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Abstract

Transformers have achieved remarkable success in several domains, ranging from1

natural language processing to computer vision. Nevertheless, it has been recently2

shown that stacking self-attention layers — the distinctive architectural component3

of Transformers — can result in rank collapse of the tokens’ representations at4

initialization. The question of if and how rank collapse affects training is still5

largely unanswered, and its investigation is necessary for a more comprehensive6

understanding of this architecture. In this work, we shed new light on the causes7

and the effects of this phenomenon. First, we show that rank collapse of the tokens’8

representations hinders training by causing the gradients of the queries and keys9

to vanish at initialization. Furthermore, we provide a thorough description of10

the origin of rank collapse and discuss how to prevent it via an appropriate depth-11

dependent scaling of the residual branches. Finally, our analysis unveils that specific12

architectural hyperparameters affect the gradients of queries and values differently,13

leading to disproportionate gradient norms. This suggests an explanation for the14

widespread use of adaptive methods for Transformers’ optimization.15

1 Introduction16

Since its first appearance in Vaswani et al. [2017], the Transformer architecture has revolutionized17

the field of Natural Language Processing (NLP), achieving remarkable success in tasks such as18

text classification [Yang et al., 2019], machine translation [Conneau and Lample, 2019], reading19

comprehension [Brown et al., 2020] and question answering [Raffel et al., 2019] among others.20

Recent efforts have effectively extended its applicability to computer vision [Dosovitskiy et al., 2020]21

and other domains [Baevski et al., 2020, Huang et al., 2018, Biggio et al., 2021, Polu et al., 2022],22

further popularizing it outside NLP.23

The Transformer operates on inputs comprising a sequence of tokens. At its core, it relies on stacked24

attention layers, which compute a measure of relevance for the whole sequence by assigning token-25

wise importance weights — obtained by matrix multiplication of the queries and keys, and finally26

normalized with the softmax function. The output of an attention layer is then a linear combination27

of the importance weights and the so-called values. Then, the architecture includes fully-connected28

sub-layers, residual connections [He et al., 2016], and layer normalization (LN), as illustrated in29

Fig. 2.30

In the absence of residual connections, Dong et al. [2021] proved that at initialization the rank of the31

sequence representation collapses doubly exponentially with depth, and both layer normalization and32

fully connected layers can only partially alleviate the speed of degeneracy. Under rank collapse, the33

model does not distinguish between representations of different tokens, which are perfectly aligned34

in feature space at initialization. Crucially, the precise implications of rank collapse in Transformers35

are not fully understood.36
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Figure 1: Evolution of the cosine of the angle between tokens for training POST-LN Transformers
of increasing depth, with the Adam optimizer, for the IWSLT’14 De-En translation task. Unless
adequate residual scaling is used at initialization, increasing depth leads to an increase in the tokens’
alignment at initialization, which can inhibit training.

In this paper, we show that a high alignment of the tokens’ representations at initialization —37

corresponding to rank collapse in the extreme case of perfect alignment — affects training by38

causing vanishingly small gradients of the queries and keys’ parameter matrices. This problem39

severely diminishes the capabilities of the model to learn meaningful attention weights and is further40

exacerbated in very deep networks, where the rank deficiency — and hence the vanishing gradient41

problem of the queries and keys — affects several layers (see Fig. 1). In order to shed light on this42

problem, we take inspiration from the flourishing literature on signal propagation in random networks43

and start our analysis by computing the expected gradients of an attention layer with respect to the44

queries, keys, and values, which leads to Theorem 3.2 on the vanishing gradients for the queries and45

keys. From here, we pursue two different directions.46

Firstly, we investigate under which conditions rank collapse can be avoided by studying the evolution47

of the input sequence in a Transformer at initialization. Our theory reveals that a depth-dependent48

scaling of the residual branches, beyond stabilizing the norm of the activations at initialization, also49

approximately preserves the cosine of the angle between tokens, and hence also stabilizes the rank of50

the propagating sequence. We show that this holds even in the infinite-depth limit.51

Secondly, we illustrate that there are factors, other than the average tokens’ correlation, that affect52

differently the gradient norm of the queries and keys compared to the values. In particular, the53

propagating sequence’s squared norm has a linear dependence in the values, while a cubic one in the54

queries and keys, justifying the use of layer normalization. We also highlight a different dependence55

on the embedding dimension and the length of the input sequence, implying that the gradient norm56

of a subset of parameters can potentially be of different orders of magnitude, as empirically hinted57

by previous works [Liu et al., 2020]. Our analysis brings to light fundamental issues in the signal58

propagation in Transformers, opening the way for new, well-founded and motivated approaches to59

improve optimization in these models.60

2 Background61

Transformers. A Transformer architecture consists of L stacked attention blocks, as show in Fig. 2.62

Layer normalization is usually applied token-wise either after the residual connections or to the inputs63

of the self-attention and position-wise feed-forward sub-layers, leading to the POST-LN [Vaswani64

et al., 2017] and PRE-LN [Wang et al., 2019, Xiong et al., 2020] variants respectively.65

Formally, given an input sequence X ∈ Rn×dv , with n tokens of dimension dv, the single-head66

unmasked scaled dot-product self-attention1 is defined as:67

Sℓ := AℓXℓWV , where Aℓ = softmax
(

1√
dk

XℓWQ
(
XℓWK

)⊤)
, (1)

where the softmax function is applied independently across each row, and the superscript ℓ indexes68

the ℓ-th layer. The matrices WQ,WK ∈ Rdv×dk and WV ∈ Rdv×dv are learnable parameters,69

1Our analysis also easily generalizes to the case of cross-attention.
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and each layer is initialized with an independent set of weights. In the literature, the matrices70

XℓWQ,XℓWK ,XℓWV are referred to as queries, keys and values, respectively. The complete71

Transformer block, in the absence of layer normalization, can be written recursively as:72

Zℓ = α1S
ℓ +Xℓ (2)

Yℓ = σ(ZℓWF1)WF2 (3)

Xℓ+1 = α2Y
ℓ + Zℓ, (4)

where the introduced α1, α2 parameters indicate the strength of the residual block, WF1 , WF2 ∈73

Rdv×dv 2 are matrices of learnable parameters; we set X0 := X, and σ : R → R is an activation74

function. In our case, σ is the ReLU function, but we relax this assumption to the linear activation75

from Section 3.2 on.76
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Figure 2: A single Trans-
former block.

At initialization, each weight is sampled independently from a distribution77

with zero-mean and variance σ2
v = 1

dv
for the values and feedforward78

weights3, and σ2
k = 1

dk
for the queries and keys. This is the standard79

“Xavier” [Glorot and Bengio, 2010] or “He” [He et al., 2015] initialization,80

commonly used in deep learning.81

Rank Collapse in Transformers. Interestingly, Dong et al. [2021]82

proved that when the residual branches are omitted, the matrix of the83

tokens’ representations Xℓ converges to a rank-1 matrix in which all84

the representations are the same and equal to a vector x ∈ Rdv , i.e.85

Xℓ → 1nx
⊤, where 1dv

is the vector with all ones in Rdv . Note that86

this is a slightly stronger notion of a rank-1 matrix, as it implies that all87

the tokens’ representations are both perfectly aligned and have the same88

norm. Indicating the inner product with the usual bracket notations ⟨·, ·⟩,89

and the cosine of the angle between two tokens as θk,k′ , perfect alignment90

happens when ⟨Xℓ
k,X

ℓ
k′⟩ =

∥∥Xℓ
k

∥∥ ∥∥Xℓ
k

∥∥ cos θk,k′ with cos θk,k′ = 1 for91

all k, k′ ∈ [n]. Note that perfect alignment together with equal norm92

between all the tokens implies that all the representations are the same.93

One of our main contributions is to provide an explanation of how rank94

collapse affects the gradients of a Transformer at initialization.95

Vanishing Gradient Problem. Traditionally considered one of the core96

issues that prevents successful training, the vanishing gradient problem97

has a long and rich history that dates back to before the popularization98

of deep learning [Hochreiter, 1991, Bengio et al., 1994]. In its essence,99

given a loss function L : Rn×dv → R, vanishing gradients occur when100

the norm of the gradient of the loss L with respect to the parameters of the network W — which we101

indicate as
∥∥ ∂L
∂W

∥∥— is too small to provide enough backpropagating signal, thus hindering gradient-102

based optimization methods. Despite extensive research toward understanding and overcoming the103

problem in disparate contexts [Glorot and Bengio, 2010, He et al., 2015, Hanin, 2018, Zhang et al.,104

2019], a formal explanation of its role in relatively new architectures such as Transformers is largely105

missing in the literature, with a few exceptions [Xiong et al., 2020, Wang et al., 2022, Huang et al.,106

2020]. In our paper (Section 3.1), we show how vanishing gradient occurs in conjunction with the107

rank collapse issue identified by Dong et al. [2021].108

Signal Propagation in Random Networks at Initialization. After addressing the question on the109

effects of rank collapse, we take a step back and rigorously analyze its causes by looking at how the110

properties of the input sequence X are lost/preserved as it propagates through a randomly initialized111

Transformer. More specifically, we focus on two aspects of the propagating sequence: the expected112

2In practice, one commonly uses WF1 ∈ Rdv×dF , WF2 ∈ RdF×dv where dF = γdv , with γ ∈ {2, 4, 8}.
Our results then hold up to a constant factor that depends on γ.

3One should explicitly write the layer dependence WQ,ℓ,WK,ℓ,WV,ℓ,WF1,ℓ,WF2,ℓ. We at times
suppress the ℓ index to improve readability. In case σ is the ReLU function, we set WF,1 to have variance 2

dv
.
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Frobenius norm E
∥∥Xℓ

∥∥2 and the expected inner product between different tokens E⟨Xk,X
′
k⟩, with113

k ̸= k′. The former is linked to a number of studies on the initialization of neural networks at114

the edge of chaos [Poole et al., 2016, Schoenholz et al., 2017], and vanishing/exploding gradients115

[Hanin, 2018]. The latter quantity describes how the geometry of the feature space changes after116

applying a Transformer block, and is related to the concept of dynamical isometry [Saxe et al., 2013].117

To understand the evolution of the inner product, we analyze the following measure of correlation118

[Nachum et al., 2021, Cho and Saul, 2009]:119

ρℓkk′ :=
E⟨Xℓ

k,X
ℓ
k′⟩√

E
∥∥Xℓ

k

∥∥2 E ∥∥Xℓ
k′

∥∥2 . (5)

Note that ρℓkk′ = 1 if and only if the k-th and k′-th tokens are perfectly aligned (cos θkk′ = 1). We120

stress that in our case — differently from the aforementioned works — instead of analyzing the121

relationship between two different data points, we study the relationship between tokens of the same122

sequence.123

3 Theoretical Results124

3.1 Vanishing Gradients for Queries and Keys under Rank Collapse125

To investigate the problem of vanishing gradients in the attention layers, we make use of the framework126

of matrix calculus [Magnus and Neudecker, 2019, Singh et al., 2021]. In particular, we compare127

the expected Frobenius norm of the gradient of a self-attention layer with respect to its parameters:128

E
∥∥∥ ∂Sℓ

∂W

∥∥∥2
F

, where here W indicates one of the keys, queries or values weight matrices. Due to the129

well-known difficulty of computing expectations of the softmax [Daunizeau, 2017, Shekhovtsov130

and Flach, 2018], throughout this manuscript, we make the simplifying assumption that the softmax131

output is the uniform distribution at initialization, i.e. the n× n matrix containing 1
n in each entry.132

Assumption 3.1 (Uniform attention). We assume that Aℓ = 1
n1n×n,133

where 1n×n is the matrix with all entries equal to 1. Crucially, in Appendix A.5, we formally show134

that this assumption holds almost surely in the limit dk → ∞. There, we also experimentally show135

that even in the more realistic case where dk = dv ≈ 512, the empirical simulations provide a136

surprisingly faithful approximation of the theoretical insights presented in this paper.137

We define the mean token x̄ℓ through its components x̄ℓ
i =

1
n

∑n
k=1 X

ℓ
ki, i ∈ [dv]. In the following138

theorem, we compute the expected gradients of an attention layer at initialization, and set the basis139

for our following analysis. We provide the results only for the queries, as the case for the keys is140

analogous.141

Lemma 3.1. Let Xℓ be the representations of the input sequence at the ℓ-th layer. Under the
uniform-attention assumption, we have

E
∥∥∥∥ ∂Sℓ

∂WV,ℓ

∥∥∥∥2
F

= dvnE∥x̄ℓ∥2 ; (6)

E
∥∥∥∥ ∂Sℓ

∂WQ,ℓ

∥∥∥∥2
F

=
σ2
vσ

2
kdv

n2
· E
[
∥Xℓ∥2F · ∥(Xℓ)⊤Xℓ − nx̄ℓ(x̄ℓ)⊤∥2F

]
; (7)

E
∥∥∥∥ ∂Sℓ

∂Xℓ

∥∥∥∥2
F

≤
8σ2

qσ
2
kσ

2
vdkdv

n
· E
∥∥(Xℓ)⊤Xℓ − nx̄ℓ(x̄ℓ)⊤

∥∥2
F
+ 2d2vσ

2
v . (8)

142

We defer the precise study of the scaling of these quantities as a function of n and dv, dk, to Section 3.3.143

At this stage, it is crucial to note that 1
n (X

ℓ)⊤Xℓ − x̄ℓ(x̄ℓ)⊤ is the centered empirical covariance144

matrix of the tokens’ representations. It is easy to see that if Xℓ is a rank-1 matrix, then all the rows145

of Xℓ are proportional to a fixed dv-dimensional vector, and the empirical covariance matrix has146

all zero entries. Introducing a loss function L : Rn×dv → R, we make the statement on vanishing147

gradients more formal in the following theorem:148
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Theorem 3.2 (Vanishing gradients under rank collapse). Suppose that the uniform-attention
assumption holds. If additionally Xℓ for any l ∈ [L] has rank-1, and there exists a vector x ∈ Rd

such that Xℓ = 1nx
T , then:

E
∥∥∥∥ ∂L
∂WQ,ℓ

∥∥∥∥2
F

= 0, E
∥∥∥∥ ∂L
∂WK,ℓ

∥∥∥∥2
F

= 0, (9)

where the expectation is taken over the weight matrices. This implies that these quantities are
vanishing almost surely, due to the non-negativeness of the norm.

149

The proof simply relies on expanding the norm of the gradient of the loss with the aid of the chain150

rule and then bounding it by the product of the norms of each term of the chain. The final result holds151

with an application of Lemma 3.1, in which the rank-1 assumption makes E
∥∥∥ ∂Sℓ

∂WQ,ℓ

∥∥∥ vanish.152

In light of Theorem 3.2, we can conclude that the rank collapse issue originally identified in Dong153

et al. [2021] corresponds to an initialization in a region of vanishing gradient signal in the subspace154

of parameters identified by the queries and keys. How can this affect training? One may argue that if155

rank collapse does not happen in the very first layer, then the corresponding gradients are non-zero,156

and the rank of the subsequent layers — affected by rank collapse — can be increased with the157

first few steps of gradient descent. In practice, we show empirically in Fig. 1 that escaping this158

pathological landscape is harder in deeper nets.159

3.2 Forward Signal Propagation and the Importance of Scaling the Residual Branches160

We now turn our attention to the study of the influence of skip connections in transformers. Dong et al.161

[2021] showed that simply adding skip connections prevents rank collapse. Somewhat surprisingly,162

we show that while the claim holds for any finite depth, the average angle between different tokens163

quickly increases with just a few layers, and as L → ∞ a Transformer can still lose rank unless the164

residual branches are adequately initialized. As Dong et al. [2021] showed that layer normalization165

does not avoid rank collapse, we omit it in our analysis. Firstly, we introduce two lemmas on the166

propagation of inner products (Lemma 3.2) and the norm (Lemma 3.3) of the tokens’ representations.167

Lemma 3.2 (Propagation of inner products). Let C(Xℓ) =
∑

k,k′⟨Xℓ
k,X

ℓ
k′⟩ and X the input

sequence. Under the Assumption 3.1 and if σ is the linear activation function, we have that:

E
[
C(XL)

]
= (α2

2 + 1)L(α2
1 + 1)LC(X). (10)

hence, under the depth scaling for the residual block parameters α2
1 = α̃1

L , α2
2 = α̃2

L with α̃1, α̃2 ∈ R
independent of L, we have that:

lim
L→∞

E[C(XL)] = eα̃1+α̃2C(X). (11)
168

Note that C(Xℓ) = n2
∥∥x̄ℓ

∥∥2. The lemma on the propagation of the norm is slightly more involved:169

Lemma 3.3 (Propagation of the norm). Let XL be the representations of the input sequence at the
final layer. Under the assumptions of Lemma 3.2, we have that:

E
∥∥XL

∥∥2
F
= n(α2

2 + 1)Lα2
1

L−1∑
k=0

(α2
1 + 1)k ∥x̄∥2 + (α2

2 + 1)L||X||2F , (12)

hence, under the depth scaling for the residual block parameters α2
1 = α̃1

L , α2
2 = α̃2

L with α̃1, α̃2 ∈ R
independent of L, we have that:

lim
L→∞

E
∥∥XL

∥∥2
F
= neα̃2(eα̃1 − 1) ∥x̄∥2 + eα̃2 ||X||2F . (13)

170

The proof of Lemma 3.3 consists in expanding E
∥∥XL

∥∥2
F

according to the defining equations171

for the Transformer, and simplifying the expression by using iterated expectations E
∥∥XL

∥∥2
F

=172
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Figure 3: Effect of the residual scaling to the norm of the gradients of the network at initialization
with respect to some loss. From left to right: (a) the cosine of the angle between tokens increases with
depth. Note how larger values of α1, α2 imply a faster token alignment with depth (Theorem 3.3).
Subplots (b) and (c) show the gradients of the queries-keys and values parameters respectively by
increasing depth, compared to the corresponding norms of the first layer. Gradients for the queries-
keys diminish with depth, while the opposite happens for the values. We use POST-LN to disentangle
the effect of the variance of the input.

E[E[
∥∥XL

∥∥2
F
|Xℓ]] to exploit the conditional independence between different layers, and then com-173

puting the expectations using the independence assumption on the weights. The expression on the174

right-hand side will then depend on Xℓ only through its norm
∥∥Xℓ

∥∥ and the norm of the mean token175 ∥∥x̄ℓ
∥∥2. Using Lemma 3.2 then allows us to unroll the recursion and get the final result. The complete176

proof, together with the proof of Lemma 3.2, can be found in Appendix A.3.177

The previous Lemma provides theoretical justification that scaling the residual branches by setting178

the alpha parameters to be O(1/
√
L) allows both the norm of the propagating input and the inner179

products between different tokens to be approximately preserved. Hence, the information contained180

in the input is not lost, even in the infinite depth limit.181

Residual Scaling Preserves Correlations. We now prove that without the depth-dependent residual182

scaling (i.e. with α1 = α2 = 1) the correlation between the tokens quickly increases, and reaches183

perfect alignment in the infinite depth limit. More specifically, our argument shows that in this limit,184

the correlation between different tokens ρℓk,k′ as in Eq. (5) converges to 1, implying rank collapse.185

Furthermore, we show how setting the residual parameters α1 and α2 as dictated by Theorem 3.3,186

ensures that the correlation measure is dependent on the input in a non-trivial way even at infinite187

depth. To this end, we introduce the average correlation at layer ℓ:188

ρℓ =
1

n(n− 1)

∑
k ̸=k′

ρℓkk′ . (14)

Note that ρℓ = 1 if and only if every pair of tokens is perfectly aligned. We are now ready to189

formalize the influence of the 1/
√
L-scaling on the correlation between tokens’ representations by190

stating Theorem 3.3.191

Theorem 3.3. Let the input tokens have the same norm, i.e. ∥Xk∥ = ∥x∥ ∀k ∈ [n] for some
x ∈ Rdv . Under the depth scaling for the residual block parameters α2

1 = α̃1

L , α2
2 = α̃2

L with
α̃1, α̃2 ∈ R independent of L, we have that:

lim
L→∞

ρℓ =
neα̃1C(X)

(n− 1)[(eα̃1 − 1)C(X) + n ∥X∥2F ]
− 1

n− 1
. (15)

On the other hand, if α1, α2 ̸= 0 are some constants independent of L, we have that:

lim
L→∞

ρℓ = 1. (16)
192
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The proof consists in noting that due to the symmetry of the problem at initialization, for a fixed193

layer the expected norm of each token is the same. Hence, by our definition of ρℓkk′ , we can write194

E⟨Xℓ
k,X

ℓ
k′⟩ = ρℓkk′E

∥∥xℓ
∥∥2. By summing over the k, k′ indexes, the resulting equation will depend195

on E[C(Xℓ)] and E
∥∥Xℓ

∥∥2, which can be expanded using Lemma 3.2 and 3.3 respectively. The196

result is then given by solving for ρℓ.197
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√
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normalization (No-LN).

Note that under the 1/
√
L-scaling, the correlation term is198

one if and only if C(X) = n ∥X∥2, which holds in the199

degenerate case where all the input tokens are perfectly200

aligned. In Appendix A.4, we give precise formulas for201

the expected correlations at any depth, showing that ρℓ202

reaches values close to one even for relatively shallow net-203

works when the 1/
√
L-scaling is not adopted (see also Fig.204

3 (left)). Additionally, in Fig. 4, we empirically show that205

in the presence of the 1/
√
L-scaling, layer normalization206

(either PRE or POST) does not significantly affect the evo-207

lution of the correlations. On the other hand, without the208

residual scaling, PRE-LN seems to alleviate the rate of in-209

crease of ρℓkk′ . It is intriguing that most deep Transformer210

models use this configuration [Brown et al., 2020]. We211

provide more extensive empirical results in Appendix B.212

Note that the 1/
√
L scaling for the residual branches has213

been previously studied in the context of stabilization of214

residual networks (see Section 4), here we extend these215

results to Transformers and provide new insights on its216

role in the context of rank preservation. Finally, note that217

by setting α̃1, α̃2 = 0, we recover the so called "ReZero"218

initialization [Bachlechner et al., 2021]. In this context,219

the 1/
√
L scaling extends this framework as it allows for220

wider range of values for α̃1, α̃2 while still guaranteeing stability.221

ReLU extension. We mention here that extending these results from the linear activation to the222

ReLU case is known to be a hard problem, due to the technical difficulty of propagating the inner223

products across ReLU layers that are shared among the tokens (this is the case in the position-wise224

feed-forward layers in Transformers). Exact formulas can be found only in the case of one ReLU225

layer with Gaussian inputs in Cho and Saul [2009]. However, in the context of rank collapse analyzed226

here, the linear activation function provides a bound on the correlation with respect to the ReLU case.227

In fact, correlations are exactly preserved in expectation in the linear case, but increase in the ReLU228

case (for instance, see the contraction argument in Nachum et al. [2021] below Equation (2)). Hence,229

the perfect alignment (a.k.a rank collapse) that affects the linear case affects the ReLU case as well230

(in which case the rank collapses even faster with depth, as we show in Figure 10).231

3.3 Dependence on the Angle between Tokens and the Input Norm232

In this section, we drop the superscript ℓ as it is obvious from context and assume for simplicity that233

dk = dv. To gain a better intuition on the factors that affect the gradients and provide additional234

insights, we study the case in which every pair of distinct tokens are zero-mean Gaussian random235

variables, correlated in the same way, i.e ρℓii′ = ρ for i ̸= i′ or more precisely236

E [Xi,jXi′,j′ ] =


0 j ̸= j′ (independent dimensions)
σ2
x i = i′, j = j′

ρσ2
x i ̸= i′, j = j′

.

To see that this equation satisfies our definition of the correlation metric, note that E[∥Xi∥2] = dσ2
x237

and E⟨Xi,Xi′⟩ = dσ2
xρ, for i ̸= i′. Then, the expected norm of the gradients for the values (Eq. (6))238

simplifies to239

E
∥∥∥∥ ∂S

∂WV

∥∥∥∥2
F

= σ2
xd

2 (1 + ρ(n− 1)) . (17)
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Figure 5: BLEU scores by increasing the number of
transformers blocks. ‘X’ Transformer blocks implies
in total ‘X’ encoder self-attention, ‘X’ decoder self-
attention and ‘X’ decoder cross-attention layers.

Table 1: BLEU scores for the IWSLT14 German-to-
English translation task. SGD res-scale refers to the train-
ing of SGD without layer normalization and initialization
of the residual scaling a1 = a2 = 1√

L
. SGD temperature

additionally employs an inverse temperature inside the
softmax.

Method (6L-Encoder / 6L-Decoder) BLEU ↑
SGD POST-LN 31.36
SGD res-scale 32.79
SGD temperature 35.69
Adam POST-LN [Vaswani et al., 2017] 35.39
Adam PRE-LN [Vaswani et al., 2017] 35.10
ReZero [Bachlechner et al., 2021] 34.55
T-Fixup Zhang et al. [2019] 35.59

By making the additional assumption that the norm and the correlation propagate independently, the240

respective norm for the queries — and symmetrically the keys — (Eq. (7)) reduces to:241

E
∥∥∥∥ ∂S

∂WQ

∥∥∥∥2
F

= σ6
x

(n− 1)

n
(1− ρ)2d(n+ d). (18)

In Appendix A.2 we provide a rigorous proof, that relies on Isserlis theorem [Isserlis, 1918] to242

compute higher-order moments. The above expressions reveal the different dependencies on four243

main actors, that we inspect separately here. The gradients of the queries depend via a cubic function244

on the variance of the input, σ2
x, compared to a linear for the values. This provides an additional245

interpretation of the successful use of layer normalization, as in Xiong et al. [2020], either in the246

POST-LN or PRE-LN format, that standardizes the input variance σ2
x to the value 1.247

Next, we emphasize the dependence on the correlation between the tokens, also illustrated in Fig. 3.248

Importantly, note how the queries/keys have opposite monotonic functional dependence with respect249

to ρ compared to the values. As revealed by Theorem 3.3 and Fig. 3 (center), inappropriate scaling of250

the residual branches can already lead to this phenomenon even in a relatively shallow network.251

Finally, Eq. (17) and (18) reveal a different scaling in terms of the embedding size d and the sequence252

length n due to the self-attention operation itself. We hope that the identification of the different253

dependencies in the gradients of the parameters will inspire a new line of works aimed at solving254

some of the difficulties in training Transformers.255

3.4 Are Adaptive Methods really needed for training Transformers?256

training steps 

101

102

103

104

Ad
am

's 
pe

r p
ar

am
et

er
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da
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iv
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1 2 3 4 5

Values' depth 1 2 3 4 5Values' depth 1 2 3 4 5

Queries' depth

Figure 6: Adaptive learning rates computed by
Adam in Transformers.

The existence of the discrepancy in the magni-257

tude of the gradients with respect to the weights258

WQ,WK and WV , might explain the success259

of adaptive optimization algorithms, as illus-260

trated in Fig. 6, where we plot the effective learn-261

ing rate computed by Adam [Kingma and Ba,262

2014] in a toy encoder task (more details in Ap-263

pendix C). Hence, we embark on a preliminary264

exploration to train a Transformer architecture265

with SGD with the intent of matching Adam’s266

performance. Based on our theory, we propose267

a simple architectural modification, an inverse268

temperature scaling τ ∈ R inside the softmax:269

Sℓ
τ := softmax

(
τ√
dk

XℓWQ
(
XℓWK

)⊤)
XℓWV . (19)

A direct consequence of our analysis is that τ allows controlling the magnitude of the gradients for the270

queries and keys’ parameters. In Section C.2, we detail how one can choose τ such that the magnitude271

of the gradients as derived in Equation 17 and 18 is approximately matched at initialization.272
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We evaluate our proposal, consisting of residual scaling and the aforementioned inverse temperature273

parameters, on the widely used IWSLT14 German-to-English (De-En) benchmark translation task.274

All details regarding the experimental setup and the choice of inverse temperature used are provided275

in Appendix C. We train a Transformer encoder-decoder of varying depth with SGD, after removing276

all normalization layers and adequately initializing the residual connections. For our training with277

SGD, we avoid using any learning rate warm-up, as commonly done for Adam, and instead use a278

step-scheduler to decrease the learning rate at 40% and 80% of training. We compare against the279

following methods that make use of Adam; POST-LN and PRE-LN refer to the aforementioned280

alternatives to apply layer normalization. We also compare against other successful techniques that281

rely on specific initializations to avoid layer normalization, such as ReZero [Bachlechner et al., 2021]282

and T-Fixup [Zhang et al., 2019]. We report the average BLEU score [Papineni et al., 2002] across 5283

runs in Fig. 5 and Table 1.284

Our proposed method considerably improves training with SGD, keeping up and in some cases285

surpassing any results achieved by the Adam optimizer. We are also able to train deeper networks286

without the use of layer normalization. We leave for future work to further investigate modifications287

or alternatives to the self-attention operation.288

4 Related Work289

Our work builds upon the rich literature on forward and backward signal propagation in random290

neural networks [Poole et al., 2016, Schoenholz et al., 2017, Xiao et al., 2018, Pennington et al.,291

2017, Orvieto et al., 2021, Noci et al., 2021, Zavatone-Veth and Pehlevan, 2021]. The 1/
√
L scaling292

scheme has been investigated in the literature for the stabilization of residual networks [Hanin and293

Rolnick, 2018, Arpit et al., 2019, Allen-Zhu et al., 2019, Hayou et al., 2021].294

Our work draws inspiration from a series of recent works studying the rank of the representations295

of random feed-forward neural networks at initialization [Daneshmand et al., 2020, 2021]. In the296

context of Transformers, Dong et al. [2021] has recently identified the rank collapse issue object of297

study of the present work. Thanks to our analysis of the backward pass, we are able to demonstrate298

that rank collapse in Transformer architectures leads to vanishingly small gradients of queries and299

keys, thereby preventing effective training and allowing us to complete the analysis of [Dong et al.,300

2021].301

Among the architectural components in Transformers, layer normalization is, arguably, one of the302

most important – and debated – ones [Chen et al., 2018, Wang et al., 2019, Nguyen et al., 2010, Xiong303

et al., 2020]. In the original architecture [Vaswani et al., 2017], layer normalization is used to stabilize304

the forward pass by reducing the variance of the inputs to the following sublayer. Our analysis of the305

forward pass shows that its inclusion is not strictly necessary for the purpose of controlling the norm306

of the representations. For a theoretical analysis of signal propagation in the presence of layer norm,307

we refer the reader to Xiong et al. [2020].308

Additionally, our theoretical study of the backward pass provides a rigorous explanation of the309

empirically observed discrepancy between the magnitude of the gradients of the queries and the310

values, which Liu et al. [2020] hypothesize to be one of the causes of the success of adaptive methods311

in training Transformers [Liu et al., 2019, Zhang et al., 2020, Huang et al., 2020].312

Finally, properly rescaled residual connections have been found to be beneficial for training Trans-313

formers by a number of recent research works [Zhang et al., 2019, Bachlechner et al., 2021, Wang314

et al., 2022]. However, none of these studies characterize the impact of skip connections on rank315

propagation, while our analysis suggests a theoretically-grounded way to stabilize it.316

5 Conclusions and Future Work317

In this paper, we showed how, at initialization, rank collapse and more generally high correlation318

in the tokens, causes vanishing gradients of the queries and keys of a Transformer architecture.319

While residual connections help mitigate rank collapse at finite depth, we showed that they alone320

cannot prevent high alignments of the tokens’ representations — unless properly scaled by a 1/
√
L-321

factor. Finally, we have also discovered counter-intuitive dependencies on the variance of the input,322

embedding size, and sequence length, potentially causing large differences between the gradients323
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of queries/keys compared to the values’ parameters. Hence, we conclude that one of the strengths324

of Transformers lies in their carefully designed architecture together with an adequate initialization.325

Finally, we gave preliminary evidence that one of the factors contributing to the higher efficacy326

of Adam compared to SGD in training Transformers arises from the disproportionate magnitude327

of gradients as postulated by our theory. Nonetheless, other factors might further accentuate the328

difference between these two algorithms during training, leaving the door open for further research329

regarding the benefits of adaptive optimization methods with Transformers.330
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Ido Nachum, Jan Hązła, Michael Gastpar, and Anatoly Khina. A johnson–lindenstrauss framework412

for randomly initialized cnns. arXiv preprint arXiv:2111.02155, 2021.413

XuanLong Nguyen, Martin J Wainwright, and Michael I Jordan. Estimating divergence functionals414

and the likelihood ratio by convex risk minimization. IEEE Transactions on Information Theory,415

56(11):5847–5861, 2010.416

11

https://arxiv.org/abs/1908.03265
https://arxiv.org/abs/1908.03265
https://arxiv.org/abs/1908.03265


Lorenzo Noci, Gregor Bachmann, Kevin Roth, Sebastian Nowozin, and Thomas Hofmann. Precise417

characterization of the prior predictive distribution of deep relu networks. Advances in Neural418

Information Processing Systems, 34, 2021.419

Antonio Orvieto, Jonas Kohler, Dario Pavllo, Thomas Hofmann, and Aurelien Lucchi. Vanishing420

curvature and the power of adaptive methods in randomly initialized deep networks. AISTATS421

2022 (to appear), 2021.422

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,423

and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of424

NAACL-HLT 2019: Demonstrations, 2019.425

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic426

evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association427

for Computational Linguistics, pages 311–318, 2002.428

Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. Resurrecting the sigmoid in deep429

learning through dynamical isometry: theory and practice. In I. Guyon, U. Von Luxburg, S. Bengio,430

H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information431

Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.432

neurips.cc/paper/2017/file/d9fc0cdb67638d50f411432d0d41d0ba-Paper.pdf.433

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya434

Sutskever. Formal mathematics statement curriculum learning. arXiv preprint arXiv:2202.01344,435

2022.436

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponential437

expressivity in deep neural networks through transient chaos. Advances in neural information438

processing systems, 29, 2016.439

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi440

Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text441

transformer. arXiv preprint arXiv:1910.10683, 2019.442

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics443

of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.444

Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep information445

propagation. In ICLR, 2017.446

Alexander Shekhovtsov and Boris Flach. Feed-forward propagation in probabilistic neural networks447

with categorical and max layers. In International conference on learning representations, 2018.448

Sidak Pal Singh, Gregor Bachmann, and Thomas Hofmann. Analytic insights into structure and449

rank of neural network hessian maps. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman450

Vaughan, editors, Advances in Neural Information Processing Systems, 2021. URL https:451

//openreview.net/forum?id=otDgw7LM7Nn.452

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz453

Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.454

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, and Furu Wei. Deepnet:455

Scaling transformers to 1,000 layers. arXiv preprint arXiv:2203.00555, 2022.456

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F Wong, and Lidia S Chao.457

Learning deep transformer models for machine translation. arXiv preprint arXiv:1906.01787,458

2019.459

Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel Schoenholz, and Jeffrey Penning-460

ton. Dynamical isometry and a mean field theory of CNNs: How to train 10,000-layer461

vanilla convolutional neural networks. In Jennifer Dy and Andreas Krause, editors, Proceed-462

ings of the 35th International Conference on Machine Learning, volume 80 of Proceedings463

of Machine Learning Research, pages 5393–5402. PMLR, 10–15 Jul 2018. URL https:464

//proceedings.mlr.press/v80/xiao18a.html.465

12

https://proceedings.neurips.cc/paper/2017/file/d9fc0cdb67638d50f411432d0d41d0ba-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/d9fc0cdb67638d50f411432d0d41d0ba-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/d9fc0cdb67638d50f411432d0d41d0ba-Paper.pdf
https://openreview.net/forum?id=otDgw7LM7Nn
https://openreview.net/forum?id=otDgw7LM7Nn
https://openreview.net/forum?id=otDgw7LM7Nn
https://proceedings.mlr.press/v80/xiao18a.html
https://proceedings.mlr.press/v80/xiao18a.html
https://proceedings.mlr.press/v80/xiao18a.html


Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,466

Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.467

In International Conference on Machine Learning, pages 10524–10533. PMLR, 2020.468

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.469

Xlnet: Generalized autoregressive pretraining for language understanding. Advances in neural470

information processing systems, 32, 2019.471

Jacob Zavatone-Veth and Cengiz Pehlevan. Exact marginal prior distributions of finite bayesian472

neural networks. Advances in Neural Information Processing Systems, 34, 2021.473

Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual learning without474

normalization. arXiv preprint arXiv:1901.09321, 2019.475

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv476

Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? Advances in Neural477

Information Processing Systems, 33:15383–15393, 2020.478

13



1. For all authors...479

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s480

contributions and scope? [Yes]481

(b) Did you describe the limitations of your work? [Yes] See Section 3482

(c) Did you discuss any potential negative societal impacts of your work? [N/A]483

(d) Have you read the ethics review guidelines and ensured that your paper conforms to484

them? [Yes]485

2. If you are including theoretical results...486

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3487

(b) Did you include complete proofs of all theoretical results? [Yes] Most of them in the488

Appendix489

3. If you ran experiments...490

(a) Did you include the code, data, and instructions needed to reproduce the main experi-491

mental results (either in the supplemental material or as a URL)? [Yes] The code will492

be released upon acceptance.493

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they494

were chosen)? [Yes] See Appendix.495

(c) Did you report error bars (e.g., with respect to the random seed after running experi-496

ments multiple times)? [Yes]497

(d) Did you include the total amount of compute and the type of resources used (e.g., type498

of GPUs, internal cluster, or cloud provider)? [Yes]499

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...500

(a) If your work uses existing assets, did you cite the creators? [N/A]501

(b) Did you mention the license of the assets? [N/A]502

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]503

504

(d) Did you discuss whether and how consent was obtained from people whose data you’re505

using/curating? [N/A]506

(e) Did you discuss whether the data you are using/curating contains personally identifiable507

information or offensive content? [N/A]508

5. If you used crowdsourcing or conducted research with human subjects...509

(a) Did you include the full text of instructions given to participants and screenshots, if510

applicable? [N/A]511

(b) Did you describe any potential participant risks, with links to Institutional Review512

Board (IRB) approvals, if applicable? [N/A]513

(c) Did you include the estimated hourly wage paid to participants and the total amount514

spent on participant compensation? [N/A]515

14


	Introduction
	Background
	Theoretical Results
	Vanishing Gradients for Queries and Keys under Rank Collapse
	Forward Signal Propagation and the Importance of Scaling the Residual Branches
	Dependence on the Angle between Tokens and the Input Norm
	Are Adaptive Methods really needed for training Transformers?

	Related Work
	Conclusions and Future Work
	Appendix

