As discussed in Section 2, Frozen Pretrained Transformers (FPT) (Lu et al., 2022b) is a related ap-
proach for cross-modal transfer that showed pretrained language models contain knowledge relevant
for out-of-modality tasks. While FPT presented a general fine-tuning pipeline that transfers GPT-2
to tasks like CIFAR-10, Homology, and ListOps, the resulting models were as good as those directly
trained on the target data. FPT differs from ORCA in that (1) it does not pretrain the embedding
layers for task-specific adaptation and (2) it only fine-tunes the layer norms. To isolate the impact
these two components, we evaluate ORCA with fine-tuning the layer norms vs. FPT on our task set.

The bottom rows of Table 3 show ORCA with fine-tuning just the layer norms outperforms FPT,
indicating pretraining the embedding layers boosts the cross-modal performance of FPT. However,
this performance gain is smaller than that seen in the full fine-tuning setting, which implies that full
fine-tuning can take better advantage of the learned embeddings. Also, fine-tuning a subset of the
model weights is less effective than full fine-tuning in all tasks except for DeepSEA. This exception
might be due to the fact that full fine-tuning without learned embeddings is more prone to overfitting.

In terms of runtime, we find that fine-tuning just the layer norms only results in less than 2x speedups
compared with full fine-tuning, despite the fact that we are updating significantly fewer parameters
(see Appendix Table 8 for detailed statistics). This is unsurprising since gradients are still back-
propagated through the entire network. Therefore, when computational resources and time allow,
we recommend using ORCA with full fine-tuning to achieve better downstream performance.

4.2.3 PRETRAINING MODALITY CAN AFFECT TRANSFER PERFORMANCE

Table 4: Test errors of ORCA on DeepSEA and Spherical
with language- and image-pretrained model bodies. Num-
bers in the parenthesis represent the OTDD after embedding
learning. Smaller OTDD leads to better performance.

Error (OTDD) DeepSEA (1D) Spherical (2D)

RoBERTa (1D) 0.295±0.006 (37.40) 68.28±0.017 (19.54)

Swin (2D) 0.361±0.001 (64.83) 29.85±0.072(11.78)

For experiments in Table 2, we chose pre-
trained models for each task based on the
input dimension, i.e., we use RoBERTa for
all 1D tasks and Swin for all 2D tasks.
To better understand how the pretraining
modality affects fine-tuning, we switch
the model bodies and apply ORCA. This
is easy to implement because ORCA is
model-agnostic and the embedder archi-
tecture handles all necessary input transformation to obtain sequence features. As shown in Table 4,
fine-tuned RoBERTa outperforms fine-tuned Swin on the 1D task, and the final OTDD objective
for RoBERTa is also smaller than that of Swin. We hypothesize that this is because the considered
DeepSEA data (genomics sequences) are structured more like language than images with discrete
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units of information and general grammatical rules. The FPT paper observes a similar trend for
Homology. As for the 2D tasks, we again notice that models with better fine-tuning accuracy have
smaller OTDDs. This suggests a way of selecting pretrained models from a predefined model hub
for each task, e.g., by comparing the optimized OTDDs and picking the one with the smallest value.

4.3 APPLICATIONS: LOW-DATA REGIME AND IN-MODALITY TRANSFER
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Fine-tuning

Figure 4: Prediction accuracy of ORCA and
the fine-tuning baseline trained with different
amounts of target data. ORCA has a larger
performance gain in low-data regime.

One of our motivations for transferring pretrained mod-
els to various modalities is to utilize existing model
resources to help tasks in data-limited regimes, where
training models from scratch can be challenging. To this
end, we investigate whether ORCA can facilitate fine-
tuning large-scale models on small target datasets.

Indeed, for standard fine-tuning, a small amount of data
often cannot give enough signal to update the pretrained
weights. However, using ORCA, it is possible to obtain
a good feature embedder with the same amount of data,
which can then reduce the difficulty of fine-tuning. In
Figure 4, we vary the amount of target data used for fine-
tuning and plot the final performance for both ORCA and
the fine-tuning baseline. We make the following observations. First, the performance gain of ORCA
increases as the amount of available data decreases. This means that standard fine-tuning does
suffer from limited data, but fine-tuning with ORCA can considerably alleviate the problem and lead
to better downstream results. Second, using ORCA allows us to match the performance of standard
fine-tuning with three times the amount of the data. Consequently, ORCA can greatly benefit model
development in practical domains where data collection is costly, e.g., chemistry or medical imaging.

Table 5: We use the dataset splits in Tan et al. (2020), which
removed some mislabeled outliers, and report the prediction
errors for ORCA and fine-tuning (using Swin-base).

Real Painting Sketch Clipart

ORCA 96.71±0.02 94.71±0.13 94.93±0.24 93.61±0.54
Fine-tuning 93.33±1.33 75.79±0.86 83.00±0.13 86.01±2.62

Lastly, a natural question to ask is whether
ORCA can also tackle in-modality tasks.
While we design ORCA to enable cross-
modal transfer, we hypothesize that it
should facilitate same-modality transfer if
two domains have large dataset distance.
To validate this, we test ORCA on Domain-
Net datasets, which are commonly used to evaluate homogeneous DA methods (Peng et al., 2019).
From Table 5, we can see that ORCA achieves significantly better performance than the fine-tuning
baseline, which shows that the feature matching of ORCA can also help in-domain generalization.

Discussion and Future Work. We identify several interesting directions to pursue based on our
experiment results. First, it is worth studying the effect of pretraining modality further and come up
with a systematic way of selecting the pretrained models. Then, we can incorporate model selection
into ORCA for a more flexible cross-modal transfer pipeline. Second, in our workflow, we use the
standard fine-tuning paradigm with an additional embedder learning stage to improve downstream
performance. While vanilla fine-tuning is generally effective, we believe that there is still large
room for improvement, e.g., by combining ORCA with more sophisticated transfer techniques such
as adapters (He et al., 2022) and prompting (Liu et al., 2022). Lastly, we currently only evaluate
ORCA on supervised 1D and 2D tasks. It is thus important to validate it on more diverse settings,
such as high-dimensional problems or reinforcement learning (Reid et al., 2022).

5 CONCLUSION

In this paper, we argue that an important step towards developing more general ML methods is to
study how we can reuse existing models effectively for new and less-explored tasks. To this end, we
propose a novel framework that allows transferring pretrained transformers to distinct downstream
modalities. Our method, ORCA, can map target data from an arbitrary end task’s modality to a
model’s pretraining modality to improve fine-tuning performance. We believe that this work not
only signals the potential of large-scale pretraining for diverse tasks but also lays out a path for a
largely uncharted data-centric paradigm in machine learning.
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A APPENDIX

A.1 EMBEDDING LEARNING WITH OPTIMAL TRANSPORT DATASET DISTANCE

A.1.1 LITERATURE REVIEW

Due to the limited space, we do not give a full review of the optimal transport dataset distance
(OTDD) (Alvarez-Melis & Fusi, 2020) in the main text. Here, we briefly recall the optimal transport
(OT) distance and explain OTDD in detail.

Consider a complete and separable metric space X and let P(X ) be the set of probability measures
on X . For α, β ∈ P(X ), let Π(α, β) be the set of joint probability distributions on X × X with
marginals α and β in the first and second dimensions respectively. Then given a cost function
c(·, ·) : X × X → R+, the classic OT distance with cost c is defined by:

OTc(α, β) := min
π∈Π(α,β)

∫
X×X

c(x, y)dπ(x, y). (2)

When X is equipped with a metric dX , we can use c(x, y) = dX(x, y)p for some p ≥ 1 and obtain
the p-Wasserstein distance, Wp(α, β) := (OTdp

X
(α, β))

1
p .

Now consider the case of finite datasets with features in X and labels in a finite set Y . Each dataset
can be considered a discrete distribution in P(X × Y). To define a distance between datasets, a
natural approach is to define an appropriate cost function on Z := X × Y and consider the optimal
transport distance. Indeed, for any metric dY on Y and any p ≥ 1, Z can be made a complete and
separable metric space with metric

dZ((x, y), (x
′, y′)) = (dX (x, x′)p + dY(y, y

′)p)
1
p (3)

It is usually not clear how to define a natural distance metric in Y , so instead we proceed by repre-
senting each class y ∈ Y by P (X|Y = y), the conditional distribution of features X given Y = y.
More specifically, for a dataset D ∈ P(X × Y), denote this map from classes to conditional dis-
tributions by F (D, ·) : Y → P(X ). Then we can transform any dataset over X × Y into one over
X × P(X ) via G(D) := (projX , F (D, projY )).

As discussed above, Wp is a natural notion of distance in P(X ), so by substituting Y 7→ P(X ) and
dY 7→ Wp in Equation 3, we can define the (p-)optimal transport dataset distance between datasets
DA and DB by

OTDD(DA,DB) := OT
(dp

X×Wp
p )

1
p
(G(DA), G(DB)) (4)

A.1.2 COMPUTATIONAL CONSIDERATIONS

As we aim for a practical fine-tuning workflow, computational cost is a crucial concern. While
Alvarez-Melis & Fusi (2020) proposed two variants of OTDD—the exact one and a Gaussian ap-
proximation, we observe from our experiments that optimizing the exact OTDD leads to better per-
formance. In the following, we will focus on analyzing the computational cost of the exact OTDD.

Given datasets with D-dimensional feature vectors, estimating vanilla OT distances can be com-
putationally expensive and has a worst-case complexity of O(D3 logD) (Pele & Werman, 2009).
However, adding an entropy regularization term ϵH(π|α⊗β) to Equation 2, where H is the relative
entropy and ϵ controls the time-accuracy trade-off, can be solved efficiently with the Sinkhorn al-
gorithm (Cuturi, 2013). This reduces OT’s empirical complexity to O(D2) and makes the time cost
for computing OTDD manageable for ORCA’s workflow.

During implementation of ORCA, we also observed memory issues for computing OTDD using the
entire target and source datasets on GPUs. To alleviate this, we propose a class-wise subsampling
strategy for approximating OTDD on GPUs (Algorithm 1). In short, we split the K-class target
dataset into K datasets based on the labels and compute the class-wise OTDD between each single-
class target dataset and the entire source dataset. Each class-wise OTDD can be approximated
with the average of batch samples similar to how stochastic gradient descent approximates gradient
descent. After that, we approximate the OTDD between the target and source datasets using the
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Algorithm 1 Efficient approximation of OTDD using class-wise subsampling.

Input: target dataset {xt, yt}, number of target classes Kt, source dataset S = {xs, ys}, sub-
sample size b, subsample round R
for each class i ∈ [Kt] in the target dataset do

Compute class weight wi =
number of target data in class i

total number of target data
Generate data loader Di consisting of data in class i

end for
for i ∈ [Kt] do

for r ∈ [R] do
Subsample b target data points Dir uniformly at random from Di

Compute class-wise distance dir = OTDD(Dir, S)
end for
Approximate class-wise OTDD by di =

1
R

∑R
i=1 dir

end for
Approximate OTDD by d =

∑Kt

i=1 wi · di

Figure 5: Screenshot of OTDD curves during embedding learning for the task ListOps. x-axis is the number
of optimization steps, y-axis represents OTDD (1E-2). We use Algorithm 1 to approximate the exact OTDD as
the loss function for optimization on GPU (purple curve). We also track the actual OTDD on CPU (blue curve).
We can see that the proposed algorithm works well, which allows us to perform embedding learning efficiently.

weighted sum of the K class-wise OTDDs. To verify that the approximation works empirically, we
track the approximated OTDD (computed on GPUs) and the actual OTDD (computed on CPUs) and
visualize the loss curves during ORCA’s embedder learning process (Figure 5). We can see that the
estimated value adheres to the actual value.

Leveraging both the Sinkhorn algorithm and class-wise approximation, the embedder learning pro-
cess only takes up a small fraction of the total fine-tuning time in practice, as shown in Table 6.
Hence, we invest a reasonable time budget but achieve significantly improved cross-domain transfer
performance using ORCA.

Table 6: We record the runtime (in hours) of ORCA’s embedding learning stage and the fine-tuning stage
for each task. Then, we compute the ratio between the two. Averaged across tasks, embedding learning with
OTDD only takes about 10% of the time needed for fine-tuning. All experiments are performed on NVIDIA
V100 GPUs.

CIFAR-100 Spherical Darcy Flow PSICOV Cosmic NinaPro FSD50K

Embedding 1.6 1.8 0.18 0.35 0.2 0.3 0.21

Fine-tuning 9.2 9.3 0.86 1.1 3.5 1.1 12.5

Embedding/Fine-tuning 17% 19% 20% 31% 5% 27% 2%

ECG Satellite DeepSEA JSB Chorales ListOps Homology

Embedding 0.6 0.26 0.14 0.1 0.2 0.16

Fine-tuning 23.1 37.5 14.8 0.13 17.8 6.0

Embedding/Fine-tuning 3% 1% 1% 76% 1% 2%
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A.2 INFORMATION ABOUT EVALUATION TASKS

Table 7: Summary about each evaluation task and the hand-designed expert models used. The top
10 rows are for the 10 datasets in NAS-Bench-360 (Tu et al., 2022).

Task name # Data Data dim. Type License Learning objective Expert arch.

CIFAR-100 60K 2D Point CC BY 4.0 Classify natural images into 100 classes DenseNet-BC
(Huang et al., 2017)

Spherical 60K 2D Point CC BY-SA Classify spherically projected images S2CN
into 100 classes (Cohen et al., 2018)

NinaPro 3956 2D Point CC BY-ND Classify sEMG signals into 18 classes Attention Model
corresponding to hand gestures (Josephs et al., 2020)

FSD50K 51K 2D Point CC BY 4.0 Classify sound events in log-mel VGG
(multi-label) spectrograms with 200 labels (Fonseca et al., 2021)

Darcy Flow 1100 2D Dense MIT Predict the final state of a fluid from its FNO
initial conditions Li et al. (2021a)

PSICOV 3606 2D Dense GPL Predict pairwise distances between resi- DEEPCON
duals from 2D protein sequence features (Adhikari, 2019)

Cosmic 5250 2D Dense Open License Predict propablistic maps to identify cos- deepCR-mask
mic rays in telescope images (Zhang & Bloom, 2020)

ECG 330K 1D Point ODC-BY 1.0 Detect atrial cardiac disease from ResNet-1D
a ECG recording (4 classes) (Hong et al., 2020)

Satellite 1M 1D Point GPL 3.0 Classify satellite image pixels’ time ROCKET
series into 24 land cover types (Dempster et al., 2020)

DeepSEA 250K 1D Point CC BY 4.0 Predict chromatin states and binding DeepSEA
(multi-label) states of RNA sequences (36 classes) (Zhou & Troyanskaya, 2015)

JSB Chorales 229 1D Dense CC BY-SA Predict the next note from sheet music Dilated TCN
(Bai et al., 2018)

ListOps 55K 1D Point MIT Model hierarchically structured data in a longcontext scenario Reformer
(Kitaev et al., 2020)

Homology 12K 1D Point Predict the fold for a protein LSTM
(Rao et al., 2019)

A.3 EXPERIMENT DETAILS

Below, we summarize details for implementing ORCA and evaluating it on the selected 13 tasks.
The code and configuration file for reproducing each experiment can be found in the supplementary
material. We will also release ORCA’s best checkpoint for each task later.

A.3.1 PRETRAINED MODELS

We evaluated ORCA with two pretrained models in our experiments. In Table 2, for all 2D tasks
including CIFAR-100, Spherical, Darcy Flow, PSICOV, Cosmic, NinaPro, and FSD50K, we use the
following model. As Swin has a pretrained resolution, we reshape the inputs for our tasks to the
resolution before feeding them into the model.

Name Pretrain Resolution Num Params FLOPS FPS

Swin-base (Liu et al., 2021c) ImageNet-22K 224×224 88M 15.4G 278

For all 1D tasks including ECG, Satellite, DeepSEA, JSB Chorales, ListOps,and Homology, we use
the following model:

Name Pretrain Num Params FLOPS

RoBERTa-base (Liu et al., 2019b) Five English-language corpora 125M 1.64E20

We use the Hugging Face transformers library Wolf et al. (2019) to implement the pretrained models.

A.3.2 TASK DATA PREPARATION

For all the NAS-Bench-360 tasks, each dataset is preprocessed and split using the script avail-
able on https://github.com/rtu715/NAS-Bench-360, with the training set being
used for hyperparameter tuning, embedding learning, and fine-tuning. We obtain the data

17

https://github.com/rtu715/NAS-Bench-360


Under review as a conference paper at ICLR 2023

processing script for JSB data from https://github.com/locuslab/TCN, for ListOps
from https://github.com/kzl/universal-computation, and for Homology from
https://github.com/songlab-cal/tape.

A.3.3 HYPERPARAMETER TUNING

As ORCA is both task-agnostic and model-agnostic, it can be applied to fine-tuning a variety of
pretrained transformers on drastically different end tasks with distinct datasets. Hence, it is hard to
define one set of fine-tuning hyperparameters for all (model, task) pairs. At the same time, opti-
mizing large-scale pretrained transformers can be challenging due to their large model sizes, as the
downstream performance depends largely on the hyperparameters used. For instance, using a large
learning rate can distort pretrained weights and lead to catastrophic forgetting. Therefore, in our ex-
periments, given a (model, task) pair, we first apply hyperparameter tuning using the Asynchronous
Successive Halving Algorithm (ASHA) (Li et al., 2020a) to the standard fine-tuning setting (i.e.,
after initializing the embedder and predictor architectures, directly updating all model weights to
minimize the task loss) to identify a proper training configuration. Then, we use the same set of hy-
perparameters found for all our experiments for the particular (model, task) combination. Note that
even though we did not explicitly state this in the main text, the hyperparameter tuning stage can be
directly integrated into the ORCA workflow between stage 1 and stage 2. In this sense, ORCA is still
an automated cross-modal transfer workflow that works for diverse tasks and different pretrained
models.

The configuration space for ASHA is as follows:

• Batch size: 32, 128, 512, 1024 for Swin; 16, 56, 256, 512 for RoBERTa
• Optimizer: SGD, Adam, AdamW
• Learning rate: 1E-2, 1E-3, 1E-4, 1E-5, 1E-6
• Weight decay: 1E-2, 1E-3, 1E-4, 1E-5, 1E-6

Note that to fit each experiment on a single GPU, we set a fixed batch size (32 for Swin and 16 for
Roberta) and vary the gradient accumulation step instead of actually varying the batch size, but the
effect is the same.

A.3.4 ORCA ONLY: EMBEDDING LEARNING WITH OTDD

After initializing the embedder architecture for each task, we train it to minimize the OTDD between
the embedded target features and embedded source features.

For source datasets, we use CIFAR-10 for Swin and CONLL-2003 for RoBERTa. We sample 5000
data points to compute OTDD. In practice, we can pass the source data through the pretrained
embedder once and save all the embedded features, so we don’t have to pay the cost of obtaining the
source features each time we fine-tune a new model.

For classification tasks, we directly use the labels provided by the end task to compute OTDD. For
dense tasks, we perform K-Means clustering on the target data to obtain pseudolabels for OTDD
computation. The number of clusters is set to the number of classes of the source dataset, e.g., 10
for 2D tasks that use CIFAR-10 as the source dataset.

To compute the embedding learning objective, we use the OTDD implementation of the original
paper provided here: https://github.com/microsoft/otdd. As for the hyperparameters,
we use the batch size, learning rate, optimizer, and weight decay obtained from A.3.3. The others
are fixed across different tasks:

• Embedding learning epochs: 60
• Learning rate scheduler: decay by 0.2 every 20 epochs

A.3.5 FINE-TUNING

Besides the searched hyperparameters, we also fix the following hyperparameters for fine-tuning.

• Fine-tuning epochs: 100 for Swin tasks, 60 for RoBERTa tasks
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• Learning rate scheduler: we use the linear decay with min lr = 0 and 5 warmup epochs

When fine-tuning is finished, we evaluate the performance of all models following the NAS-Bench-
360 protocol. We first report results of the target metric for each task by running the model of the
last epoch on the test data. Then, we report aggregate results via performance profiles (Dolan &
Moré, 2002), a technique that considers both outliers and small performance differences to compare
methods across multiple tasks robustly. In such plots, each curve represents one method. The τ on
the x-axis denotes the fraction of tasks on which a method is no worse than a τ -factor from the best.
The performance profile for our experiments is shown in Figure 2.

A.3.6 ADDITIONAL RESULTS

In Table 3, we compare with the FPT setting, which only fine-tunes the layer norms of the pretrained
transformer models. As we have shown already, the downstream performance of fine-tuning only
a subset of the parameters is less competitive than fine-tuning all parameters. Below, we show that
the time saved for updating only layer norms is also not that significant. Therefore, we suggest
performing full fine-tuning when time and computational resources allow.

Table 8: We record the total runtime (in hours) for four settings: ORCA with full fine-tuning, ORCA
with tuning layer norms, full fine-tuning (without embedding learning), and fine-tuning layer norms
(FPT). We can see that tuning the layer norms does not bring significant benefit in terms of reducing
the model development time, but it sacrifices the downstream performance of the resulting models.

CIFAR-100 Spherical Darcy Flow PSICOV Cosmic NinaPro FSD50K

ORCA 10.8 11.1 1.04 1.45 3.7 1.4 12.71
ORCA (layernorm) 8.7 8.9 0.76 1.15 3.5 1.0 8.96

Fine-tuning 9.2 9.3 0.86 1.1 3.2 1.1 12.5
Fine-tuning (layernorm) 7.1 7.1 0.58 0.8 3.0 0.7 8.75

ECG Satellite DeepSEA JSB Chorales ListOps Homology

ORCA 23.7 37.76 14.94 0.23 18.0 6.16
ORCA (layernorm) 18.0 25.56 11.24 0.2 13.2 4.56

Fine-tuning 23.1 37.5 14.8 0.13 17.8 6.0
Fine-tuning (layernorm) 17.4 25.3 11.1 0.1 13.0 4.4
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