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Abstract

Controlling the behavior of language models (LMs) without re-training is a major1

open problem in natural language generation. While recent works have demon-2

strated successes on controlling simple sentence attributes (e.g., sentiment), there3

has been little progress on complex, fine-grained controls (e.g., syntactic structure).4

To address this challenge, we develop a new non-autoregressive language model5

based on continuous diffusions that we call Diffusion-LM. Building upon the recent6

successes of diffusion models in continuous domains, Diffusion-LM iteratively7

denoises a sequence of Gaussian vectors into word vectors, yielding a sequence of8

intermediate latent variables. To control its generation, we iteratively perform gradi-9

ent updates on these intermediate variables. Diffusion-LM has three properties that10

enable complex, fine-grained controllable text generation: the continuous nature of11

diffusion models enables gradient-based control; the non-autoregressive generation12

order enables more complex, global controls; and incremental denoising induces13

a coarse-to-fine hierarchy, which facilitates control at multiple granularities. We14

demonstrate successful control of Diffusion-LM for six challenging fine-grained15

control tasks, significantly outperforming prior work.16

1 Introduction17

Large autoregressive language models (LMs) are capable of generating high quality text [30, 3, 5, 40],18

but in order to reliably deploy these LMs in real world applications, the text generation process needs19

to be controllable: we need to generate text that satisfies desired requirements (e.g. topic, syntactic20

structure). A natural approach for controlling a LM would be to fine-tune the LM using supervised21

data of the form (control, text) [15]. However, updating the LM parameters for each control task22

can be expensive and does not allow for compositions of multiple controls (e.g. generate text that23

is both positive sentiment and non-toxic). This motivates light-weight and modular plug-and-play24

approaches [6] that keep the LM frozen and steer the generation process using an external predictor25

that measures how well the generated text satisfies the control. But even then, steering a frozen26

autoregressive LM has been shown to be difficult, and existing successes have been limited to simple,27

attribute-level controls (e.g., sentiment or topic) [6, 20, 39].28

In order to broaden the set of viable controls, we propose Diffusion-LM, a new language model29

based on continuous diffusions. Diffusion-LM starts with a sequence of Gaussian noise vectors30

and incrementally denoises them into vectors corresponding to words, as shown in Figure 1. These31

gradual denoising steps produce a coarse-to-fine hierarchy of continuous latent representations.32

Diffusion-LM enables new forms of complex, fine-grained control tasks that are not currently possible33

using autoregressive LMs. We highlight three desirable properties of Diffusion-LM that may enable34

these capabilities. First, Diffusion-LM directly generates continuous latent representations, which can35

be updated and controlled using gradients derived from external predictors. Second, diffusion LM is a36

non-autoregressive model that generates all tokens in parallel. This allows it to incorporate complex,37

global controls. As a bonus, it handles infilling at decoding time without additional predictors or38
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Figure 1: Diffusion-LM iteratively denoises a sequence of Gaussian vectors into word vectors, yield-
ing a intermediate latent variables of decreasing noise level xT · · ·x0. For controllable generation, we
iteratively perform gradient updates on these continuous latents to optimize for fluency (parametrized
by Diffusion-LM) and satisfy control requirements (parametrized by a predictor).

specialized techniques, unlike autoregressive LMs which require expensive search or marginalization39

steps [21, 38, 28]. Finally, Diffusion-LM induces a coarse-to-fine hierarchy of continuous latent40

representations, which enable controls that operate on the entire sequence (e.g. sentiment or length)41

as well as on individual words (e.g. parts of speech).42

Continuous diffusion models have been extremely successful in vision and audio domains [11, 19,43

31, 7, 4], but they have not been applied to text because of the inherently discrete nature of text44

(§3). Adapting this class of models to text requires several modifications to the diffusion training45

objective and decoding procedure (§4). We control Diffusion-LM using a gradient-based method, as46

shown in Figure 1. This method enables us to steer the text generation process towards outputs that47

satisfy given structural and semantic control targets. It iteratively performs gradient updates on the48

continuous latent variables of Diffusion-LM to balance fluency and control satisfaction (§4.3).49

To demonstrate control of Diffusion-LM, we consider a variety of control targets ranging from50

simple attributes (e.g., sentence length) to complex structures (e.g., parse tree) and semantic content.51

Our method almost doubles the success rate of previous plug-and-play methods and matches or52

outperforms the fine-tuning oracle on all these predictor-guided control tasks (§6.1). In addition to53

these individual control tasks, we show that we can successfully compose multiple predictor-guided54

controls to generate sentences with both desired semantic content and syntactic structure (§6.2).55

Finally, we also consider span-anchored controls, such as length control and infilling. These tasks are56

predictor free, and our Diffusion-LM significantly outperforms prior plug-and-play methods and is57

on-par with an autoregressive LM trained from scratch for the infilling task (§6.3).58

2 Related Work59

Diffusion Models for Text. Diffusion models [35] have demonstrated great success in continuous60

data domains [11, 25, 19, 23], producing images and audio that have state-of-the-art sample quality.61

To handle discrete data, past works have studied text diffusion models on discrete state spaces, which62

defines a corruption process on discrete data (e.g., each token has some probability to be corrupted to63

an absorbing or random token) [1, 13, 14]. In this paper, we focus on continuous diffusion models64

for text and to the best of our knowledge, our work is the first to explore this setting. In contrast65

to discrete diffusion LMs, our continuous diffusion LMs induce continuous latent representations,66

which enables efficient gradient-based methods for controllable generation.67

Autoregressive and Non-autoregressive LMs. Most large pre-trained LMs are left-to-right au-68

toregressive (e.g., GPT-3 [3], PaLM [5]). The fixed generation order limits the models’ flexibility in69

many controllable generation settings, especially those that impose controls on the right contexts.70

Since autoregressive LMs cannot directly condition on right contexts, prior works have developed71

specialized training and decoding techniques for these tasks [34, 8, 28]. For example, Qin et al. [29]72

is a decoding method that relaxes the discrete LM outputs to continuous variables and backpropagates73

gradient information from the right context. Diffusion-LM can condition on arbitrary predictors that74

look at complex, global properties of the sentence. There are other non-autoregressive LMs that have75

been developed for machine translation and speech-to-text tasks [10, 33]. However these methods76

are specialized for speech and translation settings, where the entropy over valid outputs is low, and77

whether they work for language modeling remains an open problem. We leave detailed discussions to78

appendix H.79
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Plug-and-Play Controllable Generation. Controllable text generation is the task of decoding80

from a conditional distribution p(w|c), where w is the text sequence, and c is the control constraint.81

Plug-and-play methods leverage Bayes rule to control the output of an unconditional LM p(w) at82

decoding time: p(w|c) / p(w) · p(c|w) where p(w) is the frozen LM, and p(c|w) is a predictor83

probability of whether a sequence fulfills the goal of the control task. There are several plug-and-play84

approaches based on autoregressive LMs: FUDGE [39] reweights the LM prediction at each token85

with an estimate of p(c|w) for the partial sequence; GeDi [20] and DExperts [22] reweight the LM86

prediction at each token with a smaller LM finetuned/trained for the control task.87

The closest work to ours is PPLM [6], which runs gradient ascent on an autoregressive LM’s88

hidden activations to steer the next token towards higher p(w) and p(c|w). Because PPLM is89

based on autoregressive LMs, it can only generate left-to-right, so PPLM cannot repair its past90

errors. Despite their success on attribute (e.g., topic) controls, we will show these plug-and-play91

methods for autoregressive LMs fail on more complex control tasks such as controlling syntactic92

structure and semantic content in §6.1. We demonstrate that Diffusion-LM is capable of plug-and-play93

controllable generation by applying predictor-guided gradient updates to the continuous sequence of94

latent variables induced by the Diffusion-LM.95

3 Problem Statement and Background96

We aim to apply continuous diffusion models to discrete text and begin by defining the problem97

settings for controllable generation and diffusion modeling.98

3.1 Generative Models and Controllable Generation for Text99

Consider a language modeling task, where w = [w1 · · ·wn] is a sequence of discrete words drawn100

from an unknown data distribution. A language model plm is trained to emulate this data distribution101

by maximizing the data likelihood: Ew[log plm(w)]. In the controllable generation setting, we have102

an additional control variable c denoting a feature of interest for w. For syntactic control, c may be103

the syntax tree of w (Figure 1). For sentiment control, c may be the sentiment label on w. The goal104

of controllable generation is to approximate samples from the conditional distribution p(w | c).105

Controllable generation can be treated as a standard language modeling task using paired data (w, c).106

However this approach has two drawbacks: first, tuning plm from scratch can be computationally107

expensive; second, there may be a fundamental asymmetry in data collection, where it is substantially108

easier to collect un-annotated samples w than paired samples (w, c). The plug-and play approach109

seeks to address both concerns by training a large plm on w and then steering this model using a110

lightweight classifier trained on paired data p(c | w). This classifier can guide text generation via111

Bayes rule as p(w | c) / plm(w) · p(c | w), where plm(w) encourages w to be fluent, and the112

p(c | w) encourages w to fulfill the constraints.113

3.2 Diffusion Models for Continuous Domains114

A diffusion model [11, 25] is a latent variable model that models the data x0 ⇠ pdata as a Markov chain115

xT . . .x0, where xT is a Gaussian, and xt�1 | xt is a de-noising step that gradually transforms noisy116

intermediate variables into the observed data distribution (Figure 2). This sequence of continuous117

latent variables x1:T is defined by a forward process that incrementally adds Gaussian noise to data118

x0 until, at diffusion step T , samples xT are approximately Gaussian. Each transition xt�1 ! xt119

is parametrized by q(xt | xt�1) = N (xt;
p
1� �txt�1,�tI), where the hyperparameter �t is the120

amount of noise added at diffusion step t.121

The diffusion model generates samples by reversing this process: it incrementally denoises the122

sequence of latent variables xT :1 to approximate samples from the target distribution. Each denoising123

transition xt ! xt�1 is parametrized by the model p✓(xt�1 | xt) = N (xt�1;µ✓(xt, t),⌃✓(xt, t)).124

The diffusion model is trained to maximize the marginal likelihood of the data Ex0⇠pdata log p✓(x0),125

and the canonical objective is the variational lower bound of log p✓(x0) [35]:126

Lvlb(x0) = E
q(x1:T |x0)

"
log

q(xT |x0)

p✓(xT )
+

TX

t=2

log
q(xt�1|x0,xt)

p✓(xt�1|xt)
� log p✓(x0|x1)

#
. (1)

However, this objective can be unstable and require many optimization tricks to stabilize [25]. To127

circumvent this issue, Ho et al. [11] devised a simple surrogate objective that expands and reweights128
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Figure 2: A graphical model representing the forward and reverse diffusion processes. In addition to
the original diffusion models [11], we add a Markov transition between x0 and w, and propose the
embedding §4.1 and rounding §4.2 techniques.

each KL-divergence term in Lvlb to obtain a mean-squared error loss which we will refer to as129

Lsimple(x0) =
TX

t=1

Ex0,xt ||µ✓(xt, t)� µ̂(xt,x0)||2,

where µ̂(xt,x0) is the mean of the posterior q(xt�1|x0,xt). While Lsimple is no longer a valid lower130

bound, prior work has found that it empirically made training more stable and improved sample131

quality 1. We will make use of similar simplifications in Diffusion-LM to stabilize training and132

improve sample quality (§4.1).133

4 Diffusion-LM: Continuous Diffusion Language Modeling134

Constructing Diffusion-LM requires several modifications to the standard diffusion model. First, we135

must define an embedding function that maps discrete text into a continuous space. To address this,136

we propose an end-to-end training objective for learning embeddings (§4.1). Second, we require a137

rounding method to map vectors in embedding space back to words. To address this, we propose138

training and decoding time methods to facilitate rounding (§4.2). The two improvements make it139

possible to reliably train Diffusion-LMs, and we describe how to perform plug-and-play controllable140

generation on these models using classifier guidance (§4.3).141

4.1 End-to-end Training142

Figure 3: A t-SNE [37] plot of the
learned word embeddings.

To apply a continuous diffusion model to discrete text, we143

define an embedding function EMB(wi) that maps each word144

to a vector in Rd. We define the embedding of a sequence w of145

length n to be: EMB(w) = [EMB(w1), . . . , EMB(wn)] 2 Rnd.146

We propose a modification of the diffusion model training ob-147

jective (Equation 1) that jointly learns the diffusion model’s148

parameters and word embeddings. In preliminary experiments,149

we explored random Gaussian embeddings, as well as pre-150

trained word embeddings [27, 30]. We found that these fixed151

embeddings are suboptimal for Diffusion-LM compared to end-152

to-end training2.153

As shown in Figure 2, our approach adds a Markov transition from discrete words w to x0 in the154

forward process, parametrized by q�(x0|w) = N (EMB(w),�0I). In the reverse process, we add a155

trainable rounding step, parametrized by p✓(w | x0) =
Qn

i=1 p✓(wi | xi), where p✓(wi | xi) is a156

softmax distribution. The training objectives introduced in §3 now becomes157

Le2e
vlb (w) = E

q�(x0|w)
[Lvlb(x0) + log q�(x0|w)� log p✓(w|x0)]] ,

Le2e
simple(w) = E

q�(x0:T |w)

⇥
Lsimple(x0) + ||xT ||2 + ||EMB(w)� x✓(x1, 1)||2 � log p✓(w|x0)

⇤
.

(2)

We derive Le2e
simple(w) from Le2e

vlb (w) following the simplification in §3.2 and our derivation details158

are shown in Appendix D. Since we are training the embedding function, q� now contains trainable159

1Our definition of Lsimple uses a different parametrization from Ho et al. [11]. We define our squared loss in
terms of µ✓(xt, t) while they express it in terms of ✏✓(xt, t).

2While trainable embeddings perform best on control and generation tasks, we found that fixed embeddings
onto the vocabulary simplex were helpful when optimizing for held-out perplexity. We leave discussion of this
approach and perplexity results to Appendix C as the focus of this work is generation quality and not perplexity.
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parameters and we use the reparametrization trick [32, 17] to backpropagate through this sampling160

step. Empirically, we find the learned embeddings cluster meaningfully: words with the same161

part-of-speech tags (syntactic role) tend to be clustered, as shown in Figure 3.162

4.2 Reducing Rounding Errors163

The major challenge in applying diffusion models to text is mapping between discrete text (w) and164

continuous latent variables x0. The learned embeddings in §4.2 define an embedding that maps165

discrete texts to our continuous space. We now describe the inverse process of rounding a continuous166

latent variable x0 into discrete text.167

Ideally, the denoising process itself should learn that the distribution over x0 is nearly a mixture168

of low-variance distributions (where each mixture component represents a word). In this case, the169

rounding step would be unambiguous. However, we found that diffusion models do not seem to learn170

this mixture structure of x0.171

One explanation for this phenomenon is that our objective Lsimple puts insufficient emphasis on mod-172

eling the mixture structure of x0. Recall that we defined Lsimple =
PT

t=1 ||µ✓(xt, t)� µ̂(xt,x0)||2,173

where our model predicts individual denoising steps xt�1 | xt. In this objective, the constraint that174

x0 is (nearly) a mixture of Dirac delta distribution will only appear in the terms with t near zero, and175

we found that this parametrization required careful tuning to force the objective to emphasize those176

terms (see Appendix B).177

Our approach is to re-parametrize Lsimple to force the model to explicitly model x0 in every term of the178

objective. Specifically, we select an alternative parametrization Lsimple =
PT

t=1 ||x✓(xt, t)� x0||2,179

where our model x✓(xt, t) predicts x0 directly 3. This forces the neural network to predict x0 in180

every term and we found that models trained with this objective quickly learn the mixture structure.181

We described how re-parametrization can be helpful for model training, but we also found that the182

same idea could be used when generating from the model in a technique that we call the clamping183

trick. In the standard generation approach, the model denoises xt to xt�1 by first computing184

an estimate of x0 via x✓(xt, t) and then sampling xt�1 conditioned on this estimate: xt�1 =185 p
↵̄x✓(xt, t) +

p
1� ↵̄✏, where ↵̄t =

Qt
s=0(1� �s) and ✏ ⇠ N (0, I) 4. In the clamping trick, the186

model additionally maps the predicted vector x✓(xt, t) to its nearest word embedding sequence. Now,187

the sampling step becomes xt�1 =
p
↵̄ · Clamp(x✓(xt, t)) +

p
1� ↵̄✏. The clamping trick forces188

the predicted embedding to commit to a word for intermediate diffusion steps, making the vector189

predictions more precise and reducing rounding errors.190

4.3 Controllable Text Generation191

With the above improvements, we are able to train Diffusion-LMs that generate fluent text. We192

now describe a procedure that enables plug-and-play control on this Diffusion-LM. Our approach to193

control is inspired by the Bayesian formulation in §3.1, but instead of performing control directly194

on the discrete text, we perform control on the sequence of continuous latents x0:T defined by195

Diffusion-LM, and apply the rounding step to convert these latents into text.196

Controlling x0:T is equivalent to decoding from the posterior p(x0:T |c) =
QT

t=1 p(xt�1 | xt, c), and197

we decompose this joint inference problem to a sequence of control problems at each diffusion step:198

p(xt�1 | xt, c) / p(xt�1 | xt) · p(c | xt�1,xt). We further simplify p(c | xt�1,xt) = p(c | xt�1)199

via conditional independence assumptions from prior work on controlling diffusions [36], leading to:200

rxt�1 log p(xt�1 | xt, c) = rxt�1 log p(xt�1 | xt) +rxt�1 log p(c | xt�1),

where both log p(xt�1 | xt) and log p(c | xt�1) are differentiable: the first term is parametrized by201

Diffusion-LM, and the second term is parametrized by a neural network classifier.202

3Predicting x0 and xt�1 is equivalent up to scaling constants as the distribution of xt�1 can be obtained in
closed form via the forward process xt�1 =

p
↵̄x0 +

p
1� ↵̄✏, see Appendix D for further details.

4This follows from the marginal distribution q(xt | x0), which is a closed form Gaussian since all the
Markov transitions are Gaussian.
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Similar to work in the image setting [7, 36], we train the classifier on the diffusion latent variables203

and run gradient updates on the latent space xt�1 to steer it towards fulfilling the control. To improve204

performance on text and speed up decoding, we introduce two key modifications.205

To improve decoding speed, we downsample the diffusion steps from 2000 to 200. For each down-206

sampled time step, we run 3 steps of the Adagrad 5 [9] update on � log p(xt�1 | xt)+log p(c | xt�1),207

where � is a hyperparameter that trades off fluency (the first term) and control (the second term). While208

existing controllable generation methods for diffusions do not include the �p(xt�1 | xt) term in the209

objective, we found this term to be instrumental for generating fluent text. The resulting controllable210

generation process can be viewed as a stochastic decoding method that balances maximizing and211

sampling p(xt�1 | xt, c), much like popular text generation techniques like nucleus sampling [12].212

5 Experimental Setup213

5.1 Datasets and Hyperparameters214

We train Diffusion-LM on two datasets: E2E [26] and ROCStories [24]. The E2E dataset consists215

of 50K restaurant reviews labeled by 8 fields including food type, price, and customer rating. The216

ROCStories dataset consists of 98K five-sentence stories, capturing a rich set of causal and temporal217

commonsense relations between daily events. This dataset is more challenging to model than E2E,218

because the stories contain a larger vocabulary of 11K words and more diverse semantic content.219

Our diffusion model consists of 80M parameters, the noise schedule (�t) to be square-root, with a220

sequence length of 64 and 2k diffusion steps. We treat the embedding dimension as a hyperparameter,221

setting d = 16 for E2E and d = 128 for ROCStories. See the appendix for all other training details.222

At decoding time, we downsample to 200 diffusion steps for E2E and maintain 2000 steps for223

ROCStories. Admittedly, decoding Diffusion-LM is still slower than decoding autoregressive LMs.224

5.2 Control tasks225

We consider 6 control tasks: the first 4 tasks rely on an external predictor, and the last 2 tasks are226

predictor free6. For each control task (e.g. semantic content), we sample 200 control targets c (e.g.,227

rating=5 star) from the validation splits, and we generate 50 samples for each control target. To228

evaluate the fluency of the generated text, we feed them to a teacher LM (i.e., a carefully fine-tuned229

GPT-2 model) and report the perplexity of generated text under the teacher LM. We call this metric230

lm-score (denoted as lm): a lower lm-score indicates better sample quality. We define success metrics231

for each control task.232

Semantic Content. Given a field (e.g., rating) and value (e.g., 5 star), we aim to generate a sentence233

that covers field=value, and report success rate by exact match of ‘value’.234

Parts-of-speech. Given a sequence of parts-of-speech (POS) tags (e.g., Pronoun Verb Determiner235

Noun), we aim to generate a sequence of words of the same length whose POS tags (under an oracle236

POS tagger) match the target (e.g., I ate an apple). We quantify success via word-level exact match.237

Syntax Tree. Given a target syntax tree (see Figure 1), we aim to generate text with a matching238

syntax tree (under an off-the-shelf parser [18]), quantifying success with F1 scores.239

Syntax Span. Instead of controlling the entire tree, our goal is to generate text whose oracle240

constituent from positions i to j matches a target label (e.g. prepositional phrase). We quantify241

success via the fraction of spans that match exactly.242

Length. Given a target length 10, . . . , 40, our goal is to generate a sequence with a length within ±2243

of the target. In the case of Diffusion-LM, we treat this as a classifier-free control task.244

Infilling. Given a left context (O1) and a right context (O2) from the aNLG dataset [2], and the goal245

is to generate a sentence that logically connects O1 and O2. For evaluation, we report both automatic246

and human evaluation from the Genie leaderboard [16].247

5We tried ablations that replaced Adagrad with SGD, but we found Adagrad to be substantially less sensitive
to hyperparameter tuning.

6Length is predictor free for our Diffusion-LM based methods, but other baselines still require a predictor.
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Table 1: Diffusion-LM achieves high success rate (ctrl ") and good fluency (lm #) across all 5 control
tasks, outperforming the PPLM and FUDGE baselines. Our method even outperforms the fine-tuning
oracle (FT) on controlling syntactic trees and spans.

Semantic Parts-of-speech Syntax Tree Syntax Spans Length
ctrl " lm # ctrl " lm # ctrl " lm # ctrl " lm # ctrl " lm #

PPLM 9.9 5.32 - - - - - - - -
FUDGE 69.9 2.83 27.0 7.96 17.9 3.39 54.2 4.03 46.9 3.11
Diffusion-LM 81.2 2.55 90.0 5.16 86.0 3.71 93.8 2.53 99.9 2.16

FT-sample 72.5 2.87 89.5 4.72 64.8 5.72 26.3 2.88 98.1 3.84
FT-search 89.9 1.78 93.0 3.31 76.4 3.24 54.4 2.19 100.0 1.83

5.3 Predictor-Guided Control Baselines248

For the first 5 control tasks, we compare our method with PPLM, FUDGE, and a fine-tuning249

oracle. Both PPLM and FUDGE are plug-and-play controllable generation approaches based on an250

autoregressive LM, which we train from scratch using the GPT-2 small [30].251

PPLM[6]. This method runs gradient ascent on the LM activations to increase the classifier proba-252

bilities and language model probabilities, and has been successful on simple attribute control. We253

apply PPLM to control semantic content, but not the remaining 4 tasks which require positional254

information, as PPLM’s classifier lacks positional information.255

FUDGE[39]. For each control task, FUDGE requires a future discriminator that takes in a prefix256

sequence and predicts whether the complete sequence would satisfy the constraint. At decoding time,257

FUDGE reweights the LM prediction by the discriminator scores.258

FT. For each control task, we fine-tune GPT-2 on (control, text) pair. We report both the sampling259

and beam search outputs of the fine-tuned models, denoted as FT-sample and FT-search, respectively.260

Note that this is an oracle, since it requires fine-tuning the LM parameters.261

5.4 Infilling Baselines262

We compare to 3 specialized baseline methods developed in past work for the infilling task.263

DELOREAN [28]. This method continuously relaxes the output space of a left-to-right autoregressive264

LM, and iteratively performs gradient updates on the continuous space to enforce fluent connection265

to the right contexts. This yields a continuous vector which is rounded back to text.266

COLD[29]. COLD specifies an energy-based model that includes fluency (from left-to-right and267

right-to-left LM) and coherence constraints (from lexical overlap). It samples continuous vectors268

from this energy-based model and round them to text.269

AR-infilling. We train an autoregressive LM from scratch to do sentence infilling task [8]. Similar to270

training Diffusion-LM, we train on the ROCStories dataset, but pre-process it by reordering sentences271

from (O1, Omiddle, O2) to (O1, O2, Omiddle). At evaluation time, we feed in O1, O2, and the model272

generates the middle sentence.273

6 Results274

We train Diffusion-LMs on the E2E and ROCStories datasets, and compare to baseline autoregressive275

models (GPT-2) with comparable parameter counts. Diffusion-LM has worse holdout log-likelihood7276

than a comparably sized GPT-2 model for both datasets (E2E: 2.28 v.s. 1.77 , ROCStories: 3.88 v.s277

3.05) although we begin to bridge this gap by doubling the size of our Diffusion-LM and training on278

more data (ROCStories: 3.10 v.s. 3.05). Despite the lower perplexity, controllable generation based279

on our Diffusion-LM results in significantly better outputs than systems based on autoregressive LMs.280

6.1 Predictor-Guided Controllable Text Generation Results281

As shown in Table 1, Diffusion-LM achieves high success and fluency across all predictor-guided282

control tasks. It significantly outperforms the PPLM and FUDGE baselines across all 5 tasks.283

Surprisingly, our method outperforms the fine-tuning oracle on the syntax tree control and the span284

control tasks and achieves similar performance on the remaining 3 tasks.285

7Exact log-likelihoods are intractable for Diffusion-LM, so we report the lower bound Le2e
vlb .
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Table 2: Qualitative examples from the syntax tree control tasks. The target parse is linearized by
nested brackets representing the constituents: S is sentence, NP is noun phrase, VP is verb phrase, PP
is prepositional phrase, etc. Tokens within each span are represented as * . We color failing spans red
and bold the spans of interest that we discuss in the text.

Target parse ( S ( S ( NP * ) ( VP * ( NP ( NP * * ) ( VP * ( NP ( ADJP * * ) * ) ) ) ) ) * ( S ( NP * * * ) ( VP * (
ADJP ( ADJP * ) ) ) ) )

FUDGE Zizzi is a cheap restaurant . [incomplete]
Diffusion-LM Zizzi is a pub providing family friendly Indian food Its customer rating is low
FT Cocum is a Pub serving moderately priced meals and the customer rating is high
Target parse ( S ( S ( VP * ( PP * ( NP * * ) ) ) ) * ( NP * * * ) ( VP * ( NP ( NP * * ) ( SBAR ( WHNP * ) ( S (

VP * ( NP * * ) ) ) ) ) ) * )

FUDGE In the city near The Portland Arms is a coffee and fast food place named The Cricketers which is not
family - friendly with a customer rating of 5 out of 5 .

Diffusion-LM Located on the riverside , The Rice Boat is a restaurant that serves Indian food .
FT Located near The Sorrento, The Mill is a pub that serves Indian cuisine.

Table 3: In this experiment, we compose semantic control and syntactic control: Diffusion-LM
achieves good success rate (ctrl ") at some cost of fluency (lm #). Our method outperforms both
FUDGE and FT-PoE (product of experts of two fine-tuned models) on control success rate, especially
for the structured syntactic controls (i.e. syntax tree and POS).

Semantic + Syntax Tree Semantic + POS
semantic ctrl " syntax ctrl " lm # semantic ctrl " POS ctrl " lm #

FUDGE 61.7 15.4 3.52 64.5 24.1 3.52
Diffusion-LM 69.8 74.8 5.92 63.7 69.1 3.46

FT-PoE 61.7 29.2 2.77 29.4 10.5 2.97

Controlling the syntax tree and spans are challenging tasks for fine-tuning, because conditioning on286

the syntax tree requires reasoning about the nested structure of the parse tree, and conditioning on287

spans requires lookahead planning to ensure the right constituent appears at the target position.288

We observe that PPLM fails in the semantic content control task and conjecture that this is because289

PPLM is designed to control coarse-grained attributes, and may not be useful for more targeted tasks290

such as enforcing that a restaurant review contains a reference to Starbucks.291

FUDGE performs well on semantic content control but does not perform well on the remaining four292

tasks. Controlling a structured output (POS and syntax tree) is hard for FUDGE because making one293

mistake anywhere in the prefix makes the discriminator assign low probabilities to all continuations.294

In other control tasks requiring planning (Length and Spans), the future discriminator is difficult to295

train, as it must implicitly perform lookahead planning.296

The non-autoregressive nature of our Diffusion-LM allows it to easily solve all the tasks that require297

precise planning (spans and length). We believe that it works well for complex controls that involve298

global structures (POS, syntax parse) because the coarse-to-fine representations allow the predictors299

to exert control on the entire sequence (near t = T ) as well as on individual tokens (near t = 0).300

Qualitative Results. Table 2 shows samples of syntax tree control. Our method and fine-tuning both301

provide fluent sentences that mostly satisfy controls, whereas FUDGE deviates from the constraints302

after the first few words. One key difference between our method and fine-tuning is that Diffusion-LM303

is able to correct for a failed span and have suffix spans match the target. In the “Family friendly304

Indian food” example, the span is wrong because the generated span contains 1 more word than the305

target. Fortunately, this error doesn’t propagate to later spans, since the model adjusts by dropping306

the conjunction. Analogously, in the “The Mill” example, FT model generates a failed span, but it307

fails to adjust it in the suffix, leading to many mis-aligned errors in the suffix.308

6.2 Composition of Controls309

One unique capability of plug-and-play controllable generation is its modularity. Given predictors for310

multiple independent tasks, gradient guided control makes it simple to generate from the intersection311

of multiple controls by taking gradients on the sum of the predictor log-probabilities.312

We evaluate this setting on the combination of semantic content + syntax tree control and semantic313

content + POS tag control. As shown in Table 3, our Diffusion-LM achieves a high success rate for314
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Table 4: For sentence infilling, Diffusion-LM significantly outperforms prior work COLD [29] and
Delorean [28] (numbers taken from paper), and matches the performance of an autoregressive LM
(AR) trained from scratch to do infilling.

Automatic Eval Human Eval
BLEU-4 " ROUGE-L " CIDEr " BERTScore "

Left-only 0.9 16.3 3.5 38.5 n/a
DELOREAN 1.6 19.1 7.9 41.7 n/a
COLD 1.8 19.5 10.7 42.7 n/a
Diffusion 7.1 28.3 30.7 89.0 0.37+0.03

�0.02

AR 6.7 27.0 26.9 89.0 0.39+0.02
�0.03

both of the two components, whereas FUDGE gives up on the more global syntactic control. This is315

expected because FUDGE fails to control syntax on its own.316

Fine-tuned models are good at POS and semantic attribute control individually but do not compose317

these two controls well by product of experts (PoE), leading to a large drop in success rates for both318

constraints.319

6.3 Infilling Results320

As shown in Table 4, our diffusion LM significantly outperforms continuous relaxation based methods321

for infilling (COLD and Delorean). Moreover, our method achieves comparable performance to322

fine-tuning a specialized model for this task. Our method has slightly better automatic evaluation323

scores and the human evaluation found no statistically significant improvement for either method.324

These results suggest that Diffusion LM can solve many types of controllable generation tasks that325

depend on generation order or lexical constraints (such as infilling) without specialized training.326

6.4 Ablation Studies327

Figure 4: We measure the impact of our proposed
design choices through the lm-score. We find both
learned embeddings and reparametrization substantially
improves sample quality.

We verify the importance of our proposed328

design choices in §4 through two ablation329

studies. We measure the sample quality of330

Diffusion-LM using the lm-score on 500331

samples §5.2.332

Learned v.s. Random Embeddings333

(§4.1). Learned embeddings outperform334

random embeddings on the ROCStories,335

which is a harder language modeling task.336

The same trend holds for the E2E dataset337

but with a smaller margin.338

Objective Parametrization (§4.2). We339

propose to let the diffusion model predict x0 directly. Here, we compare this with standard340

parametrization in image generation which parametrizes by the noise term ✏. Figure 4 (right)341

shows that parametrizing by x0 consistently attains good performance across dimensions, whereas342

parametrizing by ✏ works fine for small dimensions, but quickly collapses for larger dimensions.343

7 Conclusion and Limitations344

We proposed Diffusion-LM, a novel and controllable language model based on continuous diffusions,345

which enables new forms of complex fine-grained control tasks. We demonstrate Diffusion-LM’s346

success in 6 fine-grained control tasks: our method almost doubles the control success rate of prior347

methods, and is competitive with baseline fine-tuning methods that require additional training.348

Admittedly, Diffusion-LM has some drawbacks relative to autoregressive LMs: (1) it suffers from349

higher perplexity; (2) decoding is substantially slower; and (3) training converges more slowly.350

Despite these limitations, we find the degree of control enabled by Diffusion-LM compelling. We351

hope that the ability to control Diffusion-LM that we have demonstrated will motivate further work352

to refine and scale this language modeling technique, overcoming its current limitations.353
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