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Abstract

Masked Autoencoders (MAE) based on a reconstruction task have risen to be
a promising paradigm for self-supervised learning (SSL) and achieve state-of-
the-art performance across different benchmark datasets. However, despite its
impressive empirical success, there is still limited theoretical understanding of
it. In this paper, we propose a theoretical understanding of how masking matters
for MAE to learn meaningful features. We establish a close connection between
MAE and contrastive learning, which shows that MAE implicit aligns the mask-
induced positive pairs. Built upon this connection, we develop the first downstream
guarantees for MAE methods, and analyze the effect of mask ratio. Besides, as
a result of the implicit alignment, we also point out the dimensional collapse
issue of MAE, and propose a Uniformity-enhanced MAE (U-MAE) loss that can
effectively address this issue and bring significant improvements on real-world
datasets, including CIFAR-10, ImageNet-100, and ImageNet-1K. Code is available
at https://github.com/zhangq327/U-MAE.

1 Introduction

Recently, self-supervised learning (SSL) has been proposed as a promising paradigm for learning
data representations without access to labels. Beside the popular contrastive learning methods
[4, 14, 12, 27], recently there has been a renaissance of reconstruction-based autoencoders for SSL,
for example, MAE [15], BEiT [1], iBOT [32], and SimMIM [29], which demonstrate state-of-the-
art performance on various downstream tasks. Taking MAE as an example, it learns to reconstruct the
masked patches from the unmasked context with an encoder-decoder architecture, from which we can
see that there are two main components in MAE: masking and autoencoders. While for autoencoders,
its canonical one, even equipped with expressive neural networks, is still less competitive than modern
SSL methods [4], which indicates that autoencoders may not be the key factor for the success of
MAE. Then for masking, MAE needs a very large mask ratio, e.g., 75% patches of the input image
are masked out. Such a large mask ratio will lead to the loss of most image contents that are hardly
recoverable from the rest. Further considering that MAE deliberately chooses a weak decoder with a
shadow architecture, we believe that reconstruction might not be the ultimate goal of MAE in the
learning process. Then, some natural questions are raised here:

What is the role of masking in MAE? How does it affect the downstream performance?

To answer these questions, firstly, we build a close connection between MAE and contrastive learning.
In particular, we find that masking could produce implicit positive pairs while MAE’s reconstruction
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loss is lower bounded by an alignment loss on these positive pairs. Further for feature uniformity, we
notice that although MAE will not fully collapse, it still suffers from dimensional collapse where
features lie in a low-dimensional space and become highly alike. Inspired by the uniformity loss
in contrastive learning, we propose a Uniformity-enhanced MAE (U-MAE) to promote the feature
diversity. Empirically, the proposed U-MAE attains significant improvements over MAE on the linear
probing task across different benchmark datasets (CIFAR-10, ImageNet-100, and ImageNet-1K) and
different ViT backbones, and it effectively eliminates the feature collapse issue of MAE. Secondly,
the connection between MAE and contrastive learning enables us to establish the first theoretical
guarantee for downstream classification among MAE methods. Our guarantees suggest that a large
mask ratio is indeed necessary for bridging semantically similar samples together.

We summarize our contributions as follows:

• We propose a new theoretical understanding of MAE by establishing a formal connection
between MAE and contrastive learning. In particular, we show that a small reconstruction
loss implies better alignment of mask-induced positive pairs.

• Built upon this connection, we establish the first theoretical guarantee on the downstream
performance among MAE methods, which helps to understand the role of high mask ratio.

• We point out the dimensional collapse issue of MAE, and propose U-MAE that enhances
feature diversity with a uniformity loss. Empirically, U-MAE improves the linear probing
accuracy of MAE by a large margin across different real-world datasets and backbones.

2 Related work

Self-Supervised Learning. Canonical deep learning relies on labeled data (e.g., ImageNet) to train
deep models. Instead, self-supervised learning (SSL) aims to learn meaningful representations
from fully unlabeled data. A particular example is contrastive learning (CL) that learns to align
augmented samples in the feature space, which achieves remarkable success and largely closes the
performance gap between supervised and self-supervised learning [4, 14, 12, 27]. Recently, Masked
Image Modeling (MIM), stemming from the Masked Language Modeling (MLM) paradigm widely
adopted in NLP (e.g., BERT [9]), also shows promising results in visual representation learning, to
name a few, BEiT [1], iBOT [32], SimMIM [29], and MAE [15]. Among these MIM methods, the
former three (similar to BERT) have close connections to contrastive learning (their objective can be
directly formulated as contrastive loss [20]), while MAE has several key differences to BERT-like
methods. As the name suggests, MAE is more like an autoencoder rather than a token predictor: it
adopts a pixel-level reconstruction loss, omits the masked tokens in the encoder input, and utilizes
a fully non-linear encoder-decoder architecture. In this work, we mainly provide a theoretical
understanding of the working mechanism of MAE, in particular, how it learns generalizable features.
Meanwhile, our analysis can also be applied to other MIM methods by different specifications of the
encoder-decoder and their inputs.

Understanding MAE. Despite the impressive success of MAE, the theoretical understanding of it
is largely underexplored. Among several concurrent attempts, Cao et al. [2] mostly focus on the
attention mechanism of MAE through an integral kernel perspective. A similar theoretical analysis
[23] also shows that autoencoders can preserve useful semantics in the pretraining data. However,
we notice that these MAE analyses mostly focus on the autoencoder architecture, while they largely
ignore the role of masking. As shown by He et al. [15], the patchwise masking strategy is a key
component that distinguishes MAE from standard autoencoders, and different mask ratios ρ have a
large impact on the downstream performance of pretrained features of MAE. Therefore, our work
aims to explain how the masking-based reconstruction task learns meaningful representations.

Downstream Generalization of SSL. Motivated by the empirical success of SSL, many researchers
try to theoretically understand how SSL works. Arora et al. [25] establish downstream guarantees
of contrastive learning representations. Wang et al. [28] revise their bounds by resolving the class
collision issues, and develop a new understanding of contrastive learning from the perspective of
augmentation overlap. Haochen et al. [13] propose an augmentation graph framework and characterize
the downstream performance of the eigen-decomposition solution. While these prior works focus
on the contrastive learning method, there are little theoretical understanding on the downstream
performance on MAE. In this work, we establish the first theoretical guarantee on the downstream
performance among MAE methods and discuss the effect of mask ratios theoretically and empirically.

2



3 Masked Autoencoders Perform Implicit Contrastive Learning

In this section, we establish a formal connection between MAE and contrastive learning by showing
that MAE implicitly aligns positive input pairs induced from the masking mechanism. Specifically,
in Section 3.2, we show how a small MAE loss implies a small alignment loss. Motivated by
this connection, in Section 3.3, we further study its feature collapse issue and point out that MAE
suffers from dimensional feature collapse. To address this issue, in Section 3.4, we propose a
Uniformity-enhanced (U-MAE) loss to further promote feature diversity.

3.1 Mathematical Formulation for MAE

We begin by introducing a mathematical formulation of MAE [15]. Given a natural image x̄ from an
unlabeled dataset Du, we first reshape it into n patches, denoted as x̄ ∈ Rn×s where s denotes the
patch size (e.g., 16× 16 in ViT [10]). Then, we draw a random binary mask m ∈ {0, 1}n (drawing 0
with probability ρ, i.e., the mask ratio), and obtain two complementary masked views of x̄:

x1 = x̄[m] ∈ Rn1×s, x2 = x̄[1−m] ∈ Rn2×s, (1)

where n1 = n(1− ρ), n2 = nρ are integers satisfying n = n1 +n2. We denote this random masking
process as drawing x1, x2 from the joint distribution M(x1, x2|x̄), whose marginal distributions
are M1(x1|x̄) and M2(x2|x̄), respectively. The MAE model h = g ◦ f is an encoder-decoder
architecture, where an encoder f maps inputs x1 to a latent feature z1 = f(x1), and a decoder g
maps the latent feature z1 back to the pixel space to reconstruct the complementary target view x2.
Specifically, MAE adopts a simple mean square error (MSE) loss:

LMAE(h) = Ex̄Ex1,x2|x̄ ∥g(f(x1))− x2∥2 , (2)

where the decoder output x̂2 = h(x1) = g(f(x1)) is assumed to be l2-normalized following the
original paper of MAE saying that normalized target x2 yields better performance [15]. Although our
analysis is based on MAE, it is quite general and can be naturally transferred to other Masked Image
Modeling (MIM) frameworks, such as BEiT [1], iBOT [32], and SimMIM [29]. This is because their
differences mainly lie in the implementation details, which is discussed in detail in Appendix C.

The Bipartite Mask Graph GM of MAE. We notice that MAE essentially learns to pair the two
complementary views x1, x2 via the reconstruction task, which can be modeled by a mask graph GM .
Denote the set of all unmasked views as X1 = {x1} and the set of all masked views as X2 = {x2},
where the two sets are assumed to be finite3 (can be exponentially large), i.e., |X1| = N1, |X2| = N2.
The mask graph GM over the joint set X = X1 ∪ X2 is defined here:

• Node: each view x ∈ X .
• Edge: the edge weight wx1,x2

between any x1, x2 ∈ X is defined as their joint probabil-
ity M(x1, x2) = Ex̄M(x1, x2|x̄). In other words, there is an edge between two views
(i.e., wx1,x2

> 0) if and only if they are complementary views generated by masking.

Considering the masking process in Eq. 1, there only exist edges between the two sets X1,X2 and
there is no edge within each set itself. Thus, the mask graph GM is a bipartite graph. Its adjacency
matrix can be simply defined as AM ∈ RN2×N1 where (AM )x2,x1

= wx1,x2
for x1 ∈ X1, x2 ∈ X2.

As long as ρ ̸= 0.5, N1 ̸= N2 and AM is not necessarily a square matrix. We can define the
normalized adjacency matrix as ĀM = D

−1/2
2 AD

−1/2
1 , where D1, D2 are the diagonal degree

matrices with elements dx1 =
∑

x2
wx1,x2 and dx2 =

∑
x1

wx1,x2 , respectively.

3.2 MAE Implicitly Aligns Positive Input Pairs

As the name suggests, MAE is basically composed of two key designs: mask and autoencoders.
For simplicity, we begin by assuming that the encoder-decoder architecture of MAE is capable of
accomplishing the vanilla autoencoder task, i.e., reconstructing the original input.
Assumption 3.1. For any non-degenerate decoder g, we assume the existence of a pseudo-inverse
encoder fg ∈ F such that the resulting pseudo autoencoder hg = g◦fg satisfies Ex∥hg(x)−x∥2 ≤ ε,
where x represents either unmasked data x1 or masked data x2.

3This is used to avoid non-essential nuances related to functional analysis. Our discussion can also be
extended to the infinite data regime following Haochen et al. [13].
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Figure 1: (a) An illustration of the mask graph and the corresponding augmentation graph of MAE.
Different colors denote different belonging classes. (b) Comparison of the singular values of learned
features with 1) random initialization, 2) MAE loss, 3) our U-MAE loss. (c) The changing process of
effective rank [24] of the encoded features trained with different objectives (MAE and U-MAE).

This assumption is likely to hold in practice, since deep networks already demonstrate excellent
performance on the autoencoding task [19, 17]. Besides, some works show that the Transformer
network adopted in MAE has universal approximation ability [30]. However, we note that vanilla
autoencoder task cannot learn as meaningful representations as MAE. For example, without applying
any masks, the linear probing accuracy of MAE drops dramatically from 61.2% to 17.4% on
ImageNet-100. This indicates that the autoencoding ability (studied in [2, 23]) is not enough to
explain the efficacy of MAE, which motivates us to further explore the masking mechanism in MAE.

MAE Performs Asymmetric Input-output Alignment on the Mask Graph. First, we show that the
MAE loss can be lower bounded by an asymmetric alignment loss between the two complementary
views x1, x2 using two-branch autoencoders h (real) and hg (pseudo), respectively.
Theorem 3.2. Under Assumption 3.1, the MAE loss can be lower bounded by

LMAE(h) ≥ Lasym(h)− ε+ const, (3)

and Lasym(h) = −Ex1,x2h(x1)
⊤hg(x2) = − tr(H⊤ĀMHg), (4)

where H denotes the output matrix of h on X1 whose x1-th row is Hx1
=

√
dx1

h(x1), and Hg

denotes the output matrix of hg on X2 whose x2-th row is (Hg)x2
=

√
dx2

hg(x2).

As a result, a small MAE loss implies a small alignment loss (as a lower bound), which indicates that
MAE will implicitly align the masked and unmasked views with an encoder-decoder architecture.
However, it is a little bit confusing why aligning the two complementary views helps learn meaningful
features. For a closer look, we find that via masking, MAE actually produces implicit connections
among different input samples in the form of 2-hop connectivity. Consider a pair of 2-hop input
neighbors x1, x

+
1 ∈ X1 that share a common complementary target view x2 ∈ X2 (more likely to

happen under a larger mask ratio ρ), as illustrated in Figure 1(a). By enforcing x1, x
+
1 to reconstruct

the same output x2, MAE will implicitly map their features together. In this way, the 2-hop input
neighbors serve as positive pairs that will be implicitly aligned as in contrastive learning.

Motivated by this observation, we seek to establish a formal connection between MAE and contrastive
learning below. In particular, we will show that like the data augmentations in contrastive learning,
the masking mechanism of MAE also implicitly introduces affinities between input samples and
create (implicit) positive pairs. For a formal exposure, we define an augmentation graph GA for
modeling the relationship between all input samples in X1, which is different from the mask graph
GM for modeling the input-output relationship between X1 and X2.

The Augmentation Graph GA of MAE. We construct an augmentation graph GA for modeling
the mask-induced affinity between all unmasked views in X1

4. Specifically, for any two views
x1, x

+
1 ∈ X1, we define their edge weight in the adjacency matrix A as the probability of having the

same target view, i.e., A(x1, x
′
1) = Ex2

M(x1|x2)M(x′
1|x2)

5. Note that the augmentation graph

4We can also construct an augmentation graph G′
A on the output space X2, where the (x2, x

′
2)-th element of

the adjacency matrix A′ is defined by A(x2, x
′
2) = Ex1M(x2|x1)M(x′

2|x1). As the results are quite similar,
we mainly take the input space as an example in this work.

5M(x1|x2) = M(x1, x2)/M(x2) can further be calculated by marginalizing M(x1, x2|x̄).
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has the same degree matrix D1 as the mask graph. Based on this formulation, we define a symmetric
alignment loss w.r.t. the positive pairs (x1, x

+
1 ) ∼ A(x1, x

+
1 ) drawn according to the augmentation

graph:
Lalign(h) = −Ex1,x

+
1
h(x1)

⊤h(x+
1 ). (5)

MAE Performs Symmetric Input Alignment on the Augmentation Graph. Built upon the
augmentation graph constructed above, we theoretically verify the intuition on 2-hop connectivity by
establishing the relationship between the asymmetric input-output alignment loss on the mask graph
and the symmetric input alignment loss on the augmentation graph in the following theorem.
Theorem 3.3. The asymmetric alignment loss on the mask graph (Eq. (4)) can be lower bounded by
the symmetric alignment loss on the augmentation graph (Eq. (5)):

Lasym(h) ≥
1

2
Lalign(h) + const. (6)

Proof Sketch. We provide a proof sketch of this inequality as it is the key to our analysis. We first
symmetrize the asymmetric alignment loss Lasym(h) with an arithmetic inequality, and then establish
its equivalence to the symmetric alignment loss Lalign(h). The derivation highlights the intrinsic
connection between the mask graph (adjacency matrix AM ) and the augmentation graph (adjacency
matrix A).

Lasym(h) = Ex1,x2h(x1)
⊤hg(x2)

= −tr(H⊤ĀMHg) (reformulated to the mask graph (Theorem 3.2))

≥ −1

2
(∥H⊤ĀM∥2 + ∥Hg∥2) (because tr(AB) ≤ 1

2
(∥A∥2 + ∥B∥2))

= −1

2
tr(H⊤AMA⊤

MH)− 1

2
(because ∥Hg∥2 =

∑
x2

dx2∥hg(x2)∥2 = 1)

= −1

2

∑
x1,x′

1

Ax1,x′
1
h(x1)

⊤h(x′
1)−

1

2
(transformed to the augmentation graph)

=
1

2
Lalign(h)−

1

2
. (following the definition in Eq. (5))

Combining Theorem 3.2 and Theorem 3.3, we arrive at the main theorem showing that MAE’s
reconstruction loss can be bounded by the symmetric alignment loss of the positive input pairs
(x1, x

+
1 ) drawn according to the augmentation graph.

Theorem 3.4. Under Assumption 3.1, MAE’s reconstruction loss (Eq. (2)) can be lower bounded by
the alignment loss between positive pairs (x1, x

+
1 ) ∼ A(x1, x

+
1 ),

LMAE(h) ≥
1

2
Lalign(h)− ε+ const = −1

2
Ex1,x

+
1
h(x1)

⊤h(x+
1 )− ε+ const. (7)

In this way, we establish a close relationship between the two mainstream SSL paradigms (MAE and
contrastive learning) by showing that a small MAE loss will imply a small alignment loss of positive
input pairs as in contrastive learning. Leveraging this connection, we could establish guarantees for
the downstream generalization of MAE (discussed in Section 4).

Comparison to Contrastive Learning. Comparing the alignment loss (Eq. (5)) to that of contrastive
learning [22, 4, 13], we notice that the main difference lies in that contrastive learning aligns
features in the latent space of the encoder f , while MAE aligns features in the output space with an
encoder-decoder architecture h = g ◦ f . Nevertheless, we also note that most variants of contrastive
learning apply a nonlinear projection head g upon the encoder f before calculating the alignment
loss [4, 5, 14, 12, 6], and MAE also adopts a shadow decoder g. Therefore, we may also regard the
role of MAE’s decoder as the projection head in contrastive learning. Theoretically, if we further
assume the bi-Lipschitzness of the decoder, we can show that the MAE loss is further lower bounded
by an alignment loss defined in the feature space.
Corollary 3.5. Under Assumption 3.1 and the assumption that the decoder is L-bi-Lipschitz,
i.e., ∀ (x1, x2), 1/L∥x1−x2∥2 ≤ ∥g(x1)− g(x2)∥2 ≤ L∥x1−x2∥2. Then, the MAE reconstruction
loss can be lower bounded by the alignment loss w.r.t. the encoder outputs:

LMAE(h) ≥ −1/(2L) · Ex1,x
+
1
f(x1)

⊤f(x+
1 )− ε+ const. (8)

5



3.3 The Feature Collapse Issue in MAE

We have revealed that the MAE loss is closely related to an alignment loss. However, it is well known
that in contrastive learning, simply aligning the positive pairs will result in the full feature collapse,
because the alignment loss can also be minimized when the encoder produces a constant feature for
all inputs. There, various techniques are proposed to address the issue by incorporating an additional
loss to encourage feature uniformity or feature decorrelation [4, 14, 31], or by asymmetric structural
designs [12, 6, 3]. MAE does not implement any of these techniques, but its latent features still do
not fully collapse. One would wonder how MAE attains this property. In the following theorem, we
show that minimizing the MAE loss can provably get rid of the full feature collapse.
Theorem 3.6. When the encoder fully collapses, i.e., ∀x ∈ X1, f(x) = c, the MAE loss has a large
lower bound:

LMAE(h) ≥ Var(x2), (9)
where Var(x2) denotes the variance of masked targets computed on the training dataset.

MAE Can Avoid Full Feature Collapse. As the training data contain diverse images, the variance
Var(x2) will be relatively large. Therefore, unlike the alignment loss in contrastive learning, the
MAE loss cannot be minimized (to a small value) by a collapsed encoder. The main reason is that
alignment loss operates in a fully flexible latent space that allows a collapsed encoder to minimize the
loss, while in MAE, the reconstruction loss adopts a parameter-invariant and sample-dependent target
x2. In this case, a fully collapsed encoder can no longer minimize the reconstruction loss w.r.t. x2,
which, in turn, means that MAE will not fully collapse.

MAE Still Suffers from Dimensional Collapse. Although MAE can avoid full feature collapse, it
could still suffer from dimensional feature collapse where the learned features lie in a low dimensional
subspace [16, 18], which also limits its representation power. We empirically examine this issue on
ImageNet-100. Figure 1(b) shows that after learning, MAE’s features indeed become more collapsed
as there are fewer large singular values (indicating non-collapse dimensions). Quantitatively, Figure
1(c) shows that the features of MAE gradually collapse during the training process, as the effective
rank [24] becomes smaller and smaller. This shows that MAE suffers from an increasing degree of
dimensional feature collapse. Next, we introduce an explicit regularization to address this issue.

3.4 U-MAE: Enhancing Feature Diversity with an Explicit Uniformity Regularization

To further enhance the feature diversity of MAE, inspired by the uniformity loss in contrastive
learning [22, 4, 13], we propose the following Uniformity-enhanced MAE (U-MAE) loss with an
explicit regularization on feature uniformity through a coefficient λ > 0,

LU-MAE(h) = LMAE(h) + λ · Lunif(f), (10)

where Lunif(f) = Ex1
Ex−

1
(f(x1)

⊤f(x−
1 ))

2, (11)

and x−
1 denotes an independently drawn unmasked view from X1. Intuitively, the spectral uniformity

loss Lunif(f) [13] encourages a small feature similarity between random unmasked views, which
could effectively promote the feature diversity of all samples. As a preview of the results, we can
observe from Figures 1(b) & 1(c) that U-MAE effectively addresses the dimensional feature collapse
issue and improves the effective feature dimensionality by a large margin.

Theoretically, combined with Corollary 3.5, we can show that the U-MAE loss is lower-bounded by
the spectral contrastive loss with a specific choice of λ.
Theorem 3.7. Denote the spectral contrastive loss (SCL) from Haochen et al. [13] as

LSCL(f) = 2Lalign(f) + Lunif(f) = −2Ex1,x
+
1
f(x1)

⊤f(x+
1 ) + Ex1,x′

1
(f(x1)

⊤f(x−
1 ))

2. (12)

Under Assumption 3.1 and the assumption that the decoder is L-bi-Lipschitz, when λ = 1/(4L), the
U-MAE loss can be lower bounded by the SCL loss:

LU-MAE(h) ≥
1

4L
· LSCL(f)− ε+ const. (13)

As a result, minimizing the U-MAE loss will implicitly minimize the spectral contrastive loss among
input views. Leveraging this inherent connection, in the next section, we further explain the important
role of masking on the downstream generalization of MAE (as well as U-MAE).
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4 Downstream Generalization of Masked Autoencoders

In Section 3, we establish a close connection between MAE and contrastive learning. Therefore,
leveraging existing understandings of contrastive learning, this connection could provide new insights
to understand how the masking strategy affects MAE’s downstream generalization. In Section 4.1, we
first provide theoretical bounds on downstream performance based on the mask-induced augmentation
graph introduced in Section 3.2. Built upon these theoretical insights, in Section 4.2, we further
investigate the effect of mask ratios and explain the optimal mask ratio of MAE.

4.1 Theoretical Guarantees on Downstream Classification

In this part, leveraging the connection established in Section 3, we characterize the downstream
performance of U-MAE on the c-class linear classification task [25, 13], which is measured by the
prediction accuracy of natural images x̄ w.r.t. their labels y(x̄) when applying a linear prediction head
upon pretrained features. For simplicity, we adopt the mean classifier pf (x) = argmaxWff(x),
where Wf ∈ Rc×k is the weight of the linear classification head, and for y ∈ [c], the y-th row
Wy = Ex1|yf(x1)

⊤ contains the mean representation of the class y. Arora et al. [25] empirically
show that the mean classifier can obtain comparable performance to learnable linear heads.
Theorem 4.1. Denote the mask-induced label error as α = Ex̄,x1

1[y(x1) ̸= y(x̄)]. Then, for
∀ h ∈ H (the hypothesis class) with h = g ◦ f , the downstream classification error of its encoder can
be upper bounded by its U-MAE pretraining loss:

Pr(ȳ ̸= pf (x̄)) ≤ c1L · LU-MAE(h) + c2α+ c3Lε+ c4, (14)

where c1, . . . , c4 are constants and c3 > 1.

This theorem provides an upper bound on the downstream error of an encoder f with its U-MAE
pretraining loss, which is the first theoretical guarantee on the downstream performance of MAE
methods. As an implication of this theorem, a small U-MAE loss would provably imply a small
downstream classification error, which helps explain the good downstream generalization ability of
MAE [15]. Besides, we establish a common lower bound on the U-MAE loss that holds for all h ∈ H.
As a large common lower bound of U-MAE loss indicates that the downstream error will always have
a large upper bound, we should pursue a small common lower bound in the following theorem.
Theorem 4.2. The U-MAE pretraining loss has the following common lower bound:

∀ h ∈ H, LU-MAE(h) ≥
1

4L

N1∑
i=k+1

λ2
i − ε+ const, (15)

where λ1 ≥ · · · ≥ λN1
denote the eigenvalues of A.

Combining Theorem 4.1 and Theorem 4.2, we can see that the downstream error of MAE can be
minimized with a small vanilla autoencoding error ε, a small label error α, and smaller magnitude of
“residual eigenvalues”, i.e., {λk+1, . . . , λN1}. Here, residual eigenvalues represent the high frequency
components of the augmentation graph GA that cannot be fitted by k-dimensional features. The
vanilla autoencoding error ε depends on the capacity of the chosen model class H, while the label
error α and residual eigenvalues {λk+1, . . . , λN1} purely depend on the mask-induced augmentation
graph GA. Therefore, overall speaking, MAE with large capacity can have a smaller downstream error
with a smaller autoencoding error ε. In the meantime, the masking ratio ρ should be properly chosen
to ensure a small label error α and small magnitude of residual eigenvalues {λk+1, . . . , λN1

}. Indeed,
He et al. [15] show that the mask ratio has a decisive influence on the downstream performance
of MAE. Therefore, in the next part, we discuss how the choice of mask ratio would affect the
downstream generalization of MAE via the label error α and residual eigenvalues {λk+1, . . . , λN1

}.

4.2 The Effect of Mask Ratio on Downstream Generalization

A surprising fact in MAE is that the optimal mask ratio is pretty high, e.g., ρ = 0.75, where most
image contents are lost. Therefore, we are wondering why such a high mask ratio is necessary and
how it helps (instead of damaging) the learning of data representations. In this part, we provide both
theoretical and empirical insights on this problem based on our proposed theory.
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Figure 2: (a) Appropriate mask ratio can generate similar views from different samples in the same
class. (b) The influence of mask ratio on the average l2 distance on ImageNet-100 between intra-class
and inter-class samples. (c) The influence of mask ratio on the relative distance between intra-class
and inter-class samples.

Theoretical Insights. As discussed above, Theorems 4.1 & 4.2 suggest that a small label error α
and small magnitude of residual eigenvalues {λk+1, . . . , λN1} are important for good downstream
performance in MAE. In particular, we notice that the mask ratio ρ has a decisive influence on both
factors. On the one hand, the label error α will grow with a larger mask ratio, but it is only very large
under an extremely high mask ratio. Intuitively, α represents the possibility of recovering the original
class y from the left patches after masking. As illustrated in Figure 2(a), small or medium mask ratio,
even a large one of 0.75, hardly alters the belonging class, and only when the mask ratio is extremely
high, e.g., 0.95, we can hardly tell it is still a car. On the other hand, according to the spectral graph
theory [7], the residual eigenvalues {λk+1, . . . , λN1

} represent the high frequency components of
the graph, which have large magnitude when the graph is less connected, e.g., having many disjoint
components. Therefore, a small downstream error requires the augmentation graph GA to have better
connectivity. In this aspect, Figure 2(a) shows that when the mask ratio increases, many dissimilar
patterns are masked out and the left patches can have an increasing level of similarity, particularly
among intra-class samples, e.g., the tires of the two cars. Therefore, a large mask ratio can effectively
improve the connectivity of the augmentation graph by reducing sample variation and increasing
inter-sample similarity. Considering both the effects on the label error α and the residual components
{λk+1, . . . , λN1

}, we notice that there is a tradeoff in the choice of mask ratio: we should choose a
properly large one to increase graph connectivity, and avoid too large mask ratio as it leads to the
class mixture. In other words, a guiding principle is that a mask ratio should be chosen such that the
mask-induced graph connectivity should happen mostly among intra-class samples (no harm) instead
of inter-class samples (inducing large label error). Below, we further examine this understanding on
real-world data.

Empirical Investigation. To verify our perspective, we conduct experiments on CIFAR-10 with
different mask ratios. We evaluate the distance between two images by calculating the average l2
distance between every pair of patches. As shown in Figure 2(b), we find that the average distance of
intra-class images decreases with the increasing of mask ratio, which means that a higher mask ratio
leads to generating more edges between intra-class samples with better connectivity (i.e., decreasing
magnitude of residual eigenvalues {λk+1, . . . , λN1

}). Meanwhile, we also notice that a high mask
ratio will also lead to a smaller inter-class distance, which suggests an increasing label error α.
Therefore, there exists a tradeoff on the mask ratio to balance residual eigenvalues {λk+1, . . . , λN1}
and labeling error α.

The Sweet Spot for Mask Ratio. The discussion above reveals that mask ratio has an effect on
both intra-class and inter-class connectivity, and a good mask ratio should be selected to balance
the two sides such that intra-class distance is relatively high while inter-class distance is relatively
low. Motivated by this, we compute the relative distance (intra-class over inter-class). As shown
in Figure 2(c), the relative distance decreases first with the increasing mask ratio, showing that the
intra-class distance decreases faster than the inter-class distance under small mask ratio. When
ρ > 0.7, the relative distance becomes larger again, indicating that the difference between intra-class
and inter-class edges disappears under too large mask ratio. The sweet spot lies in ρ = 0.7, which is
pretty close to the optimal mask ratio of MAE (ρ = 0.75). This shows that our theoretical analysis of
the effect of mask ratio aligns surprisingly well with the practice of MAE.
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Table 1: Linear evaluation accuracy (%) and fine-tuning accuracy (%) of pretrained models by MAE
loss and U-MAE loss with different ViT backbones on CIFAR-10, ImageNet-100, and ImageNet-1K.
The uniformity regularizer term in the U-MAE loss significantly improves the linear evaluation
performance of the MAE loss without hurting the performance of fine-tuning accuracy.

CIFAR-10 ImageNet-100 ImageNet-1K
Downstream Task Method ViT-Tiny ViT-Base ViT-Base ViT-Large ViT-Base ViT-Large

Linear Probing MAE 59.6 61.7 61.2 64.4 55.4 62.2
U-MAE 68.9 70.2 67.5 72.8 58.5 65.8

Fine-tuning MAE 89.6 90.7 86.9 87.3 82.9 83.3
U-MAE 89.4 90.8 86.8 87.3 83.0 83.2

5 Experiments

In this section, we first present the main empirical results of our proposed U-MAE loss on different
real-world datasets with different backbones. Then we conduct a series of experiments to understand
how well the U-MAE loss works.

5.1 Evaluation on Benchmark Datasets

To evaluate the effectiveness of the proposed U-MAE loss, extensive experiments are conducted on
CIFAR-10 [21], ImageNet-100 [8], and ImageNet-1K [8].

Setup. We mainly follow the basic setup of MAE [15]: for the encoder, we adopt different variants of
ViT [10], i.e., ViT-Tiny, ViT-Base, and ViT-Large. For the decoder, we use a flexible one following
[15]. The mask ratio is set to 0.75. For U-MAE, the coefficient of the uniformity term is set to 0.001.
On CIFAR-10, we pretrain the model for 2000 epochs with batch size 4096 and weight decay 0.05.
On ImageNet-100 and ImageNet-1K, we pretrain the model for 200 epochs with batch size 1024 and
weight decay 0.05. We conduct both linear evaluation and non-linear fine-tuning on the pretrained
encoder. For linear evaluation, we train a linear classifier on the frozen pretrained encoder. As for
non-linear fine-tuning, we train both the pretrained encoder and the linear classifier with the cross
entropy loss.

Effectiveness of the Proposed U-MAE Loss. In Table 1, we compare the performance of original
MAE loss and U-MAE loss on different benchmarks. We find that, on linear evaluation results,
our proposed U-MAE loss increases 8.9% on CIFAR-10, 7.2 % on ImageNet-100, and 3.4% on
ImageNet-1K with two different backbones. On fine-tuning results, our proposed U-MAE loss
will not hurt the performance of fine-tuning results of MAE. The experimental results verify the
effectiveness of the proposed U-MAE loss, which achieves better performance than the original MAE
loss across different datasets and different backbones. Moreover, to quickly evaluate the training
process of the encoder, we set an online linear classifier to monitor the linear accuracy whose results
can be found in Appendix B.5.

Extention to Other MIM Frameworks. We also verify our proposed method in another MIM
framework SimMIM [29]. For SimMIM, we use ViT-Base as the encoder and use the linear decoder
as in [29]. We use the recommended mask ratio 0.6. Similar to U-MAE, Uniformity-enhanced
SimMIM loss (U-SimMIM) adds a uniformity regularization term to the original reconstruction loss
of SimMIM, where the coefficient of the uniformity term is set to 0.0001. For ImageNet-100, we
pretrain the model for 200 epochs with batch size 128 and weight decay 0.05. Linear evaluation
is conducted in Table 2. We can see that the linear accuracy increases 6.8% with the uniformity
regularizer, which further verifies the general property of our approach.

Table 2: Linear probing accuracy (%) of
U-SimMIM (ViT-Base) on ImageNet-100.

SimMIM U-SimMIM

54.3 61.1

Table 3: Linear probing accuracy (%) of U-
MAE with different coefficients (Eq. (10)).
λ 0 1e-5 1e-4 1e-3 1e-2

Acc 61.2 65.9 67.5 45.1 47.0
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Figure 3: (a) Visualization of representations on random 10 classes of ImageNet-100 trained with
MAE loss and our U-MAE loss. Our U-MAE loss significantly improves the class-clustering
performance of the encoder. (b) The linear evaluation results during the training process. It shows
that our U-MAE loss improves the downstream performance consistently along training.

5.2 Empirical Understandings

Visualization of Representations. To intuitively understand the improvement of our U-MAE loss
on clustering intra-class samples, we use t-SNE [26] to visualize the representations trained with
MAE loss and U-MAE loss on ten random class of ImageNet-100 (detailed classes are introduced
in Appendix B.4). We find that with our uniformity regularizer term, the samples are much better-
clustered corresponding to their ground-truth labels. To be specific, the red class (“hens”) and the
gray class (“indigo birds”) are separated from others, this is because most of other classes are the
animals living in the oceans while these two classes are more like the birds living on the land or the
sky. Thus, these two classes are easier to be distinguished, especially with our uniformity regularizer.

Different Coefficients of the Regularizer Term. The most important hyper-parameter of our
proposed U-MAE loss is the coefficient of the uniformity regularizer term. In Table 3, we present the
results of linear evaluation on ImageNet-100 trained with the U-MAE loss with different coefficients
of the regularizer term. We can see that the downstream performance increases when the coefficient
increases from 0 to 0.0001. However, the overlarge coefficient will also hurt the performance of
U-MAE loss as the task of MAE will be overlooked.

Training process. To further compare the performance between the original MAE loss and U-MAE
loss, we plot the linear evaluation accuracy on ImageNet-100 during the training process in Figure
3(b). We can observe that our proposed U-MAE loss improves the performance of MAE with all
different training epochs, which verifies the effectiveness of our proposed U-MAE loss.

6 Conclusion

In this paper, we proposed a new theoretical understanding of MAE by formally connecting MAE and
contrastive learning. In particular, we show that a small MAE loss implies a good alignment between
the mask-induced positive samples. Based on this connection, we further analyze the dimensional
collapse issue of MAE and propose a new variant, named Uniformity-enhanced MAE (U-MAE),
through adding an explicit feature uniformity regularization. Theoretically, this connection enables
us to establish theoretical guarantees on the downstream classification error, which also provides
theoretical insights on the choice of large mask ratio in MAE. Empirically, the proposed U-MAE
successfully mitigates the dimensional collapse issue of MAE, and achieves consistent improvement
on the linear probing task on CIFAR-10, ImgaeNet-100, and ImageNet-1K.
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A Proofs

A.1 Proof of Theorem 3.4

Proof. With Assumption 3.1, we have
LMAE(h) = Ex1,x2

∥h(x1)− x2∥2

= Ex1,x2∥h(x1)− x2∥2 + ε− ε

≥ Ex1,x2
∥h(x1)− x2∥2 + ∥x2 − hg(x2)∥2 − ε (∥x2 − hg(x2)∥2 ≤ ε)

≥ 1

2
Ex1,x2

∥h(x1)− hg(x2)∥2 − ε (∥a+ b∥2 ≤ 2(∥a∥2 + ∥b∥2)

= −Ex1,x2h(x1)
⊤hg(x2)− ε+ 1. (h(x) and hg(x) are normalized)

We formulate the features as two matrices H ,Hg. We denote H(x1) =
√
dx1h(x1) as the x1-th

column of the matrix H and Hg(x2) =
√
dx2h(x2) as the x2-th row of the matrix Hg. As defined

before, (AM )x2,x1
is the joint distribution of x1 and x2, i.e., (AM )x2,x1

= wx1,x2
. We denote

the normalized form of AM as ĀM , i.e., (ĀM )x2,x1
=

wx1,x2√
dx1

√
dx2

. Then we can reformulate the

reconstruction loss,

LMAE(h) ≥ −
∑
x1,x2

wx1,x2√
dx1dx2

√
dx1

h(x1) ·
√

dx2
hg(x2)− ε+ 1

= − tr(ĀMHH⊤
g )− ε+ 1

≥ −1

2
(∥ĀMH∥2 + ∥Hg∥2)− ε+ 1.

As the output of decoder is normalized, i.e., ∥Hg∥2 = 1. we obtain

LMAE(h) ≥ −1

2
(tr(Ā⊤

M ĀMHH⊤) + 1)− ε+ 1 = −1

2
tr(Ā⊤

M ĀMHH⊤)− ε+
1

2
. (16)

Then we element-wise compute Ā⊤
M ĀM and HH⊤, we have

(Ā⊤
M ĀM )x1,x

+
1
=

∑
x2

wx1,x2
wx1,x

+
2

dx2

√
dx1dx+

1

. (17)

(HH⊤)x+
1 ,x1

=
√
dx1d x+

1
h(x1)

⊤h(x+
1 ). (18)

As the trace is the sum of the diagonal value of the matrix, we consider x1-th diagonal value of
(Ā⊤

M ĀMHH⊤), i.e.,

(Ā⊤
M ĀMHH⊤)x1,x1 =

∑
x+
1

(A⊤
MAM )x1,x

+
1
(HH⊤)x+

1 ,x1
=

∑
x+
1

∑
x2

wx1,x2wx+
1 ,x2

dx2

h(x1)
⊤h(x+

1 ).

(19)
With that, we can element-wise expand Eq. (16),

LMAE(h) ≥ −1

2
Ex1,x

+
1 ∼p̂(x,x+)h(x1)

⊤h(x+
1 )− ε+

1

2
,

where p̂(x1, x
+
1 ) =

∑
x2

wx1,x2
w

x
+
1 ,x2

dx2
. Similarly, we define a matrix Hg, where (Hg)x2

=√
dx2hg(x2). We let (ĀM )x2,x1

=
wx1,x2√
dx1

√
dx2

and we obtain

LMAE(h) ≥ − tr(HH⊤
g ĀM )− ε+ 1

≥ −1

2
(∥H∥2 + ∥Ā⊤

MHg∥2)− ε+ 1 (tr(AB) ≤ 1

2
∥A∥2 + ∥B∥2)

= −1

2
(tr(ĀM Ā⊤

MHgH
⊤
g ) + 1)− ε+ 1 (Hg is normalized)

≥ −1

2
Ex+

2 ∼p̄(x2,x
+
2 )hg(x2)

⊤hg(x
+
2 )− ε+

1

2
,
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where p̄(x2, x
+
2 ) =

∑
x1

wx1,x2wx1,x
+
2

dx1
.

A.2 Proof of Corollary 3.5

With Theorem 3.4, we know that

LMAE(h) ≥ −1

2
Ex1,x

+
1 ∼p̂(x,x+)h(x1)

⊤h(x+
1 )− ε+

1

2
.

As the decoder is L-bi-Lipschitz, we obtain

∀ (x1, x2), 1/L · ∥x1 − x2∥2 ≤ ∥g(x1)− g(x2)∥2 ≤ L · ∥x1 − x2∥2. (20)

So,

LMAE(h) ≥ −1

2
Ex1,x

+
1 ∼p̂(x1,x

+
1 )h(x1)

⊤h(x+
1 )− ε+

1

2

=
1

4
Ex1,x

+
1 ∼p̂(x1,x

+
1 )∥h(x1)− h(x+

1 )∥2 − ε (h(x) is normalized)

=
1

4
Ex1,x

+
1 ∼p̂(x1,x

+
1 )∥g(f(x1))− g(f(x+

1 ))∥2 − ε

≥ 1

4L
Ex1,x

+
1 ∼p̂(x1,x

+
1 )∥f(x1)− (f(x+

1 )∥2 − ε (Equation (20))

= − 1

2L
Ex1,x

+
1 ∼p̂(x1,x

+
1 )f(x1)

⊤f(x+
1 )− ε+

1

2
.

A.3 Proof of Theorem 3.6

Proof. When the encoder fully collapses, the encoder f maps all the features to the same point c, i.e.,

∀x ∈ X1, f(x) = c. (21)

Then,
LMAE(h) = Ex1,x2∥g(f(x1))− x2∥2

= Ex2
∥g(c)− x2∥2

(22)

We then select a g(c) to make Equation (22) minimal. According to KKT conditions, it has a
closed-form solution q⋆, satisfying

2Ex2
(q⋆ − x2) = 0. (23)

i.e., Q⋆ = Ex2
x2. Then

LMAE(h) = Ex2
∥g(c)− x2∥2

≥ Ex2
∥Ex′

2
x′
2 − x2∥2

= Var(x2).

A.4 Proof of Theorem 3.7

With Corollary 3.5, we have

LMAE(h) ≥ −1/(2L) · Ex1,x
+
1
f(x1)

⊤fg(x
+
1 )− ε+ const. (24)

Then we set λ = 1
4L and we obtain

LU-MAE(h) = LMAE(h) + 1/(4L) · Lunif (f)

≥ 1/(2L) · Lalign(f) + 1/(4L) · Lunif (f)− ε+ const

= 1/(4L) · LSCL(f)− ε+ const.

(25)
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A.5 Proof of Theorem 4.1

Proof. We compose the marginal distribution of x1 as a matrix D and Dx1
= dx1

is the x1-th row of
D. And we denote U as the matrix composed of encoder features, i.e., Ux1

=
√
dx1

f(x1). Recall

that Ax1,x
+
1
= A(x1, x

+
1 ) and Ā is the normalized form of A, i.e., Ax1,x

+
1
=

A(x1,x
+
1 )√

dx1 ·dx
+
1

. Then we

reformulate the downstream error,

Ex,y∥y −Wff(x)∥2 =
∑

(x1,yx1
)

dx1∥yx1 −Wff(x1)∥2

= ∥D1/2Y − UWf∥2

= ∥D1/2Y − ĀC + ĀC − UWf∥2,

where Cx1,j =
√
(di)1yx1

=j . Then we consider the relationship between the downstream error and

the augmentation graph, we element-wise consider the matrix (D1/2Y − ĀC),

(D1/2Y )x1,j =
√
(dx1)1yx1

=j , (ĀC)x1,j =
∑
x+
1

wx1,x
+
1√

dx1
·
√
dx+

1

√
(dx+

1
)1y

x
+
1
=j . (26)

So when j = yx1
,

(D1/2Y − ĀC)x1,j =
√

(dx1)1yx1
=j −

∑
x+
1

A(x1, x
+
1 )√

dx1

1y
x
+
1
=j

=
√

dx1
−

∑
x+
1

A(x1, x
+
1 )√

dx1

1y
x
+
1
=j

=
∑
x+
1

A(x1, x
+
1 )√

dx1

−
∑
x+
1

A(x1, x
+
1 )√

dx1

1y
x
+
1
=j

=
∑
x+
1

A(x1, x
+
1 )√

dx1

1y
x
+
1
̸=j

=
∑
x+
1

A(x1, x
+
1 )√

dx1

1y
x
+
1
̸=yx1

.

(27)

When j ̸= yx1
,

(D1/2Y − ĀC)x1,j =
√
(dx1)1yx1

=j −
∑
x+
1

A(x1, x
+
1 )√

dx1

1y
x
+
1
=j

= 0−
∑
x+
1

A(x1, x
+
1 )√

dx1

1y
x
+
1
=j

= −
∑
x+
1

A(x1, x
+
1 )√

dx1

1y
x
+
1
=j .

(28)
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We define βx1 =
∑
x+
1

A(x1, x
+
1 )1y

x
+
1
̸=yx1

, and we have

∥(D1/2Y − ĀC)x1
∥2 = (

∑
x+
1

A(x1, x
+
1 )√

dx1

1y
x
+
1
̸=yx1

)2 +
∑

j ̸=yx1

(
∑
x+
1

A(x1, x
+
1 )√

dx1

1y
x
+
1
=j)

2

≤ (
∑
x+
1

A(x1, x
+
1 )√

dx1

1y
x
+
1
̸=yx1

)2 + (
∑

j ̸=yx1

∑
x+
1

A(x1, x
+
1 )√

dx1

1y
x
+
1
=j)

2

≤ (
∑
x+
1

A(x1, x
+
1 )√

dx1

1y
x
+
1
̸=yx1

)2 + (
∑
x+
1

A(x1, x
+
1 )√

dx1

∑
j ̸=yx1

1y
x
+
1
=j)

2

= (
∑
x+
1

A(x1, x
+
1 )√

dx1

1y
x
+
1
̸=yx1

)2 + (
∑
x+
1

A(x1, x
+
1 )√

dx1

1y
x
+
1
̸=yx1

)2

=
2β2

x1

dx1

.

(29)

With that, we obtain ∥D1/2Y − ĀC∥ =
∑
x1

2β2
x1

dx1
. As we assume that Ex̄∼Pd

(A(x1|x̄)1yx1 ̸=ȳ) ≤ α,

so ∑
x1,x

+
1

A(x1, x
+
1 )1y

x
+
1
̸=yx1

=
∑
x1,x

+
1

Ex̄(A(x1|x̄)A(xx+
1
|x̄)1y

x
+
1
̸=yx1

)

≤
∑
x1,x

+
1

Ex̄(A(x1|x̄)A(xx+
1
|x̄)(1yi ̸=ȳ + 1y

x
+
1
̸=ȳ))

= 2Ex̄∼Pd
(A(x1|x̄)1yx1

̸=ȳ)

≤ 2α.

(30)

Then we have

∥D1/2Y − ĀC∥ =
∑
x1

2β2
x1

dx1

≤
∑
x1

2βx1
(dx1

=
∑
x+
1

A(x1, x
+
1 ) ≥

∑
x+
1

A(x1, x
+
1 )1yx1

̸=y
x
+
1

)

= 2
∑
x1,x

+
1

A(x1, x
+
1 )1yx1

̸=y
x
+
1

(definition of βx1)

≤ 4α. (Equation (30))

Then we obtain

Ex,y∥y −Wff(x)∥2

= ∥D1/2Y − ĀC + ĀC − UWf∥2

≤ 2∥ĀC − UWf∥2 + 8α (∥A+B∥2 ≤ ∥A∥2 + ∥B2∥)
= 2∥(Ā− UUT + UUT )C − UWf )∥2 + 8α

= 2∥(Ā− UUT )C + U(UTC −Wf )∥2 + 8α

≤ 4(∥(Ā− UUT )C∥2 + ∥U(UTC −Wf )∥)2 + 8α (∥A+B∥2 ≤ 2(∥A∥2 + ∥B∥2))
≤ 4(∥(Ā− UUT )∥2∥C∥2 + ∥U∥2∥(UTC −Wf )∥2) + 8α (∥AB∥ ≤ ∥A∥∥B∥)

≤ 4(∥(Ā− UUT )∥2 + ∥(UTC −Wf )∥2) + 8α (∥C∥ = 1, ∥U∥ = 1)

= 4LSCL(f) + const+ ∥(UTC −Wf )∥2 + 8α (Lemma B.8 in [13])

≤ 16L · LU-MAE(h) + 8Ey[Ex|yf(x)− by]
2 + 8α+ 16Lε+ const. (Theorem 3.7)

≤ 16L · LU-MAE(h) + 8α+ 16Lε+ const. (Wf is a mean classifier)
(31)
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In the next step, we analyze the prediction error. We denote ȳ as the ground-truth label of original data
x̄. We first define a ensembled linear predictor c′f . For an original sample, the predictor ensembles
the results of all different views and choose the label predicted most. With the definition, ȳ ̸= c′f (x̄)
only happens when more than half of the views predict wrong labels. So

Pr(ȳ ̸= c′f (x̄))

≤ 2Pr(ȳ ̸= cf (x))

≤ 4Ex̄∼Pd(x),x∼M1(x|x̄)∥ȳ −Wff(x)∥2 (Claim B.9 in [13])

≤ 8(Ex,y∥y −Wff(x)∥2 + Ex̄∼Pd(x),x∼M1(x|x̄)∥y − ȳ∥2) (∥A+B∥2 ≤ ∥A∥2 + ∥B2∥)
≤ 8(Ex,y∥y −Wff(x)∥2 + 2α) (definition of α)
≤ 32LSCL(f) + 64α+ 16α+ const

≤ 128L · LU-MAE(h) + 64α+ 16α+ 128Lε+ const

≤ 128L · LU-MAE(h) + 80α+ 128Lε+ const.

A.6 Proof of Theorem 4.2

Proof. With Equation (31), we have

LU-MAE(h) ≥
1

4L
∥A− UU⊤∥2 − ε+ const. (32)

We set Lmf (U) = ∥(Ā−UUT )∥2. When U⋆ is the minimizer of Lmf (U), according to the analysis
in [11], we obtain

∥(Ā− U⋆(U⋆)T )∥ =

N1∑
i=k+1

λ2
i , (33)

where λk+1 · · ·λN1
are the N1 − k largest eigenvalues of matrix Ā. We denote h⋆ is the minimizer

of LU-MAE and f⋆ is the corresponding encoder. Then Uf⋆ is composed of the features encoded by
f⋆, i.e., (Uf⋆)x1

=
√
dx1

f⋆(x1). So for all h ∈ H, we have

LU-MAE(h) ≥ LU-MAE(h
⋆) ≥ 1

4L
∥A− Uf⋆(Uf⋆)

⊤∥2 − ε+ const

≥ 1

4L
∥A− U⋆(U⋆)⊤∥2 − ε+ const

=
1

4L
(

N1∑
i=k+1

λi)
2 − ε+ const.

(34)

B Additional Experiment

B.1 Experiment Details of Computing Effective Rank

We conduct experiments on ImageNet-100 and use ViT-Base as the backbone. We compare two
kinds of pretrained encoders: 1) the encoder trained with original MAE loss, 2) the encoder trained
with U-MAE loss (λ = 0.0001). Then we store the normalized encoded features. We construct
a feature matrix A with n (n=100) random samples and compute its singular values σ1, . . . , σn.
Then, we compute the effective rank [24] of the feature matrix as follows. We first compute the
distribution of sigular values, i.e., pk = σk

∥σ∥1
. Then we can obtain the effective rank with that:

Erank(A) = exp(−
n∑

k=1

pk log(pk)).
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Table 4: Online linear accuracy of MAE and U-MAE loss.

CIFAR-10 ImageNet-100 ImageNet-1K
Method ViT-Tiny ViT-Base ViT-Base ViT-Large ViT-Base ViT-Large

MAE 52.9 59.5 37.5 39.5 39.7 43.4
U-MAE 69.4 72.0 56.3 61.4 46.5 52.1

B.2 Experiment Details of Section 4.2

We conduct the verification experiment of Section 4.2 on ImageNet-100. We set patch size to 16
and use random masking. When computing the distance, we compute the max l2 distance between
the patches of two images and denote it as the distance between two images. Then we compute the
average distance of different images. When computing the distance of intra-class samples, we only
compute the distance between the samples in the same class. While for inter-class distance, we only
compute the distance between the samples of different classes. To reduce the amount of calculation,
we random select 10 classes of ImageNet-100 for this experiment.

B.3 Additional Experiment Details of Section 5.1

For CIFAR-10, we train ViT-Tiny on 1×NVIDIA V100 with 1600 epochs, which needs about 23
hours, and ViT-Base on 1×NVIDIA V100 with 1600 epochs, which needs about 25 hours. For
ImageNet-100, we train ViT-Base on 4×NVIDIA V100 with 200 epochs, which needs about 37
hours, and ViT-Large on 4×NVIDIA V100 with 200 epochs, which needs about 42 hours.

B.4 Details of Visualization Results in Figure 3(a)

We use t-SNE to to visualize the representations learned with MAE and U-MAE loss on random 10
classes of ImageNet. The ten classes are 0) "cock", 1) "hen", 2) "tiger shark, Galeocerdo cuvieri",
3) "tench, Tinca tinca", 4) "goldfish, Carassius auratus", 5) "hammerhead, hammerhead shark",
6) "electric ray, crampfish, numbfish, torpedo", 7) "stingray", 8) "great white shark, white shark,
man-eater, man-eating shark, Carcharodon carcharias", 9) "indigo bunting, indigo finch, indigo bird,
Passerina cyanea",

B.5 Online Linear Evaluation Experiments

Besides the offline linear evaluation results in Section 5, we also present the results obtained by an
online linear classifier. Specifically, we train a linear head along the MAE training process and detach
its gradients. From Table 4, we find that our promoting loss increases 14.71% for linear evaluation
results on CIFAR-10 with two different backbones and increases 7.35 % on ImageNet-100 with two
different backbones. And we could see that our U-MAE also significantly outperforms MAE on
large-scale datasets by improving 6.77% Top-1 accuracy on ImageNet-1K.

B.6 Additional Experiments on SimMIM

For SimMIM, we use ViT-Base as the encoder and use the linear decoder as proposed in SimMIM [29].
We use the recommended mask ratio, 60%. Similar to MAE, we propose a Uniformity-promoting
SimMIM loss (U-SimMIM) which adds a uniformity regularizer term to the original reconstruction
loss of SimMIM. For the uniformity term of our proposed loss, we set the coefficient of the uniformity
term to 0.01. For ImageNet-100, we pretrain the model for 200 epochs with batch size 128 and
weight decay 0.05. We conduct linear evaluation on the unsupervised pretrained encoder. From Table
5, we could see that our U-SimMIM also significantly outperforms SimMIM on large-scale datasets
by improving 8.46% Top-1 accuracy on ImageNet-1K.

C Extension to Other MIM Methods

The basic paradigm of current MIM frameworks is to reconstruct the masked patches from unmasked
ones, while their differences mainly exist in the implementation details [1, 32, 29, 15], e.g., 1) the
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Table 5: Online linear accuracy of SimMIM and U-SimMIM loss on ImageNet-100 with ViT-Base.

Method Top-1 Accuracy (%)

SimMIM 21.59%
U-SimMIM 30.05%(+8.46%)

input of encoder: including masked patches (SimMIM, iBOT, BEiT) or not (MAE); 2) the decoder:
one-layer (SimMIM, iBOT) or multi-layer (MAE, BEiT); and 3) the target: RGB (SimMIM, MAE)
or tokenized discrete tokens (iBOT, BEiT). In fact, our theoretical framework is quite general, and
can be easily extended to these variants:

• Input of Encoder. If masked patches are adopted, the input of encoder could be modeled as
x̃1 = (x1, px1+x2

) and x̃2 = (x2, px1+x2
), where p represents the position embeddings. In

this case, both of them have the access to the entire position encoding px1+x2
.

• Decoder. One-layer decoder is a special case of our multi-layer formulation. Moreover, the
one-layer decoder obtains the invertibility and our analysis can be simplified.

• Target. The tokenized target only corresponds to a specific format of x2, which does not
affect our analysis of their alignment property.
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