
Near-Isometric Properties of Kronecker-Structured

Random Tensor Embeddings

Anonymous Author(s)

Affiliation
Address
email

Abstract

We give uniform concentration inequality for random tensor acting on rank-11

Kronecker structured signals, which parallels a Gordon-type inequality for this class2

of tensor structured data. Two variants of the random embedding are considered,3

where the embedding dimension depends on explicit quantities characterizing the4

complexity of the signal. To appreciate the tools developed herein, we illustrate5

with two applications from signal recovery and optimization.6

1 Introduction7

It is hardly an overstatement to proclaim that underpins most of the analysis for high dimensional8

statistics and structured signal recovery is the heavy hammer made possible by the machinery of9

Gaussian process, and in particular Gordon-type inequality that gives tight characterization bounding10

the suprema of the empirical process with geometric properties of the underlying index set. In this11

paper, we put Kronecker-structured random tensors into scrutiny and ask for analog of Gordon’s12

inequality for correspondingly tensor-structured signals. We embark with a brief reminder of the13

classics.14

1.1 Gordon’s inequality for Gaussian random matrix15

For signal u 2 T ⇢ Rn a vector, it is known for S 2 Rm⇥n random i.i.d standard Gaussian matrix,16

E[min
u2T

kSuk] � am � w(T ) and E[max
u2T

kSuk]  am + w(T )

for am = E[kgmk] ⇡
p
m where gm ⇠ N (0, Im) and w(T ) = E[maxx2T g

>
x] the Gaussian width17

for set T ⇢ Sn�1, a subset of the unit sphere. This statement hinges on the Gaussian min-max18

comparison lemma (i.e., Fernique-Slepian theorem), which implies for g, h independent standard19

Gaussian vectors,20

Eg,h[min
u2T

max
v2Sm�1

g
>
v + h

>
u]  ES [min

u2T
max

v2Sm�1
v
>
Su] . (1)

This trades the quadratic form for a more innocuous separable process, from which one can see21

that the LHS evaluates to the first part of the previous display. The other side is essentially sim-22

ilar. For this expectation bound to justify the attention it deserves, one needs to recognize that23

minu2T kSuk (analogously for max) is a Lipschitz function in the Gaussian random matrix S, from24

which (dimension-free) concentration inequality, alongside the bound on the expectation derived25

above, conspire to deliver a uniform concentration bound as stated below.26

Theorem 1 (Gordon’s escape through mesh [13]). For all u 2 T ⇢ Rn
, where T is a (not necessarily27

convex) cone, with probability at least 1� 2 exp(��
2
/2) for S entrywise i.i.d standard Gaussian,28

(1� ✏)kuk 
1

am
kSuk  (1 + ✏)kuk
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when m �
(w(T )+�)2

✏2 .29

Later work of CGMT [20] showed that the reduction of (1) is essentially tight for convex sets. This30

elegant analysis, nevertheless, cannot be carried out beyond the Gaussian case due to the lack of31

comparison lemma (1) (even for subgaussian), but gives that for example, the extreme singular values32

of a Gaussian random matrix 1/
p
m · S scales as 1±

p
n/m by picking T = Sn�1. It also recovers33

the familiar Johnson-Lindenstrauss lemma for distance-preserving random projection for finite point34

set where w =
p
log(|T |).35

Seemingly a natural obsession for probabilists for its mathematical allure, results of this flavor36

have found unexpectedly number of applications across many areas in numerical linear algebra,37

signal processing, theoretical computer science, among others. Such uniform convergence result is38

frequently encountered for deriving tight sample complexity bounds for recovery problems, where39

the problem boils down to characterizing the probability that a random subspace (i.e., null space40

of Gaussian measurement matrix) distributed uniformly misses the tangent cone of a regularizer.41

Nonconvex gradient-based optimization heavily leans on these tools for characterizing restricted42

singular value for deriving convergence with ERM. Sketching-based least-squares optimization43

minx kSAx � Sbk
2
2 also crucially rely on such results, where w(U \ Sn�1) =

p
dim(U) for44

U = colspan([A, b]) for the subspace embedding property.45

1.2 Contributions46

We aim to generalize Gordon’s uniform concentration result for tensor-structured signal x = u
1
⌦47

· · ·⌦ u
d while insisting on efficient computation of the embedding operation. More concretely, we48

consider Kronecker-structured random rank-1 tensor, which when acting on rank-1 tensor-structured49

signals, can be performed without explicitly forming the n⇥ n⇥ · · ·⇥ n tensor since it can be done50

factor-by-factor effortlessly. Formally we set out our roadmap to address the following questions:51

1. For (1) structured and fast tensored embedding (e.g., Tensor-SRHT as defined in Definition52

1 below); and (2) Tensor-Subgaussian introduced in Definition 2, what is dictated from the53

embedding dimension m for the following guarantee to hold w.h.p54

������
1

m

mX

i=1

dY

j=1

hv
j
i , u

j
i
2
� kxk

2

������
 max(✏, ✏2) · kxk2, (2)

for all x = u
1
⌦ · · ·⌦ u

d
2 T

1
⇥ · · ·⇥ T

d (Cartesian product of d not necessarily convex55

cones), as a function of the geometric properties of the individual sets T 1
, · · · , T

d. This56

is a generalization of the Restricted Isometry Property (RIP) to (1) higher order tensored57

signals; (2) general cones beyond sparsity. Both sketches above are row-wise tensored and58

take the form Si = vec(v1i ⌦ · · ·⌦ v
d
i ) for each row i 2 [m]. We are interested in the regime59

m ⌧ n
d and instantiate the embedding result for this sketch from Section 4 to bound the60

restricted singular value as required by a tensor signal recovery problem in Section 6.1.61

2. To improve the dependence of m on the degree d (while maintaining computation efficiency),62

we consider a recursive embedding in Section 5 which repeatedly calls a degree-2 Tensor-63

SRHT S
j
2 Rm⇥nm as a subroutine as follows: S(u1

⌦u
2
⌦u

3
· · · ) := S

1(u1
⌦S

2(u2
⌦64

S
3(u3

⌦ · · · ))). Similar uniform concentration is derived on the scaling of m with geometric65

properties of the individual sets for this alternative embedding, which is in turn called upon66

to speed up solving for optimization problem in Section 6.2.67

3. Our technique is based on generic chaining - we include comparison with results one would68

get from more naive method in Section 3 and part with some discussions of lower bound on69

the embedding dimension in Section F and numerical results in Section G.70

We pause to emphasize it is the correlation in the tensor structure that introduces difficulty for tight71

concentration – result for general random tensor with i.i.d entries is less challenging to obtain, but at72

the same time less efficient to apply.73

Definition 1 (Tensor-SRHT). A random matrix constructed as S = 1p
m
P1HnD1 � · · · �PdHnDd 274

Rm⇥nd

is called a Tensor-SRHT (Subsampled Randomized Hadamard Transform), if when acting on75
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a rank-1 degree-d tensor, takes the form S(u1
⌦ · · ·⌦ u

d) = 1p
m
P

0
HndD

0
vec(u1

⌦ · · ·⌦ u
d) :=76

1p
m
P1HnD1u

1
�· · ·�PdHnDdu

d
, where D

0
is a n

d
⇥n

d
diagonal matrix with entries D1⌦· · ·⌦Dd77

(i.e., tensor product of independent Rademachers) and P
0

is a m ⇥ n
d

subsampling matrix with78

a single 1 in each (independent) row and Hnd = Hn ⌦ · · · ⌦ Hn where n is a power of 2 is the79

Hadamard matrix of size n
d
⇥ n

d
. Here � denotes Hadamard product and � denotes the transposed80

Khatri-Rao product. Moreover, such embedding can be carried out in time O(d(n log n+m)).81

Definition 2 (Tensor-Subgaussian). We call S 2 Rm⇥nd

a Tensor-Subgaussian embedding if every82

row Si = vec(v1i ⌦ · · · ⌦ v
d
i ) is constructed where each factor is an independent �-subgaussian83

isotropic random vector, i.e., (1) E[hvji , uj
i
2] = ku

j
k
2
2; (2) E[|hvji , uj

i|
p]1/p 

p
�pku

j
k2 for all84

p � 2, i 2 [m], j 2 [d] and any u
j
2 Rn

.85

2 Related Work86

In the case of vector-valued signal (d = 1), embedding analysis for infinite sets using structured87

matrices requires ingenuity and is significantly more involved in general. Notable extensions include88

[6, 11, 5]. The work of [18] offered a unifying theme - the important message behind is that one can89

have a reduction from RIP based result to Gordon-type inequality by invoking it at different sparsity90

levels with various distortions à la Talagrand’s multi-resolution generic chaining. An orthogonal91

thread for generalizing to heavier-tail distribution involves small-ball technique which gives an92

one-sided bound for nonnegative empirical process - such undertaking is present in e.g., [14, 21].93

Previous work on tensor concentration are mostly preoccupied with operator norm bounds for94

symmetric subgaussian and/or log-concave (potentially non-isotropic) factors [12, 25], where95

for symmetric forms kSkop is maximized by a single vector u 2 Sn�1 therefore for this we96

only need to content ourselves with a single index set and look at moment deviations of type:97

supu2Sn�1

�� 1
m

Pm
i=1hSi, ui

d
� E[hS, uid]

��, an arguably simpler task. Indeed, a multi-resolution98

approach is not strictly beneficial here compared to more elementary arguments [12].99

The case of non-symmetric factors warrant more care. Both [24, 3] studied pointwise tail bound of100

the form P(|kSxk2 � kSkF | � t) for S 2 Rm⇥nd

a linear mapping, x = u
1
⌦ · · · ⌦ u

d
2 Rnd

,101

where u
k’s are independent factors each with independent, mean 0, unit variance, subgaussian102

coordinates – this can in turn be used for deriving a high-probability lower bound on �min(X) for the103

n
d
⇥m random matrix X where each column is formed by the aforementioned tensor x. Uniform104

results for general sets on tensors include 2nd-order chaos with mixed tails [19]. For example in105

the case of processes with subgaussian-subexponential increments (as is the case when d = 2 for106

Tensor-Subgaussian embedding in Definition 2), i.e., 8u > 0, s, t 2 T ,107

P(kXt �Xsk �
p
ud2(t, s) + ud1(t, s))  2e�u

,

the result of [10] gave a uniform deviation for supt2T kXtk as a combination of �2(T, d2) and108

�1(T, d1) but crucially these quantities are tied to the metric complexity of the product index set109

T := T
1
⇥ T

2 – something that is hard to compute by and large.110

3 Discrete JL and a Single-scale Approach111

At the heart of the following result is a generalized Khinchine inequality [2] which says if112

E[|hvk, ai|p]1/p  Cpkak2 for any vector a 2 Rn and all independent {vk}dk=1, then E[|hv1 ⌦113

· · ·⌦ v
d
, ai|

p]1/p  C
d
pkak2 for any (not necessarily rank-1) tensor a 2 Rnd

. This is closely related114

to an earlier result from [16] on the concentration of Gaussian chaos but generalized to broader class.115

Such moment control is only a hop away from tail bounds using standard arguments. We establish the116

finite-set embedding property for the row-wise-tensored embedding matrices below, building upon117

previous work. This serves as the stepping stone for the embedding of general sets.118

Lemma 1 (Discrete-JL property for Tensor-SRHT and Tensor-Subgaussian). For a set of cardinality119

p that the rank-1 tensor x 2 Rnd

belongs, with probability at least 1� e
�⌘

for any ⌘ > 0 and ✏ > 0,120

Tensor-SRHT as defined in Definition 1 satisfies |kSxk
2
2 � kxk

2
2|  max(✏, ✏2)kxk22 simultaneously121

for all p points provided m = O(Cd
✏
�2(logd(p) + (1 + ⌘)d)). The same guarantee holds for122
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Tensor-Subgaussian in Definition 2 with m = O(Cd
�
2d
✏
�2(logd(p) + (1+ ⌘)d)) for some universal123

constant C.124

Remark. Close inspection of the proof for Theorem 3 in [2] in fact uncovers that the discrete JL125

property above holds for more general class of SORS (Subsampled Orthogonal Random Sign)126

constructions for which H
⇤
H = n · In and maxi,j2[n] |Hij |  c. In the case d = 1, it also recovers127

the classical Johnson–Lindenstrauss lemma.128

Without taking the multi-scale route, in the case d = 1, to guarantee ✏-distortion over a continuous129

set, one needs to roughly speaking build a �-net for x 2 Rn for � . ✏ ·
p

m/n therefore the sample130

complexity one gets with a single-scale approach will scale as131

m & log(|N�
|)

✏2
& nw

2(T )

m✏4
) m &

p
nw(T )

✏2
,

where we used Sudakov’s minorization for bounding the size of the covering with Gaussian width132

of the set and the JL Lemma for SRHT/Subgaussian matrices for the first transition. This back-133

of-the-envelope calculation showcases that uniform covering is far from optimal, since in general134

it could be the case w(T ) ⌧
p
n for T ⇢ Sn�1 a subset of the unit sphere – and this insight is135

precisely the reason that motivated [18] to consider a multi-scale approximation that can establish136

the m ⇣ w
2(T )/✏2 guarantee for wider classes of random ensembles beyond the Gaussian case in137

Theorem 1. To put things in perspective with later sections, we work out the sample complexity138

required from a naive uniform discretization below.139

Lemma 2 (�-net Covering). Using Tensor-SRHT, with a uniformly constructed �-net covering of140

the tensor, one requires m = O(✏�2
· n

d2

1+d (
Pd

i=1 �
2
2(T

i))
d

1+d ) for (2) to hold.141

Even in the prosaic case of Gaussian process indexed by ellipsoid and/or `1 ball, it is a well-known142

and disappointing fact that arguments based on union bound / Dudley integral don’t give the optimal143

bound, whereas method based on generic chaining does [19], which we turn to next.144

4 A Multi-scale Approach: Generic Chaining for Row-wise Tensored145

Embedding146

One viable approach is to apply the result of [18] naively to vec(u1
⌦ · · · ⌦ u

d) without taking147

into consideration the Kronecker structure, but this is somewhat of a futile endeavor if one takes148

any interest in downstream applications of such bounds. In fact, this was also the impetus for149

Mendelson’s work on product empirical processes [17] – it is generally hard to handle geometric150

properties of process indexed by product classes. We will instead derive results with an eye towards151

bounds involving decoupled geometric complexity measure for each factor that lends itself to explicit152

computations – this necessarily calls for a more intricate chaining argument. Another possibility153

is to use a contraction inequality à la Ledoux-Talagrand if the random factors {vji }
d
j=1 come from154

bounded class but this will be crude in almost all cases.155

Our agenda is to leverage the results on finite set embedding from the previous section, wrap156

them inside of a chaining argument by exploiting coverings at multiple scales with different dis-157

tortions/probability tradeoff so each level of approximation demands roughly the same embedding158

dimension (as we will see, the final m depends on the maximum required across all resolutions).159

4.1 Preliminaries160

Throughout the paper, we use .,⇣,& to hide absolute constants. To measure the size of the set161

T
i
⇢ Rn, we use Gaussian width defined as for g ⇠ N (0, In),162

w(T i) = E

sup
u2T i

g
>
u

�
.

In our context, we define the �
⇤
2 functional as163

�
⇤
2 (T

i) := inf
{T i

l }
sup

ui2T i

1X

l=0

2l/2dist(ui
, T

i
l )

4



where the infimum is taken over all sequences of nets {T i
l }l with cardinality |T

i
l |  22

l

=: Nl 8i 2164

[d] and |T
i
0| = 1 =: N0. For Gaussian process with canonical metric (i.e., Euclidean norm) on T

i,165

the expected supremum is completely characterized by �
⇤
2 (T ), i.e.,166

�
⇤
2 (T

i) ⇣ w(T i)

where the upper bound is due to Fernique and the (much deeper, specific-to-gaussian-process) lower167

bound is due to Talagrand’s majorizing measure theorem. A more general definition working with168

admissible sequences defines169

�2(T
i) := inf

{Ai
l}

sup
ui2T i

1X

l=0

2l/2diam(Ai
l(u

i))

where the infimum is taken over all admissible sequences (i.e., increasing sequence of partitions of170

T
i with |A

i
l|  Nl for all l � 0) and A

i
l(u

i) denotes the (unique) element of Ai
l that contains ui. It171

is not hard to see that by picking one point arbitrarily from each element of the partition, one can172

build a net which implies that we always have �⇤
2 (T

i)  �2(T i). In fact, the work of [23] shows that173

these two quantities are always of the same order.174

It is also an immediate consequence that for an optimal admissible sequence {Ā
i
l}l, picking {T̄

i
l }l175

as a sequence of nets with cardinally |T̄
i
l |  Nl constructed by choosing the center point in every176

element of the partition set {Āi
l}l, we have for all ui

2 T
i, i 2 [d],177

1X

l=0

2l/2dist(ui
, T̄

i
l )  inf

{Ai
l}

sup
t2T i

1X

l=0

2l/2diam(Ai
l(t)) . (3)

For our results, we will find it helpful to adopt the slightly more general �↵-functional for ↵ > 0:178

1X

l=0

2l/↵dist(ui
, T̄

i
l )  �↵(T

i) := inf
{Ai

l}
sup

ui2T i

1X

l=0

2l/↵diam(Ai
l(u

i))

and the infimum is taken over all admissible sequences in exactly the same way as (3). It is known179

that for a random variable with tail decay bounded as e�|x|↵ , the supremum is upper bounded by the180

�↵ functional [10]. Moreover, we always have the following Dudley-style metric entropy integral181

estimate [19] where B
n
2 denotes the unit-`2 ball in Rn:182

�↵(T
i) . C↵

Z 1

0

�
logN(T i

, sB
n
2 )
�1/↵

ds , (4)

but the reverse is generally not true. Here the upper limit of the integral goes up to 1 because183

N(T i
, sB

n
2 ) = 1 for s � 1 by simply picking {0} as cover. Covering number on the RHS of (4) can184

be bounded with estimates on Gaussian width. In particular, Sudakov minorization asserts185

sup
s>0

s

q
logN(T i, sBn

2 ) . w(T i) ,

which uses covering number at a single scale. Various alternative options exist for upper bounding186

the covering number, including Volumetric estimates, Maurey’s empirical method etc.187

Estimate (4) above has the drawback of not being explicit in constants C↵, if one is keen on explicit188

dependence on ↵, the following lemma becomes timely.189

Lemma 3 (Relationship between �↵ functionals). For ↵  1, if set T
i
⇢ Sn�1

has covering number190

N(T i
, sB

n
2 )  (as )

b
for some b � 2, a � 2, then191

�2(T
i)  �↵(T

i)  (1 +K · log2(b/↵) · b/↵ · log2(a))
2�↵
2↵ �2(T

i)

for some absolute constant K.192

4.2 Multi-resolution embedding property193

Instead of going through the multi-scale RIP (followed by column sign randomization) as done in194

[18] we will give ourselves more wiggle room by working with a multi-scale embedding property195

for finite sets. Definition 3 below will be featured prominently in subsequent sections and make196

the successive construction of approximations less mysterious than it may otherwise seem. We will197

invoke it for Tensor-SRHT and Tensor-Subgaussian in this section – both taking the form where each198

row Si = vec(v1i ⌦ · · ·⌦ v
d
i ).199
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Definition 3 (Multi-resolution Embedding Property). A mapping S : Rnd

7! Rm
fulfills the (✏, ⌘,↵)-200

Multi-resolution Embedding Property if for an increasing sequence of successive coverings {T̄
i
l }l of201

T
i
⇢ Sn�1

such that |T̄
i
l |  22

l

and |T̄
i
0| = 1 8i 2 [d] defined in (3) for tensor x := u

1
⌦ · · ·⌦ u

d
,202

the following holds simultaneously for all 1  l  L ⇣ dlog2(nd)e with probability at least203

1� exp(�⌘):204

• For all k 2 [d] and l 2 [L],205

|kS(u1
l ⌦ · · ·⌦ u

k
l ⌦ · · ·⌦ u

d
l�1)� S(u1

l ⌦ · · ·⌦ u
k
l�1 ⌦ · · ·⌦ u

d
l�1)k

2
2

� ku
1
l ⌦ · · ·⌦ (uk

l � u
k
l�1)⌦ · · ·⌦ u

d
l�1k

2
F |

 max(2l/↵✏, 22l/↵✏2) · ku1
l k

2
2 · · · ku

k
l � u

k
l�1k

2
2 · · · ku

d
l�1k

2
2

• For all k 2 [d] and l 2 [L],206

|kS(u1
l ⌦ · · ·⌦ u

k
l ⌦ · · ·⌦ u

d
l�1)k

2
2 � ku

1
l ⌦ · · ·⌦ u

k
l ⌦ · · ·⌦ u

d
l�1k

2
F |

 max(2l/↵✏, 22l/↵✏2) · ku1
l k

2
2 · · · ku

k
l k

2
2 · · · ku

d
l�1k

2
2

• For all k 2 [d] and l 2 [L],207

�����

�����S
 
u
1
l ⌦ · · ·⌦

 
u
k
l � u

k
l�1

kuk
l � u

k
l�1k2

!
⌦ · · ·⌦ u

d
l�1

!
± S(u1

l ⌦ · · ·⌦ u
k
l�1 ⌦ · · ·⌦ u

d
l�1)

�����

2

2

�

�����u
1
l ⌦ · · ·⌦

 
u
k
l � u

k
l�1

kuk
l � u

k
l�1k2

± u
k
l�1

!
⌦ · · ·⌦ u

d
l�1

�����

2

F

�����

 max(2l/↵✏, 22l/↵✏2) ·

�����
u
k
l � u

k
l�1

kuk
l � u

k
l�1k2

± u
k
l�1

�����

2

2

· ku
1
l k

2
2 · · · ku

k�1
l k

2
2ku

k+1
l�1 k

2
2 · · · ku

d
l�1k

2
2

where tensor Frobenius norm kxkF :=
Qd

k=1 ku
k
k2 and u

k
l is the closest point to u

k
in {T̄

k
l }.208

For the desired accuracy ✏ > 0 in the final guarantee (2), in what follows we correspondingly define209

a sequence of distortion levels ✏0 = ✏, ✏1 = 21/↵✏, · · · , ✏L = 2L/↵
✏ for L ⇣ dlog2(nd)e levels and210

let L̃ = max(0, b↵ log2(1/✏)c) such that for l  L̃, ✏l  1 therefore max(✏l, ✏2l ) = ✏l. Additionally,211

we define x = u
1
L+1 ⌦ · · · ⌦ u

d
L+1 being the finest level of approximation. Give ✏, n, d, we will212

pick L = Cdlog2(nd)e for a constant C and work under the assumption that L̃  L in the proofs213

presented in Section B – the case when L̃ > L allows us to draw the same conclusion and is deferred214

to Appendix D. Here the constant C is independent from all problem parameters.215

Definition 3 takes center stage in the following lemma. The trade-off of ⌘l, ✏l and pl specified in the216

proof of Lemma 4 below ensures that there’s no occurrence of l in the final stated m. The {✏l} plays217

the role of multi-level approximation close in spirit to what the �-functional attempts to capture. The218

super-exponential factor of dd also made an appearance in earlier work on embedding of finite set219

using Tensor-SRHT [4].220

Lemma 4 (Multi-resolution embedding property of row-wise tensored sketches). With m =221

O(Cd(dd + (1 + ⌘)d)/✏2), Tensor-SRHT defined in Definition 1 satisfies Definition 3 for ↵ = 2/d.222

The same property also holds for Tensor Subgaussian defined in Definition 2 for m = O(Cd
�
2d(dd +223

(1 + ⌘)d)/✏2) and ↵ = 2/d.224

4.3 Embedding of general sets with row-wise tensored sketches225

Now we embark on our journey for the proof of our main result on row-wise Kronecker-structured226

sketches where Definition 3 and Lemma 4 will reveal their power.227

Theorem 2 (Gordon-type Inequality for Tensor-SRHT and Tensor-Subgaussian). Tensor-SRHT228

with m = O(Cd
✏
�2(
Pd

i=1 �2/d(T
i))2dd) satisfies uniform concentration (2). The same guarantee229

carries over to Tensor-Subgaussian with m = O(Cd
�
2d
✏
�2(
Pd

i=1 �2/d(T
i))2dd).230
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This recovers the result of [18] for d = 1 (ignoring poly-logs). In light of the tail bound Theorem 2.1231

in [3], it is also natural that �2/d functional shows up.232

Remark. This concentration result can also be easily converted to be on |kSxk2 � 1| using basic233

inequality 1
3 min{|a2 � 1|,

p
|a2 � 1|}  |a� 1|  min{|a2 � 1|,

p
|a2 � 1|} for a � 0.234

It is worth noting that the above argument will generalize to other structured random ensembles, e.g.,235

partial circulant matrix with random signs. To put things in context, we compare this bound with236

what we got from Lemma 2. Using Lemma 3,237

�2/d(T
i)  (1 +K · log2(b/↵) · b/↵ · log2(a))

d�1
2 �2(T

i) ,

which means substituting into Theorem 2, assuming for the sake of argument all the T
i are the same,238

focusing on the dependence on ✏ and �2, this approach gives239

m = O((
dX

i=1

�2/d(T
i))2✏�2) = O

�
(b log2(a))

d�1
· �2(T

i)2✏�2
�
. (5)

if ignoring poly-logs. In contrast to Lemma 2 where we used a single-scale discretization m =240

O(✏�2
· n

d2

1+d (�2
2(T

i))
d

1+d ), Sudakov informs us241

p
b log(a)  sup

✏2(0,1]
✏

p
b log(a/✏) . �2(T

i) 
p
n .

Therefore in the case of low complexity set (�2(T i) ⌧
p
n), the multi-resolution approach pays off.242

5 Recursive Kronecker Embedding243

The row-wise-tensored mapping from the previous section, despite its simplicity, gives exponential244

dependency on the degree d (and necessarily so, as a preview for Section F), suggesting it is ideal245

for low-degree tensor. In this section, we analyze the “sketch and reduce" approach proposed by [2],246

which composes degree-2 sketches from the previous section in the following way: we define the247

operation S acting on rank-1 e.g., degree-3 tensor as248

S(x⌦ y ⌦ z) := S
1(x⌦ S

2(y ⌦ S
3
z)) . (6)

The distinctive feature of the design is that at each layer, the Kronecker-structured sketch S
k only249

acts on degree-2, reduced-dimensional tensor – something it excels at. It is an easy exercise that the250

matrix S 2 Rm⇥nd

, when acting on rank-1 degree-d tensor, can be deemed as S = Q
0 for251

Q
d = 1 and Q

k�1 = S
k(Qk

⌦ In) 2 Rm⇥nd�k+1

for k = d, · · · , 1 ,

where each S
k
2 Rm⇥nm for k 2 [d� 1] and S

d
2 Rm⇥n.252

5.1 Building blocks for multi-resolution covering253

The analysis follows the same template once we know how the JL moment property is preserved254

under matrix direct sum and multiplication, which was investigated in previous work. We have the255

following discrete JL property for the embedding matrix S introduced above.256

Lemma 5 (Finite Set Embedding Property). The recursive embedding (6) satisfies |kSxk
2
2 � 1| 257

max(✏, ✏2) for all unit-norm, rank-1 tensors x 2 Rnd

belonging to a finite set of cardinality p with258

probability at least 1 � e
�⌘

for any ⌘ > 0 with m = O
�

d
✏2 (log

2(p) + ⌘
2
_ ⌘)

�
. Moreover, such259

operation can be conducted in time O(d(n log n+m)) when each S
i

is constructed from an degree-2260

Tensor-SRHT sketch.261

The ensuing lemma makes it clear that we should be grateful for the result stated above.262

Lemma 6 (Multi-resolution embedding property of Recursive Tensor-SRHT). With m = O(d(d2 +263

(1 + ⌘)2)/✏2), Recursive Tensor-SRHT satisfies the (✏, ⌘,↵)-Multi-resolution Embedding Property in264

Definition 3 with ↵ = 1.265
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5.2 Embedding of general set using recursive sketch266

We will employ a slightly different decomposition of the chain for this construction and dedicate the267

section to prove the following theorem. At a high level, the observation is that the sketch, albeit taking268

complicated hierarchical form, happens to be linear when acting on rank-1 tensor. Therefore the269

strategy is to have all the terms in the chain we need to control in the rank-1 form that only involves270

difference in one factor, after which the multi-resolution embedding property can be repeatedly271

instantiated as before.272

Theorem 3 (Gordon-type Inequality for Recursive Kronecker Embedding). The Recursive Tensor-273

SRHT with m = O(d✏�2(
Pd

i=1 �1(T
i))2 · (d2 + (1 + ⌘)2)) satisfies |kSxk

2
2 � 1|  max(✏, ✏2) for274

all x = u
1
⌦ · · ·⌦ u

d
2 T

1
⇥ · · ·⇥ T

d
with probability at least 1� exp(�⌘) for d � 2.275

It is enlightening to compare with the previous embedding bound, assuming again the covering276

number admits N(T i
, sB

n
2 )  (as )

b for all i 2 [d]. With (4) we have277

�1(T
i)  C1

Z 1

0
logN(T i

, sB
n
2 ) ds  C1

Z 1

0
b log(a/s) ds  C

0
1 · b log(a)

which means using Theorem 3 that m = O(d5b2 log2(a)/✏2) for the desired embedding guarantee.278

This is favorable as the dependence on d has been reduced from exponential to polynomial. For279

example we can see that when each T
i consists of a set of p points on the unit sphere, b = o(1) and280

a = p we get log2(p)/✏2 as opposed to logd(p)/✏2 from the previous section (5) when focusing on281

the scaling with p.282

6 Applications283

In this section, we deliberate on applications of our result in two settings, deploying one type of284

random embedding for each, where we see how these bounds can take advantage of the underlying285

low complexity structure to move away from the (much larger) ambient dimension. We note that286

these applications crucially exploit the fact that the object in Rnd

being acted upon has Kronecker287

structure – this departs from e.g., oblivious subspace embedding (OSE) result from [1] where the288

column span of any n
d
⇥ p matrix is preserved.289

6.1 Signal Recovery290

Inspired by compressed sensing, suppose we are given independent random (linear) 1-subgaussian291

measurements on Kronecker-structured rank-1 signal x of type292

yi = hSi, xi =
dY

j=1

hv
j
i , u

j
i, i 2 [m] (7)

for x = u
1
⌦ · · ·⌦ u

d, ui
2 T

i
⇢ Sn�1, and would like to know when does performing293

min
{zj}d

j=12Sn�1

dX

j=1

fj(z
j) subject to S(z1 ⌦ · · ·⌦ z

d) = y, fj(z
j)  Rj 8j 2 [d] (8)

uniquely reconstruct x, where fj above is convex and Rj := fj(uj) encodes the prior knowledge we294

have so that {uj
} is feasible. In the case when such information is not available, the constraint can295

simply read as kzjk2  1, for example. Notice that the decision variable lives in a lower dimensional296

space (nd as opposed to n
d if we naively vectorize the signal) and one candidate could be alternating297

projected gradient descent over each factor. Computation aside on which algorithm to enlist for298

solving (8), the analysis below gives an information-theoretic lower bound on the sample complexity299

for successful recovery. The following quantities facilitate the analysis.300

Definition 4 (Descent Cone and Restricted Singular Value). We use D(fj , uj) to denote the descent301

cone of a convex function fj at point u
j
2 Rn

, that is, D(fj , uj) := [⌧>0{t 2 Rn : fj(uj + ⌧ t) 302

fj(uj)}. The correspondingly normalized descent cone is denoted as D̄(fj , uj) := D(fj , uj)\Sn�1
.303

Let �min(S; C) be the minimum singular value of a matrix S restricted to set C, i.e., �min(S; C) :=304

minx2C\Sn�1 kSxk. Furthermore, the descent cone of a proper convex function is always convex.305
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We take hints from [8, 21] for the lemma below.306

Lemma 7 (Recovery Guarantee). If kSwk � (1� ✏)kwk for all w = (u1+ t
1)\Sn�1

⌦ · · ·⌦ (ud+307

t
d) \ Sn�1

for which t
j
2 D(fj , uj) where ✏ < 1, the optimizer {z

j
⇤}

d
j=1 returned by (8) satisfies308

z
1
⇤ ⌦ · · ·⌦ z

d
⇤ = u

1
⌦ · · ·⌦ u

d
for the measurement model (7).309

Using Theorem 2 with Tensor-Subgaussian, for ✏ 2 (0, 1), 8w 2 W
1
⇥ · · · ⇥ W

d where W
j :=310

(uj +D(fj , uj)) \ Sn�1,311

|kSwk � 1||  min{|kSwk22 � 1|, |kSwk22 � 1|1/2}  ✏

if picking m = O(Cd(
Pd

i=1 �2/d(W
i))2 · (dd + (1 + ⌘)d)/✏2), which means �min(S;W1

⇥ · · ·⇥312

W
d) � 1 � ✏ > 0 as needed by Lemma 7. Using translation-invariance and subadditivity of the313

�-functionals, an argument similar to the one in Lemma 3.4 of [9] shows that this is order-wise the314

same as m = O(Cd(
Pd

i=1 �2/d(D̄(fi, ui)))2 · (dd + (1 + ⌘)d)). Now thanks to the decoupling, it315

reduces to d descent cone vector Gaussian width type calculation.316

We start with an example where each of the d factors is k-sparse, i.e., T i = {u
i
2 Rn : kui

k0 317

k, ku
i
k2 = 1}, it is classical that the normalized descent cone for `1 norm at k-sparse vector318

is D̄(fi, ui) = {s : ksk1  2
p
kksk2, ksk2 = 1}. Since conv(kBn

0 \ B
n
2 ) ⇢

p
kB

n
1 \ B

n
2 ⇢319

C · conv(kBn
0 \B

n
2 ) for an absolute constant C, from known result one can deduce that the covering320

number and Gaussian width scale as321

w(D̄(k · k1, u
j)) ⇣

p
k log(en/k)

322

log(|N�(D̄(k · k1, u
j))|) ⇣ k log(en/�k) ,

consequently323

�
2
2/d(D(k · k1, u

j)) . (kd log(n/k) log(kd))d�1
· k log(n/k) .

This gives assuming log(n/k) ⌧ k (not worrying about the d
d factor, assuming d is small for324

this application) with m = O
�
k
d(1 + ⌘)d

�
, the recovery is successful with probability at least325

1� exp(�⌘) when omitting poly-logs. It should be clarified that the minimizer of (8) may not be326

unique (as in the case with fj = k ·k1 up to sign ambiguity – which is the only possible one for rank-1327

tensor), but this sample complexity suffices for recovering any of the equivalent representations of328

the rank-1 signal under consideration. In general, the work of [8, 21] provide powerful recipe for329

bounding the Gaussian width of a descent cone based on duality and polar cones: for fj a convex330

function, and u
j
2 Rn a fixed point, g ⇠ N (0, In),331

w
2(D(fj , u

j))  E inf
⌧�0

dist2(g, ⌧ · @fj(u
j)) ,

which cries out for more opportunities on applications for structured tensor recovery.332

6.2 Optimization333

Consider an optimization (tensor decomposition) problem, where for given signal x = u
1
⌦· · ·⌦u

d
2334

T
1
⇥ · · ·⇥ T

d taking Kronecker structure, we wish to solve for335

min
zi2T i 8i2[d]

ku
1
⌦ · · ·⌦ u

d
� z

1
⌦ · · ·⌦ z

d
k
2
F . (9)

In general, one could also consider the denoising version where there is noise in the observation336

x+ e, but for simplicity we focus on the noiseless case below. With the hope of saving storage and337

speeding up, we apply sketching before solving a lower m-dimensional problem:338

min
zi2T i 8i2[d]

kS(u1
⌦ · · ·⌦ u

d)� S(z1 ⌦ · · ·⌦ z
d)k22 =: g(z1, · · · , zd) . (10)

Let S be the recursive sketch from Section 5 and denote the optimizer of (10) as {zi⇤}. It is not hard to339

see that since g(z1⇤ , · · · , zd⇤)  g(u1
, · · · , u

d) = 0, we must have S(z1⇤⌦· · ·⌦z
d
⇤) = S(u1

⌦· · ·⌦u
d),340

which means that S restricted to set T 1
⇥ · · ·⇥ T

d must have the smallest singular value bounded341

away from 0 for us to uniquely identify the rank-1 factors. Note again this doesn’t resolve the inherent342

ambiguity between the factors such as sign flips but the resulting sample complexity is sufficient to343

recover any such signal consistent with the measurement (i.e., the returned rank-1 solution obeys344

z
1
⇤ ⌦ · · ·⌦ z

d
⇤ = u

1
⌦ · · ·⌦ u

d hence in x space it is unique). We give an example in Section E.345
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