
Distributed Online Convex Optimization with
Compressed Communication

Anonymous Author(s)
Affiliation
Address
email

Abstract

We consider a distributed online convex optimization problem when streaming1

data are distributed among computing agents over a connected communication2

network. Since the data are high-dimensional or the network is large-scale, com-3

munication load can be a bottleneck for the efficiency of distributed algorithms.4

To tackle this bottleneck, we apply the state-of-art data compression scheme to5

the fundamental GD-based distributed online algorithms. Three algorithms with6

difference-compressed communication are proposed for full information feedback7

(DC-DOGD), one-point bandit feedback (DC-DOBD), and two-point bandit feed-8

back (DC-DO2BD), respectively. We obtain regret bounds explicitly in terms9

of the time horizon, compression ratio, decision dimension, agent number, and10

network parameters. Our algorithms are proved to be no-regret and match the same11

regret bounds, w.r.t. the time horizon, with their uncompressed versions for both12

convex and strongly convex losses. Numerical experiments are given to validate13

the theoretical findings and illustrate that the proposed algorithms can effectively14

reduce the total transmitted bits for distributed online training compared with the15

uncompressed baseline.16

1 Introduction17

Online optimization has attracted considerable attention in recent decades, for its remarkable ap-18

plications in machine learning tasks such as spam filtering, dictionary learning, ad. selection, and19

so on [1, 2, 3]. In such online tasks, data are revealed incrementally, and decisions must be made20

before all data are available. When the streaming data are collected at multiple agents, the distributed21

online optimization over a multi-agent network is considered, where data storage and processing are22

performed in the agents [4, 5]. It is often impractical to communicate data among different agents23

from multiple concerns such as privacy and bandwidth utilization. Also, there is no center agent for24

global coordination. In such settings, each agent relies on its own data to run an algorithm while25

communicating decisions with its immediate neighbors.26

To be specific, this paper considers the distributed online convex optimization (DOCO) prob-27

lem over an N -agent network. The objective is to minimize the accumulated system-wide loss28

minx∈K
∑T
t=1

∑N
i=1 f

t
i (x), where the local convex loss function f ti is formed by the data arriving29

at time t in agent i, and K ⊂ Rd is a convex feasible set. Note that the loss information is revealed to30

agent i after its decision xti is made. Generally, there are two basic types of information feedback31

that agents can possess. One is the full information feedback, where agents have access to the loss32

functions. The other is the bandit feedback, where agents can only possess the values of the loss33

function at points around the decision. At each time step, agents choose the decisions based on their34

local feedback and neighbors’ information. To measure the performance of an algorithm, the (static)35

regret is frequently used, which compares the cumulative loss of online decisions and the loss of the36

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

best decision chosen in hindsight through all the time horizons. The regret of node j ∈ V is defined37

as R(j, T) =
∑T
t=1

∑N
i=1 f

t
i (x

t
j) −minx∈K

∑T
t=1

∑N
i=1 f

t
i (x). An algorithm is called no-regret38

[6] if the average regret over T goes to zero as T is large, which means the online decision updated39

by the streaming data is not far from the best decision chosen in hindsight. Distributed no-regret40

online algorithms have been widely studied in recent years [7, 8, 9].41

Although distributed algorithms are theoretically feasible, most of them are not practical as the model42

size gets large, since communication cost can be a bottleneck for efficiency. In distributed training43

tasks, agents can be powful microcomputers, while their communication network may be with low44

bandwidth. The information exchange over the network is pretty slow compared with the computation45

taking place in agents [10]. Thus, communication compression techniques are of significance for46

practical implementations.47

There have been many attempts to combine compressors with distributed optimization algorithms.48

A straightforward idea is the direct compression scheme, while algorithms with this simple scheme49

fail to converge even for the distributed average consensus problem [11, 12]. As an improvement,50

extrapolation compression scheme and difference compression scheme are proposed [13]. Along51

this line, quite a number of studies successfully extend the distributed optimization algorithms with52

compressors and meanwhile maintain the convergence rate [14, 15, 16]. However, distributed online53

optimization with compression is still an area that has not been fully exploited. [17] proposed ECD-54

AMSGrad algorithm that extended the AMSGrad to the distributed online setting with extrapolation55

compression, while only empirical results were given without theoretical analysis. The key open56

problem in this area is57

whether it is possible to design provably no-regret distributed online algorithms58

that work with compressors.59

Contributions In this work, we answer the above question in the affirmative. We apply the60

difference compression scheme to the fundamental GD-based distributed online algorithms. Although61

the idea of such combination is simple, the underlying algorithm design and theoretical principle are62

challenging since the compression error, projection error, and consensus error will be coupled. Our63

contributions are summarized as follows:64

• We propose communication-efficient distributed online algorithms, which consist of difference65

compression, γ-gossip consensus, gradient descent, and projection, for the cases of full infor-66

mation feedback (DC-DOGD), one-point bandit feedback (DC-DOBD), and two-point bandit67

feedback (DC-DO2BD), respectively. We make the technical advance to combine the difference68

compression scheme with the projection scheme. Through proper design, the errors can be69

estimated and controlled with the consensus stepsize γ and the gradient descent stepsizes.70

• We analyze the regret bounds of the proposed algorithms for convex and strongly convex losses,71

respectively, which are established explicitly in terms of the time horizon T , compression ratio72

ω, decision dimension d, agent number N , and the parameters of the communication graph G, as73

simplified and summarized in Table 1. The obtained regret bounds are in accordance with that of74

[18] w.r.t T,N, d. To the best of our knowledge, the proposed algorithms are the first distributed75

online algorithms with theoretical no-regret guarantees for ω−contracted compressors.76

• We give exhaustive experiments to illustrate the performance of the proposed algorithms.77

Compared with the uncompressed algorithm DAOL [7], the proposed algorithms can reduce the78

total transmitted bits for distributed online training. Moreover, DC-DOGD and DC-DO2BD79

significantly outperform the algorithm ECD-AMSGrad [17].80

Table 1: Regret bounds in different settings
Settings convex losses strongly convex losses

Full information O
((
ω−2N 1/2 + ω−4

)
N
√
T
)

O
((
ω−2N 1/2 + ω−4

)
N ln(T)

)
One-point bandit O

((
ω−2N 1/2 + ω−4

)1/2
Nd1/2T 3/4

)
O
((
ω−2N 1/2 + ω−4

)1/3
Nd2/3T 2/3 ln

1/3(T)
)

Two-point bandit O
((
ω−2N 1/2 + ω−4

)
Nd
√
T
)

O
((
ω−2N 1/2 + ω−4

)
Nd2 ln(T)

)

2

Related Work Distributed online convex optimization has received numerous attention in recent81

years. Many basic algorithms have been extended to distributed settings. For example, [7] proposed82

a distributed online subgradient algorithm over a static connected directed network and achieved83

the regrets O(
√
T) and O(ln(T)) for convex and strongly convex losses, which is in line with the84

regrets of classical centralized online algorithms [19, 20]. Then [8] studied DOCO with long-term85

constraints over a time-varying network and achieved the regrets O(T 3/4) and O(T 2/3 ln
1/3(T)) for86

convex and strongly convex losses in the one-point bandit feedback. As for two-point bandit feedback,87

the regrets O(
√
T) and O(ln(T)) were established in [9] for convex and strongly convex losses,88

which are the same as the centralized two-bandit algorithms [21]. [18] comprehensively studied89

DOCO over Erdős-Rényi random networks in full gradient feedback, one-point bandit feedback, and90

two-point bandit feedback, and gave regret bounds. Along the line of [18], this paper aims to further91

introduce compressed communication strategies, while preserving the regret bounds.92

Recently, combining distributed optimization algorithms with compressors has seen a dramatic93

rise in interest. Traditional compressors include the quantization and sparsification. Quantization94

is to reduce the precision of each element, such as 1-bit SGD [22], SignSGD [23], GSGD [24],95

and so on. Sparsification is to transmit only a few elements of the vectors, for instance, Topk96

[25], Randk [26] and Thresholdv [27]. Also there are hybrid compressors combining quantization97

with sparsification, to name a few, SketchML [28], 3LC [29], Qsparse-local-SGD [30], etc. The98

way to apply compressors is called a compression scheme. The most widely used compression99

schemes in distributed optimization are extrapolation compression and difference compression [13].100

Extrapolation compression allows agents to compress the extrapolation between the last two local101

states. Decentralized PSGD with extrapolation compression (ECD-PSGD) [13] was proved to102

converge sublinearly and match the rate of its uncompressed case (D-PSGD). Difference compression,103

which is also called CHOCO [14] or innovation compression [31], allows agents to add replicas of104

neighboring states and compress the state-difference. There have been extensive successful designs105

combining distribute optimization algorithms with difference compression, to name a few, DCD-106

PSGD [13] (based on PSGD), CHOCO-SGD [14] (base on gossip SGD), SPARQ-SGD [15] (based107

on event-trigger), C-GT [16] (base on gradient tracking), and COLD[31] (based on NIDS), etc. Also,108

the idea of difference compression have been widely adopted in federated learning [32, 33, 34]. In109

this work, we use difference compression scheme to design communication-efficient distributed110

online algorithms.111

The results about the distributed online optimization with compression are quite limited. [17]112

poposed the ECD-AMSGrad algorithm which combined AMSGrad with extrapolation compression.113

Actually, the AMSGrad algorithm may not be a good choice for DOCO algorithm design since114

although AMSGrad itself is proved no-regret [35], a considerable performance gap still exists115

between AMSGrad and SGD [36]. Besides, the introduction of compression errors will further116

worsen the algorithm such that ECD-AMSGrad will lose the no-regret performance (seen Section 5).117

In this paper, we focus on the fundamental GD-based algorithms and give no-regret guarantees.118

2 Full Information Feedback119

In this section, we first introduce the multi-agent network and the compressor we use, and then120

propose a communication-efficient distributed online algorithm for the DOCO with full information121

feedback. Expected regret bounds will be given for both convex and strongly convex losses.122

Graph The multi-agent network is described by an undirected graph G(V, E), where V =123

{1, . . . , N} is the set of nodes, representing the set of agents, and E ⊂ V × V is the set of edges. Let124

A = [aij] ∈ RN×N be the connectivity matrix of G such that aij = aji. If (vi, vj) ∈ E , then vi and125

vj can exchange information, and aij = 0 otherwise. It is worth noting that the communication is126

node-to-node in our distributed setting, and there is no central node. The graph in this paper satisfies127

the following assumption.128

Assumption 1. The communication graph G is undirected and connected. Its connectivity matrix129

A ∈ [0, 1]N×N is a symmetric doubly stochastic matrix.130

Compressor A compressor Q(·) : Rd → Rd is a mapping whose output can be usually encoded131

with fewer bits than its input. In this paper, we consider a broad class of compressors with the132

3

following general property, which has been widely considered in distributed optimization with133

compression [14, 15, 31].134

Assumption 2. For some ω ∈ (0, 1], Q satisfies EQ‖Q(x)− x‖2 ≤ (1− ω)‖x‖2,∀x ∈ Rd, where135

EQ denotes the expectation over the internal randomness of Q.136

Compressors satisfy the above assumption are called ω-contracted, which include many important137

compressors, such as Sparsification Randk and Topk [26], Random quantization QSGDs [24],138

Randomized gossip [14], etc.139

2.1 Algorithm design140

In the full information feedback, the loss function f ti is revealed to node i at time t after the decision141

xti is made. Then node i has access to the gradient value ∇f ti (xti) and can use gti = ∇f ti (xti) to142

make the next decision xt+1
i . We propose the DC-DOGD algorithm as shown in Algorithm 1, which143

is based on DAOL [7] and Memory-efficient CHOCO-GOSSIP [14]. The DC-DOGD algorithm144

consists of two main parts: difference compressed communication (steps 2 and 3) and local decision145

update (steps 4 and 5).146

Algorithm 1 Distributed Online Gradient Descent with Difference Compression (DC-DOGD)
Input: consensus stepsize γ, GD stepsizes {ηt}Tt=1, time T
Initialize: set x1i = 0, x̂1i = 0, s1i = 0, for each node i ∈ V .
1: for t = 1 to T − 1 do in parallel for each node i ∈ V
2: Compress the difference vector qti = Q(xti − x̂ti) and update the replica x̂t+1

i = x̂ti + qti .
3: Send qti to its neighbors and receive qtj from all its neighbors j ∈ Ni. Update the estimate of

the consensus decision by st+1
i = sti +

∑
j∈Ni aijq

t
j .

4: Receive the full information feedback and calculate gti = ∇f ti (xti).
5: Update its decision variable as follows

xt+1
i = PK

(
xti + γ(st+1

i − x̂t+1
i)− ηtgti

)
, (1)

where PK denotes the Euclidean projection, i.e., PK(x) = argminy∈K ‖x− y‖.
Output: {xti}Tt=1

The insights of introducing the variables x̂ti and using the difference compression are as below.147

Assume that x∗ 6= 0 without loss of generality. Then, if node i transmits the directly compressed148

information Q(xti) to its neighbors, the compression error Q(xti) − xti will not vanish for t → ∞.149

The accumulation of compression errors makes the algorithm fail to converge. Instead, we compress150

something that goes to zero. Let node i and all its neighbors keep an auxiliary variable x̂ti locally,151

which acts as a replica of xti. Whenever node i updates its decision variable xti, node i calculates the152

difference xti− x̂ti, compresses the difference qti = Q(xti− x̂ti), and sends the compressed information153

qti to its neighbors. After that, node i and all its neighbors update the local replica x̂t+1
i = x̂ti + qti .154

When all nodes are reaching a consensus optimal decision, the updates of local decisions are small,155

and the differences between the replica variables and the true decision variables are also small. Then156

the compression errors are expected to vanish.157

Local decision variables update through the gradient descent, γ-gossip, and projection, in order to158

minimize the local loss function, keep consensus with neighbors, and remain in the feasible set K,159

respectively. For each node i, s1i is initialized to 0, and thus, sti =
∑N
j=1 aij x̂

t
j . Recall that x̂ti tracks160

xti, then sti acts as node i’s estimate of the consensus decision at time t. The γ-gossip protocol is161

adopted to renovate the decision variable towards the consensus decision. The consensus stepsize162

γ ∈ (0, 1] is tunable to control the consensus speed, which also plays a crucial role in controlling the163

compression error.164

If there is no compression, i.e., using exact communication, then x̂t+1
i turns out to be xti, and st+1

i165

becomes
∑N
j=1 aijx

t
j . Besides, take γ = 1, and then (1) reduces to166

xt+1
i = PK

(
xti + γ

∑
j∈Ni

aij(x
t
j − xti)− ηt∇f ti (xti)

)
= PK

(∑
j∈Ni

aijx
t
j − ηt∇f ti (xti)

)
,

4

which is the DAOL algorithm in [7].167

Remark 1. sti is introduced for the memory-efficiency. Eq. (1) is equivalent to the update rule168

xt+1
i = PK

(
xti + γ

∑
j∈Ni

aij(x̂
t+1
j − x̂t+1

i)− ηtgti
)
. (2)

If we adopt the update rule (2) together with x̂t+1
j = x̂tj + qtj for j ∈ Ni ∪ {i} instead of steps 3169

and 5, then each node have to store deg(i) + 2 vectors, namely, xi, x̂i and x̂j , j ∈ Ni, which is170

memory-consuming.171

2.2 Regret bounds172

We consider the following assumptions, which are widely used in the studies of distributed online173

optimization [1, 18, 37].174

Assumption 3. The convex set K is bounded with diameter D, i.e., ‖x− y‖ ≤ D, ∀x, y ∈ K.175

Assumption 4. For each i ∈ V and t = 1, 2, ..., T , the loss function f ti is convex and differentiable176

with bounded gradient over K, i.e., maxi,t,x ‖∇f ti (x)‖ ≤ G.177

Assumption 5. For each i ∈ V and t = 1, 2, ..., T , the loss function f ti is µ-strongly convex over K178

with the parameter µ > 0, i.e., f ti (x)− f ti (y) ≥ 〈x− y,∇f ti (y)〉+ µ
2 ‖x− y‖

2, ∀x, y ∈ K.179

Suppose that the eigenvalues of the symmetric doubly stochastic connectivity matrix A are 1 =180

|λ1(A)| > |λ2(A)| ≥ · · · ≥ |λN (A)|. Define the spectral gap δ := 1 − |λ2(A)| ∈ (0, 1] and the181

spectral radius of the Laplacian matrix β := ‖IN −A‖2 ∈ [0, 2]. Then we give the expected regret182

bounds of Algorithm 1 for convex and strongly convex losses, respectively.183

Theorem 1. Let common Assumptions 1 and 2 hold. Consider Algorithm 1 with the consensus184

stepsize185

γ =
3δ3ω2(ω + 1)

48(δ2 + 18δβ2 + 36β2)β2(ω + 2)(1− ω) + 4δ2(β2 + β)(ω + 2)(1− ω)ω + 6δ3ω
, (3)

(i) (Convex case) Under Assumptions 3 and 4, take the gradient descent stepsize ηt = D
G
√
t+c

for a186

constant c ≥ 8
3γδ . Then for each j ∈ V and T ≥ 1,187

EQ [R(j, T)] ≤
(
1/2 + 8

√
3
(√

N + 2
√

3γ−1δ−1
) (

1 + γ−1δ−1 + ω−1
))
NGD

√
T + c. (4)

(ii) (Strongly convex case) Under Assumptions 4 and 5, take the gradient descent stepsize ηt = 1
µ(t+c)188

for a constant c ≥ 16
3γδ . Then for each j ∈ V and T ≥ 1,189

EQ [R(j, T)] ≤ 4
√

3
(√

N + 2
√

3γ−1δ−1
) (

1 + γ−1δ−1 + ω−1
)
NG2µ−1 ln(T + c). (5)

The proof ideas are as follows. Firstly, we estimate the general regret bounds for each node, which190

depend on the consensus error, the projection error, the compression error, and the gradient descent191

stepsize. Then comes the key points that we analyze the coupled relationship between the errors, and192

bound them with the consensus stepsize γ and the GD stepsize ηt. Finally, we choose proper γ and193

ηt to obtain Theorem 1. Complete proofs are attached to Appendix B.194

The consensus stepsize γ chosen in (3) depends on the compression ratio ω and the communicaiton195

graph paremeters δ and β. Notice that γ is an increasing function with respect to ω, and γ|ω=0 =196

0, γ|ω=1 = 1. Thus, γ ∈ (0, 1] for ω ∈ (0, 1]. If there is no compression (ω = 1) , then γ = 1, and197

Algorithm 1 exactly reduces to DAOL [7], as mentioned in the algorithm design.198

Theorem 1 shows that Algorithm 1 achieves the regret bounds O((ω−2N1/2 + ω−4)N
√
T) and199

O
((
ω−2N1/2 + ω−4

)
N ln(T)

)
for convex losses and strongly convex losses, respectively. The200

results suggest that201

• Algorithm 1 is no-regret in both convex case and strongly convex case, since the time averaged202

regret EQ[R(j,T)]/T → 0 for T →∞. The obtained regret bounds O(
√
T) and O(ln(T)) are in203

accordance with that of the centralized online algorithms in the respective cases [19, 20].204

5

• The node averaged regret EQ[R(j,T)]/N increases with N , which in line with the results in [18].205

• As the compression ratio ω decreases, fewer bits are needed for node-to-node communication in206

each iteration, while more iteration rounds are needed to reach the desired regret. ω can be used207

to balance the iteration rounds and the transmitted bits in each iteration from multiple concerns208

such as the bandwidth and agent computation capability. In practice, we can choose a proper ω209

to minimize the total transmitted bits or minimize the overall training time.210

3 One-point Bandit Feedback211

In this section, we apply difference compression to DOCO with one-point bandit feedback. We212

propose DC-DOBD algorithm, which basically follows DC-DOGD, except for the gradient estimation.213

Algorithm 2 Distributed Online One-point Bandit Gradient Descent with Difference Compression
(DC-DOBD)
Input: consensus stepsize γ, GD stepsizes {ηt}Tt=1, time T , exploration parameter ε, shrinkage

parameter ζ
Initialize: set x1i = 0, x̂1i = 0, s1i = 0, for each node i ∈ V .
1: for t = 1 to T − 1 do in parallel for each node i ∈ V
2: Compress the difference vector qti = Q(xti − x̂ti) and update x̂t+1

i = x̂ti + qti .
3: Spread qti and receive qtj , j ∈ Ni. Update st+1

i = sti +
∑
j∈Ni aijq

t
j .

4: Receive the one-point bandit feedback and construct gti = d
ε f

t
i (x

t
i + εuti)u

t
i.

5: Update the decision variable xt+1
i = P(1−ζ)K

(
xti + γ(st+1

i − x̂t+1
i)− ηtgti

)
.

Output: {xti}Tt=1

In the one-point bandit feedback, after making the decision xti at time t, agent i can query the loss214

function value at one point around xti and use the feedback to construct the gradient estimator gti .215

Like the procedure in [38], let agent i choose a unit-norm vector uti ∈ Rd uniformly at random,216

query the value of f ti at the point yti = xti + εuti, and calculate gti = d
ε f

t
i (y

t
i)u

t
i. Since the loss217

function f ti is defined in the set K, we slightly modify the projection in (1) as P(1−ζ)K to ensure218

the query point yti ∈ K. Algorithm 2 actually performs the gradient descent on the function219

f̂ ti (x) = Eu∈B [f ti (x+ εu)] restricted to the convex set (1 − ζ)K. It has been shown by [38] that220

E [gti] = ∇f̂ ti (xti). In the bandit setting, Assumptions 3 and 4 are modified as follows, which are221

commonly used in online bandit optimization [38, 21, 18].222

Assumption 6. The convex setK contains the ball of radius r centered at the origin, and is contained223

in the ball of radius R, i.e., rB ⊆ K ⊆ RB, B = {u ∈ Rd : ‖u‖ ≤ 1}.224

Assumption 7. For each i ∈ V and t = 1, 2, ..., T , the loss function f ti is convex and l-lipschitz225

continuous in K, i.e., |f ti (x)− f ti (y)| ≤ l‖x− y‖, ∀x, y ∈ K.226

Assumptions 6 and 7 lead to an uniform upper bound on the function value, i.e., there exists a constant227

B > 0 such that maxx,i,t |f ti (x)| ≤ B. Then we establish the expected regret bounds of Algorithm 2228

for convex and strongly convex losses, respectively.229

Theorem 2. Let common Assumptions 1, 2, 6 and 7 hold. Consider Algorithm 2 with the consensus230

stepsize γ chosen in (3). Denote231

H = 4
√

3
(√

N + 2
√

3γ−1δ−1
) (

1 + γ−1δ−1 + ω−1
)
. (6)

(i) (Convex case) Take the gradient descent stepsize ηt = 2Rε
dB
√
t+c

for a constant c ≥ 8
3γδ , ε =232 (

(1+4H)dBR

2(l+B
r)

) 1
2

(T+c)
1
4

T
1
2

and ζ = ε
r . Then for each j ∈ V and T ≥ 1,233

E [R(j, T)] ≤ 2NT
1
2 (T + c)

1
4

√
2(1 + 4H) (l + B/r) dBR. (7)

(ii) (Strongly convex case) With additional Assumptions 5, take the gradient descent stepsize ηt =234

1
µ(t+c) for a constant c ≥ 16

3γδ , ε =
(
Hd2B2 ln(T+c)

(l+B
r)µT

) 1
3

and ζ = ε
r . Then for each j ∈ V and T ≥ 1,235

E [R(j, T)] ≤ 3N
(
Hd2B2µ−1

) 1
3 (l + B/r)

2
3 T

2
3 ln

1
3 (T + c). (8)

6

Theorem 2 shows that Algorithm 2 is also no-regret, and it achieves the regret bounds236

O(d1/2N5/4T 3/4) and O(d2/3N7/6T 2/3 ln1/3(T)) for convex losses and strongly convex237

losses, respectively, which match the bounds obtained by [18]. The regrets are scaled with238 (
ω−2N 1/2 + ω−4

)1/2
and

(
ω−2N 1/2 + ω−4

)1/3
for convex and strongly convex losses, which in-239

dicates that the influence of the compression ratio ω on the regret bounds in the one-point bandit240

setting is less than that in the full information setting.241

4 Two-point Bandit Feedback242

In the two-point bandit feedback, agent i can query the loss function values at two points around243

xti. Like the procedure in [21], let agent i pick a unit-norm vector uti ∈ Rd uniformly at random,244

query the values of f ti at yti,1 = xti + εuti and yti,2 = xti − εuti, and estimate the gradient as245

gti = d
2ε

(
f ti (y

t
i,1)− f ti (yti,2)

)
uti. Then we obtain DC-DO2BD as a variant of DC-DOBD.246

Algorithm 3 Distributed Online Two-point Bandit Gradient Descent with Difference Compression
(DC-DO2BD)
Input: consensus stepsize γ, GD stepsizes {ηt}Tt=1, time T , exploration parameter ε, shrinkage

parameter ζ
Initialize: set x1i = 0, x̂1i = 0, s1i = 0, for each node i ∈ V .
1: for t = 1 to T − 1 do in parallel for each node i ∈ V
2: Compress the difference vector qti = Q(xti − x̂ti) and update x̂t+1

i = x̂ti + qti .
3: Spread qti and receive qtj , j ∈ Ni. Update st+1

i = sti +
∑
j∈Ni aijq

t
j .

4: Receive the two-point feedback and construct gti = d
2ε (f ti (x

t
i + εuti)− f ti (xti − εuti))uti.

5: Update the decision variable xt+1
i = P(1−ζ)K

(
xti + γ(st+1

i − x̂t+1
i)− ηtgti

)
.

Output: {xti}Tt=1

In the two-point bandit setting, the regret of node j ∈ V is modified as R2(j, T) =247 ∑T
t=1

∑N
i=1

fti (y
t
i,1)+f

t
i (y

t
i,2)

2 −
∑T
t=1

∑N
i=1 f

t
i (x
∗).248

Theorem 3. Let common Assumptions 1, 2, 6 and 7 hold. Consider Algorithm 3 with the consensus249

stepsize γ chosen in (3) and H defined in (6).250

(i) (Convex case) Take the gradient descent stepsize ηt = 2R
dl
√
t+c

for a constant c ≥ 8
3γδ , ε = 1√

T
251

and ζ = ε
r . Then for each j ∈ V and T ≥ 1,252

E [R2(j, T)] ≤ (1 + 4H)RNdl
√
T + c+ (3 + 2R/r)Ndl

√
T . (9)

(ii) (Strongly convex case) With additional Assumptions 5, take the gradient descent stepsize ηt =253
1

µ(t+c) for a constant c ≥ 16
3γδ , ε = ln(T)

T and ζ = ε
r . Then for each j ∈ V and T ≥ 1,254

E [R2(j, T)] ≤ µ−1Nd2l2H ln(T + c) + (3 + 2R/r)Ndl ln(T). (10)

Theorem 3 shows that Algorithm 3 achieves O((ω−2N1/2 + ω−4)Nd
√
T) and O((ω−2N1/2 +255

ω−4)Nd2 ln(T)) regret bounds for convex and strongly convex losses, respectively, which recovers256

the regret bounds O(
√
T) (convex) and O(ln(T)) (strongly convex) in the full information case,257

while the constants are larger than those of Theorem 1.258

5 Numerical Experiments259

In this section, we evaluate the three proposed algorithms on a real-world online problem. A260

prominent example is the diabetes prediction task, which aims to build a model to diagnose diabetes261

through several risk factors. Consider the distributed online regularized logistic regression with the262

local loss function263

f ti (x) =
∑S

j=1
log
(
1 + exp

(
−bti,j

〈
ati,j , x

〉))
+
µ

2
‖x‖2 , (11)

7

where µ is the regularization parameter, and a batch data samples {(ai,j , bi,j)}Sj=1 are revealed to264

agent i at time t. We adopt diabetes-binary-BRFSS2015 dataset with 70692 instances, 21 features,265

and 2 labels from Kaggle 1. Here, ai,j ∈ Rd with d = 21, and bi,j ∈ {−1, 1}. We standardize the266

data samples and distribute them evenly among N agents under the sorted setting, i.e., each agent267

only gets data samples from one class. The connected communication network G(N,M) with N268

nodes and M edges is generated randomly by tool NetworkX [39], and then we use the Metropolis269

rule [40] to construct the connectivity matrix A to satisfy Assumption 1. We repeat each experiment270

ten times and depict the mean curve 2. The choice of parameters is given in Appendix E.271

Comparison experiment We run our algorithms DC-DOGD, DC-DOBD, DC-DO2BD, and make272

comparisons with ECD-AMSGrad [17], for the convex case (µ = 0) and strongly convex case273

(µ = 1). The compressor type, the compression ratio, and the communication network are kept the274

same. Take the setting of QSGD2 with ω = 0.3 over G(9, 18) as an example. We plot the time275

averaged maximum regret SR(T) := maxj R(j,T)/T versus the time horizon T and versus the total276

number of transmitted bits in Fig. 1, where the best solution in the hindsight x∗ is obtained by277

LogisticRegression optimizer from scikit-learn [41].278

Fig. 1 shows that the time averaged regrets of DC-DOGD, DC-DOBD, and DC-DO2BD go to279

zero as T goes to infinity, which is in agreement with the theoretical results that our algorithms are280

no-regret. Among the three proposed algorithms, the one-bandit feedback has the worst performance,281

while using two-bandit information can improve the performance and even reach that of the full282

information feedback. ECD-AMDGrad gets deteriorated in the first few steps because the inverse of283

the second raw moment estimation is large and this algorithm does not have a projection to restrict284

variables. Then, ECD-AMDGrad declines fast, while its time-average regret can not reach zero.285

Clearly, DC-DOGD and DC-DO2BD significantly outperform ECD-AMDGrad.286

(a) Convex (b) Convex (c) Strongly convex (d) Strongly convex

Figure 1: Comparison of algorithms DC-DOGD, DC-DOBD, DC-DO2BD, and ECD-AMSGrad with
QSGD2, ω = 0.3, G(9, 18).

Impact of compression ratio and compressor type Fixing the compressor type (Topk) and the287

graph G(9, 18), we run DC-DOGD with different compression ratios (ω = 0.05, 0.1, 0.5) for strongly288

convex losses 3. As the baseline we consider DAOL [7], which is with exact communication and is289

the special case of DC-DOGD with ω = 1. The greater the compression degree (less ω), the more290

iteration rounds are needed to reach the ε average regret as Fig. 2a shows, while the total transmitted291

bits are actually the fewer as Fig. 2b shows. DC-DOGD with ω = 0.5 performs almost as good as292

DAOL while using 2× less total bits to reach the ε average regret. DC-DOGD with ω = 0.05 have293

approximately 10× reduction on bits to reach the ε average regret compared with DAOL.294

Then, we fix the compression ratio (ω = 0.3) and the graph G(9, 18), and run DC-DOGD with295

different compressors (Topk, Randk, RGossipp, GSGDs) for strongly convex losses. Figs. 2c and296

2d show that Randk and RGossipp have almost the same performance. It is expected, since in297

Randk each element of the vector has the probability ω = k/d to be chosen to be transmitted, which298

is equivalent to randomly transmitting the whole vector with the probability p = ω. Besides, Figs. 2c299

1The data set is from https://www.kaggle.com/code/encode0/diabetes-prediction-and-risk-factors-evaluation.
2All experiments are performed on a 64-bit Windows platform with the Intel(R) Core(TM) i7-6850K 3.6Ghz

CPU. The codes are provided in the supplementary materials.
3Since the trajectories in the convex case and strongly convex case share similar trends, we only present the

experiment results in the strongly convex case, for space limitation.

8

and 2d show that Topk has better performance than Randk, which is in line with the intuition that300

the largest k coordinates contain more useful information than arbitrary k coordinates. In addition,301

quantization GSGDs performs better in reducing the total transmitted bits than sparsification under302

the same compression ratio.

(a) Compression ratio (b) Compression ratio (c) Compressor type (d) Compressor type

Figure 2: The impact of compression ratio and compressor type for DC-DOGD over G(9, 18) in the
strongly convex case.

303

Impact of topology and node number The network topology concerns the parameters δ and β,304

which influence the choice of the consensus stepsize γ as well as the algorithm performance. A305

simpler topology with fewer edges needs fewer bits to transmit information in each iteration, while306

more iteration rounds are needed for decision consensus. Thus, there will be a tradeoff. We take307

DC-DOGD in the strongly convex case as an example. Fixing the compressor (Top1) with the308

compression ratio (ω = 0.05), we assess DC-DOGD over three basic topologies (ring, G(N, 2N),309

full connected). Fig. 3a shows that the full connected graph uses the smallest iteration round to reach310

the ε average regret, while Fig. 3b illustrates that the total numbers of transmitted bits to reach the ε311

average regret are close.312

Finally, we let the node number N vary from to 10 to 50, and run DC-DOGD, DC-DOBD, DC-313

DO2BD with the same compressor Top2, the same compression ratio ω = 0.1, over the full314

connected graph, for convex losses and strongly convex losses. We plot the node averaged regret315

AR(T) := maxj R(j,T)/N versus the node number N in Figs. 3c and 3d.

(a) Different topologyies (b) Different topologies (c) Convex (d) Strongly convex

Figure 3: The impact of topology and node number.
316

6 Conclusions317

In this paper, we considered DOCO with the full information feedback, one-point and two-points318

bandit feedback. We designed provably no-regret distributed online algorithms that work with ω-319

contracted compressors. The obtained regret bounds for both convex and strongly convex losses320

matched those of uncompressed algorithms in the literature. We further assessed the influence of the321

compressor type and the compression ratio ω on the regrets, and showed that ω can be used to balance322

the iteration rounds and the transmitted bits according to the bandwidth. The limitation of this work is323

that the obtained regret bounds show high order inverse dependence on the compression ratio, which324

are pretty conservative and may be further improved. We believe this paper is an important step in325

this direction. Future research includes designing provably no-regret distributed online algorithms326

with other compression schemes such as extrapolation compression.327

9

References328

[1] Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends R© in Optimization,329

2(3-4):157–325, 2016.330

[2] David Sculley and Gabriel M Wachman. Relaxed online svms for spam filtering. In Proceedings of the331

30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,332

pages 415–422, 2007.333

[3] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online dictionary learning for sparse334

coding. In Proceedings of the 26th Annual International Conference on Machine Learning, pages 689–696,335

2009.336

[4] Deming Yuan, Alexandre Proutiere, and Guodong Shi. Distributed online linear regressions. IEEE337

Transactions on Information Theory, 67(1):616–639, 2020.338

[5] Wenpeng Zhang, Peilin Zhao, Wenwu Zhu, Steven CH Hoi, and Tong Zhang. Projection-free distributed339

online learning in networks. In International Conference on Machine Learning, pages 4054–4062. PMLR,340

2017.341

[6] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process optimization in342

the bandit setting: No regret and experimental design. In Proceedings of the 27th International Conference343

on Machine Learning, number CONF. Omnipress, 2010.344

[7] Feng Yan, Shreyas Sundaram, SVN Vishwanathan, and Yuan Qi. Distributed autonomous online learn-345

ing: Regrets and intrinsic privacy-preserving properties. IEEE Transactions on Knowledge and Data346

Engineering, 25(11):2483–2493, 2012.347

[8] Deming Yuan, Alexandre Proutiere, and Guodong Shi. Distributed online optimization with long-term348

constraints. IEEE Transactions on Automatic Control, 67(3):1089–1104, 2022.349

[9] Jueyou Li, Chaojie Li, Wenwu Yu, Xiaomei Zhu, and Xinghuo Yu. Distributed online bandit learning in350

dynamic environments over unbalanced digraphs. IEEE Transactions on Network Science and Engineering,351

8(4):3034–3047, 2021.352

[10] Dan Alistarh. A brief tutorial on distributed and concurrent machine learning. In Proceedings of the 2018353

ACM Symposium on Principles of Distributed Computing, pages 487–488, 2018.354

[11] Tuncer Can Aysal, Mark J Coates, and Michael G Rabbat. Distributed average consensus with dithered355

quantization. IEEE Transactions on Signal Processing, 56(10):4905–4918, 2008.356

[12] Ruggero Carli, Fabio Fagnani, Paolo Frasca, Tom Taylor, and Sandro Zampieri. Average consensus on357

networks with transmission noise or quantization. In 2007 European Control Conference (ECC), pages358

1852–1857. IEEE, 2007.359

[13] Hanlin Tang, Shaoduo Gan, Ce Zhang, Tong Zhang, and Ji Liu. Communication compression for360

decentralized training. Advances in Neural Information Processing Systems, 31, 2018.361

[14] Anastasia Koloskova, Sebastian Stich, and Martin Jaggi. Decentralized stochastic optimization and gossip362

algorithms with compressed communication. In International Conference on Machine Learning, pages363

3478–3487. PMLR, 2019.364

[15] Navjot Singh, Deepesh Data, Jemin George, and Suhas Diggavi. Sparq-sgd: Event-triggered and com-365

pressed communication in decentralized optimization. IEEE Transactions on Automatic Control, 2022.366

[16] Yiwei Liao, Zhuorui Li, Kun Huang, and Shi Pu. Compressed gradient tracking methods for decentralized367

optimization with linear convergence. arXiv preprint arXiv:2103.13748, 2021.368

[17] Guangxia Li, Jia Liu, Xiao Lu, Peilin Zhao, Yulong Shen, and Dusit Niyato. Decentralized online369

learning with compressed communication for near-sensor data analytics. IEEE Communications Letters,370

25(9):2958–2962, 2021.371

[18] Jinlong Lei, Peng Yi, Yiguang Hong, Jie Chen, and Guodong Shi. Online convex optimization over372

erdős-rényi random networks. Advances in neural information processing systems, 33:15591–15601, 2020.373

[19] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Proceed-374

ings of the 20th International Conference on Machine Learning, pages 928–936, 2003.375

[20] Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex optimization.376

Machine Learning, 69(2):169–192, 2007.377

10

[21] Alekh Agarwal, Ofer Dekel, and Lin Xiao. Optimal algorithms for online convex optimization with378

multi-point bandit feedback. In Proceedings of the 23rd Annual Conference on Learning Theory, pages379

28–40. Citeseer, 2010.380

[22] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and its381

application to data-parallel distributed training of speech dnns. In Fifteenth Annual Conference of the382

International Speech Communication Association. Citeseer, 2014.383

[23] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signsgd:384

Compressed optimisation for non-convex problems. In International Conference on Machine Learning,385

pages 560–569. PMLR, 2018.386

[24] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd: Communication-387

efficient sgd via gradient quantization and encoding. Advances in Neural Information Processing Systems,388

30, 2017.389

[25] Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent. In390

Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages391

440–445, 2017.392

[26] Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. Advances in393

Neural Information Processing Systems, 31, 2018.394

[27] Aritra Dutta, El Houcine Bergou, Ahmed M Abdelmoniem, Chen-Yu Ho, Atal Narayan Sahu, Marco Canini,395

and Panos Kalnis. On the discrepancy between the theoretical analysis and practical implementations396

of compressed communication for distributed deep learning. In Proceedings of the AAAI Conference on397

Artificial Intelligence, volume 34, pages 3817–3824, 2020.398

[28] Jiawei Jiang, Fangcheng Fu, Tong Yang, and Bin Cui. Sketchml: Accelerating distributed machine learning399

with data sketches. In Proceedings of the 2018 International Conference on Management of Data, pages400

1269–1284, 2018.401

[29] Hyeontaek Lim, David G Andersen, and Michael Kaminsky. 3lc: Lightweight and effective traffic402

compression for distributed machine learning. Proceedings of Machine Learning and Systems, 1:53–64,403

2019.404

[30] Debraj Basu, Deepesh Data, Can Karakus, and Suhas Diggavi. Qsparse-local-sgd: Distributed sgd with405

quantization, sparsification and local computations. Advances in Neural Information Processing Systems,406

32, 2019.407

[31] Jiaqi Zhang, Keyou You, and Lihua Xie. Innovation compression for communication-efficient distributed408

optimization with linear convergence. arXiv preprint arXiv:2105.06697, 2021.409

[32] Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. Ef21: A new, simpler, theoretically better, and410

practically faster error feedback. Advances in Neural Information Processing Systems, 34, 2021.411

[33] Constantin Philippenko and Aymeric Dieuleveut. Preserved central model for faster bidirectional compres-412

sion in distributed settings. Advances in Neural Information Processing Systems, 34, 2021.413

[34] Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani. Fedpaq:414

A communication-efficient federated learning method with periodic averaging and quantization. In415

International Conference on Artificial Intelligence and Statistics, pages 2021–2031. PMLR, 2020.416

[35] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In International417

Conference on Learning Representations, 2018.418

[36] Nitish Shirish Keskar and Richard Socher. Improving generalization performance by switching from adam419

to sgd. arXiv preprint arXiv:1712.07628, 2017.420

[37] Elad Hazan, Alexander Rakhlin, and Peter Bartlett. Adaptive online gradient descent. Advances in Neural421

Information Processing Systems, 20, 2007.422

[38] Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. Online convex optimization in423

the bandit setting: gradient descent without a gradient. In Proceedings of the 16th Annual ACM-SIAM424

Symposium on Discrete Algorithms, pages 385–394, 2005.425

[39] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and function426

using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States),427

2008.428

11

[40] Lin Xiao and Stephen Boyd. Fast linear iterations for distributed averaging. Systems & Control Letters,429

53(1):65–78, 2004.430

[41] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,431

Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in432

python. the Journal of Machine Learning Research, 12:2825–2830, 2011.433

Checklist434

1. For all authors...435

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s436

contributions and scope? [Yes]437

(b) Did you describe the limitations of your work? [Yes] See Section 6 Conclusions.438

(c) Did you discuss any potential negative societal impacts of your work? [No] This439

work is a theoretical finding to solve the communication bottleneck of the distributed440

algorithms. Therefore, this work does not present foreseeable societal impacts.441

(d) Have you read the ethics review guidelines and ensured that your paper conforms to442

them? [Yes]443

2. If you are including theoretical results...444

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Assump-445

tions 1, 2, 3, 4, 5, 6, and 7.446

(b) Did you include complete proofs of all theoretical results? [Yes] We present the proof447

ideas in the paper and put the complete proofs in supplemental materials due to space448

limitation.449

3. If you ran experiments...450

(a) Did you include the code, data, and instructions needed to reproduce the main experi-451

mental results (either in the supplemental material or as a URL)? [Yes] Codes are in452

the supplemental material. Data are from Kaggle with URL. Instructions are included453

in Section 5.454

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they455

were chosen)? [Yes] See Section 5 and Appendix E456

(c) Did you report error bars (e.g., with respect to the random seed after running experi-457

ments multiple times)? [No] We repeat each experiment ten times and only depict the458

mean curves to make the figures easier to read. Actually, our experiment results with459

different random seeds are similar.460

(d) Did you include the total amount of compute and the type of resources used (e.g., type461

of GPUs, internal cluster, or cloud provider)? [Yes] See Section 5 footnote 2462

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...463

(a) If your work uses existing assets, did you cite the creators? [Yes] We use the tools464

NetworkX and scikit-learn with citation. We use the open dateset from Kaggle with465

URL.466

(b) Did you mention the license of the assets? [Yes] See Appendix F467

(c) Did you include any new assets either in the supplemental material or as a URL? [No]468

(d) Did you discuss whether and how consent was obtained from people whose data you’re469

using/curating? [No]470

(e) Did you discuss whether the data you are using/curating contains personally identifiable471

information or offensive content? [No]472

5. If you used crowdsourcing or conducted research with human subjects...473

(a) Did you include the full text of instructions given to participants and screenshots, if474

applicable? [N/A]475

(b) Did you describe any potential participant risks, with links to Institutional Review476

Board (IRB) approvals, if applicable? [N/A]477

(c) Did you include the estimated hourly wage paid to participants and the total amount478

spent on participant compensation? [N/A]479

12

	Introduction
	Full Information Feedback
	Algorithm design
	Regret bounds

	One-point Bandit Feedback
	Two-point Bandit Feedback
	Numerical Experiments
	Conclusions
	Basic Inequalities
	Proofs of Section 2
	Proofs of Section 3
	Proofs of Section 4
	Parameters choose details
	Additional experiments

