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Abstract

Large neural networks can be pruned to a small fraction of their original size,1

with little loss in accuracy, by following a time-consuming “train, prune, re-train”2

approach. Frankle & Carbin [8] conjecture that we can avoid this by training lottery3

tickets, i.e., special sparse subnetworks found at initialization, that can be trained4

to high accuracy. However, a subsequent line of work [10, 34] presents concrete5

evidence that current algorithms for finding trainable networks at initialization, fail6

simple baseline comparisons, e.g., against training random sparse subnetworks.7

Finding lottery tickets that train to better accuracy compared to simple baselines8

remains an open problem. In this work, we resolve this open problem by proposing9

GEM-MINER which finds lottery tickets at initialization that beat current baselines.10

GEM-MINER finds lottery tickets trainable to accuracy competitive or better than11

Iterative Magnitude Pruning (IMP), and does so up to 19× faster.12

1 Introduction13

A large body of research since the 1980s empirically observed that large neural networks can be14

compressed or sparsified to a small fraction of their original size while maintaining their predictive15

accuracy [13–15, 18, 20, 25, 38]. Although several pruning methods have been proposed during the16

past few decades, many of them follow the “train, prune, re-train” paradigm. Although the above17

methods result in very sparse, accurate models, they typically require several rounds of re-training,18

which is computationally intensive.19

Frankle & Carbin [8] suggest that this computational burden may be avoidable. They conjecture20

that given a randomly initialized network, one can find a sparse subnetwork that can be trained to21

accuracy comparable to that of its fully trained dense counterpart. This trainable subnetwork found at22

initialization is referred to as a lottery ticket. The study above introduced iterative magnitude pruning23

(IMP) as a means of finding these lottery tickets. Their experimental findings laid the groundwork for24

what is now known as the Lottery Ticket Hypothesis (LTH).25

Although Frankle & Carbin [8] establish that the LTH is true for tasks like image classification on26

MNIST, they were not able to get satisfactory results for more complex datasets like CIFAR-10 and27

ImageNet when using deeper networks, such as VGG and ResNets [9]. In fact, subsequent work28

brought the effectiveness of IMP into question. Su et al. [34] showed that even randomly sampled29

sparse subnetworks at initialization can beat lottery tickets found by IMP as long as the layerwise30

sparsities are chosen carefully. Gale et al. [11] showed that methods like IMP which train tickets31

from initialization cannot compete with the accuracy of a model trained with pruning as part of the32

optimization process.33

Frankle et al. [9] explain the failures of IMP using the concept of linear mode connectivity which34

measures the stability of these subnetworks to SGD noise. Extensive follow-up studies propose35

several heuristics for finding trainable sparse subnetworks at initialization [21, 35, 36]. However,36

subsequent work by Frankle et al. [10], Su et al. [34] show experimentally that all of these methods37
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Figure 1: Conceptual visualization of GEM-MINER vs IMP with warmup. The accuracies listed are on a 0.5%
sparse VGG-16 trained on CIFAR-10. Given a randomly initialized network, both methods output a subnetwork
which is then finetuned. IMP requires warmup i.e., few epochs of training before it can find a sparse subnetwork.
GEM-MINER finds a rare gem, a subnetwork at initialization that achieves high accuracy both before and after
weight training.

fail simple sanity checks. Most methods seem to merely identify good sparsities at each layer, but38

given those, random sparse subnetworks can be trained to similar or better accuracy.39

Frankle et al. [9] show that with a small modification, IMP can beat these sanity checks; the caveat is40

that it no longer finds these subnetworks at initialization, but after a few epochs of warm-up training.41

Since these subnetworks are found after initialization, IMP with warmup does not find lottery42

tickets.43

As noted in the original work by Frankle & Carbin [8], the importance of finding trainable subnetworks44

at initialization is computational efficiency. It is far preferable to train a sparse model from scratch,45

rather than having to deal with a large dense model, even if that is for a few epochs (which is what46

IMP with warmpup does). To the best of our knowledge, the empirical validity of the Lottery Ticket47

Hypothesis, i.e., the hunt for subnetworks at initialization trainable to SOTA accuracy, remains an48

open problem.49

Our Contributions. We resolve this open problem by developing GEM-MINER, an algorithm50

that finds sparse subnetworks at initialization, trainable to accuracy comparable or better than IMP51

with warm-up. GEM-MINER does so by first discovering rare gems. Rare gems are subnetworks at52

initialization that attain accuracy far above random guessing, even before training. Rare gems can53

then be refined to achieve near state-of-the-art accuracy. Simply put, rare gems are lottery tickets that54

also have high accuracy at initialization.55

High accuracy at initialization is not a requirement for a network to be defined as a lottery ticket.56

However, if our end goal is high accuracy after training, then having high accuracy at initialization57

likely helps.58

Rare gems found by GEM-MINER are the first lottery tickets to beat all baselines in [10, 34]. In Fig. 159

we give a sketch of how our proposed algorithm GEM-MINER compares with IMP with warm start.60

GEM-MINER finds these subnetworks in exactly the same number of epochs that it takes to train61

them, and is up to 19× faster than IMP with warmup.62

2 Related Work63

Lottery ticket hypothesis. Following the pioneering work of Frankle & Carbin [8], the search for64

lottery tickets has grown across several applications, such as language tasks, graph neural networks65

and federated learning [3, 4, 12, 22]. While the LTH itself has yet to be proven mathematically, the66

so-called strong LTH has been derived which shows that any target network can be approximated by67

pruning a randomly initialized network with minimal overparameterization [24, 26, 27]. Recently, it68

has been shown that for such approximation results it suffices to prune a random binary network with69

slightly larger overparameterization [6, 33].70

Pruning at initialization. While network pruning has been studied since the 1980s, finding sparse71

subnetworks at initialization is a more recently explored approach. Lee et al. [21] propose SNIP,72

which prunes based on a heuristic that approximates the importance of a connection. Tanaka et al.73
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Table 1: We compare the different popular pruning methods in the literature on whether they prune at initialization,
are finetunable and pass sanity checks. We also list the amount of computation they need to find a 1.4% sparse
subnetwork on ResNet-20, CIFAR-10. For consistency, we do not include the time required to finetune this
subnetwork to full accuracy as it would be equal for all methods. For single-shot pruning method we list it as 1
epoch but this depends on the choice of batch-size. Learning Rate Rewinding which we label Renda et al. [29] is
a pruning after training algorithm and just outputs a high accuracy subnetwork and hence the sanity checks do
not apply to it.

Pruning Method Prunes at initialization Finetunable Passes sanity checks Commputation to reach 1.4% sparsity

IMP [8] ✗ ✓ ✓ 2850 epochs
SNIP [21] ✓ ✓ ✗ 1 epoch
GraSP [36] ✓ ✓ ✗ 1 epoch

SynFlow [35] ✓ ✓ ✗ 1 epoch
Edge-popup [28] ✓ ✗ ✗ 150 epochs
Smart Ratio [34] ✓ ✓ – O(1)

Learning Rate Rewinding [29] ✗ – – 3000 epochs
GEM-MINER ✓ ✓ ✓ 150 epochs

[35] propose SynFlow which prunes the network to a target sparsity without ever looking at the data.74

Wang et al. [36] propose GraSP which computes the importance of a weight based on the Hessian75

gradient product. The goal of these algorithms is to find a subnetwork that can be trained to high76

accuracy. Ramanujan et al. [28] propose Edge-Popup (EP) which finds a subnetwork at initialization77

that has high accuracy to begin with. Unfortunately, they also note that these subnetworks are not78

conducive to further finetuning.79

The above algorithms are all based on the idea that one can assign a “score” to each weight to measure80

its importance. Once such a score is assigned, one simply keeps the top fraction of these scores based81

on the desired target sparsity. This may be done by sorting the scores layer-wise or globally across82

the network. Additionally, this can be done in one-shot (SNIP, GraSP) or iteratively (SynFlow). Note83

that IMP can also be fit into the above framework by defining the “score” to be the magnitude of the84

weights and then pruning globally across the network iteratively.85

More recently, Alizadeh et al. [1] propose ProsPr which utilizes the idea of meta-gradients through86

the first few steps of optimization to determine which weights to prune. Their intuition is that this87

will lead to masks at initialization that are more amenable to training to high accuracy within a few88

steps. While it finds high accuracy subnetworks, we show in Section 4.2 that it fails to pass the sanity89

checks of Frankle et al. [10] and Su et al. [34].90

Sanity checks for lottery tickets. A natural question that arises with pruning at initialization is91

whether these algorithms are truly finding interesting and nontrivial subnetworks, or if their perfor-92

mance after finetuning can be matched by simply training equally sparse, yet random subnetworks.93

Ma et al. [23] propose more rigorous definitions of winning tickets and study IMP under several94

settings with careful tuning of hyperparameters. Frankle et al. [10] and Su et al. [34] introduce several95

sanity checks (i) Random shuffling (ii) Weight reinitialization (iii) Score inversion and (iv) Random96

Tickets. Even at their best performance, they show that SNIP, GraSP and SynFlow merely find a good97

sparsity ratio in each layer and fail to surpass, in term of accuracy, fully trained randomly selected98

subnetworks, whose sparsity per layer is similarly tuned. Frankle et al. [10] show through extensive99

experiments that none of these methods show accuracy deterioration after random reshuffling. We100

explain the sanity checks in detail in Section 4 and use them as baselines to test our own algorithm.101

Pruning during/after training. While the above algorithms prune at/near initialization, there102

exists a rich literature on algorithms which prune during/after training. Unlike IMP, algorithms in103

this category do not rewind the weights. They continue training and pruning iteratively. Frankle104

et al. [10] and Gale et al. [11] show that pruning at initialization cannot hope to compete with these105

algorithms. While they do not find lottery tickets, they do find high accuracy sparse networks. Zhu &106

Gupta [38] propose a gradual pruning schedule where the smallest fraction of weights are pruned107

at a predefined frequency. They show that this results in models up to 95% sparsity with negligible108

loss in performance on language as well as image processing tasks. Gale et al. [11] and Frankle109

et al. [10] also study this as a baseline under the name magnitude pruning after training. Renda110

et al. [29] show that rewinding the learning rate as opposed to weights(like in IMP) leads to the best111

performing sparse networks. However, it is important to remark that these are not Lottery Tickets,112

merely high accuracy sparse networks. We contrast these different methods in Table 1 in terms of113
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whether they prune at initialization, their finetunability, whether they pass sanity checks as well as114

their computational costs.115

Finally, we note that identifying a good pruning mask can be thought of as training a binary network116

where the loss is computed over the element-wise product of the original network with the mask.117

This has been explored in the quantization during training literature [5, 17, 31].118

3 GEM-MINER: Discovering Rare Gems119

Setting and notation. Let S = {(xi, yi)}ni=1 be a given training dataset for a k-classification120

problem, where xi ∈ Rd0 denotes a feature vector and label yi ∈ {1, . . . , k} denotes its label.121

Typically, we wish to train a neural network classifier f(w;x) : Rd0 → {1, . . . , k}, where w ∈ Rd122

denotes the set of weight parameters of this neural network. The goal of a pruning algorithm is123

to extract a mask m = {0, 1}d, so that the pruned network is denoted by f(w ⊙ m;x), where124

⊙ denotes the element-wise product. We define the sparsity of this network to be the fraction of125

non-zero weights s = ∥w ⊙m∥0/d. The loss of a classifier on a single sample (x, y) is denoted by126

ℓ(f(w⊙m;x), y), which captures a measure of discrepancy between prediction and reality. In what127

follows, we will denote by w0 ∈ Rd to be the set of random initial weights. The type of randomness128

will be explicitly mentioned when necessary.129

On the path to rare gems; first stop: Maximize pre-training accuracy. A rare gem needs to130

satisfy three conditions: (i) sparsity, (ii) non-trivial pre-training accuracy, and (iii) that it can be131

finetuned to achieve accuracy close to that of the fully trained dense network. This is not an easy task132

as we have two different objectives in terms of accuracy (pre-training and post-training), and it is133

unclear if a good subnetwork for one objective is also good for the other. However, since pre-training134

accuracy serves as a lower bound on the final performace, we focus on maximizing that first, and135

then attempt to further improve it by finetuning.136
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Figure 2: The sparsity of intermediate results, the ac-
curacy of the final output, and the accuracy after fine-
tuning on MobileNet-V2, CIFAR-10. For GEM-MINER,
we also visualize the sparsity upper bounds as dotted
lines. As λ increases, note that the sparsity of GEM-
MINER’s output decreases. Forλ = 3 · 10−6, the it-
erative freezing algorithm kicks in around epoch 220,
regularizing the sparsity thereafter. The gem found by
GEM-MINER(λ = 1.5 · 10−5) achieves accuracy of
84.62% before finetuning and 87.37% after finetuning,
while EP is unable to achieve non-trivial accuracy before
or after finetuning.

Our algorithm is inspired by Edge-Popup137

(EP) [28]. EP successfully finds subnetworks138

with high pre-training accuracy but it has two139

major limitations: (i) it does not work well in140

the high sparsity regime (e.g., < 5%), and (ii)141

most importantly, the subnetworks it finds are142

not conducive to further finetuning.143

In the following, we take GEM-MINER apart144

and describe the components that allow it to145

surpass these issues.146

GEM-MINER without sparsity control.147

Much like EP, GEM-MINER employs a form of148

backpropagation, and works as follows. Each149

of the random weights [w0]i in the original150

network is associated with a normalized score151

pi ∈ [0, 1]. These normalized scores become152

our optimization variables and are responsible153

for computing the supermask m, i.e., the154

pruning pattern of the network at initialization.155

For a given set of weights w and scores p, GEM-MINER sets the effective weights as weff = w⊙r(p),156

where r(·) is an element-wise rounding function, and m = r(p) is the resulting supermask. The157

rounding function can be changed, e.g., r can perform randomized rounding, in which case pi would158

be the probability of keeping weight wi in m. In our case, we found that simple deterministic159

rounding, i.e., r(pi) = 1pi≥0.5 works well.160

At every iteration GEM-MINER samples a batch of training data and performs backpropagation on161

the loss of the effective weights, with respect to the scores p, while projecting back to [0, 1] when162

needed. During the forward pass, due to the rounding function, the effective network used is indeed163

a subnetwork of the given network. Here, since r(p) is a non-differentiable operation we use the164

Straight Through Estimator (STE) [2] which backpropagates through the indicator function as though165

it were the identity function.166
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Note that this vanilla version of GEM-MINER is unable to exercise control over the final sparsity of167

the model. For reasons that will become evident in below, we will call this version of our algorithm168

GEM-MINER(0). There is already a stark difference from EP: GEM-MINER(0) will automatically169

find the optimal sparsity, while EP requires the target sparsity s as an input parameter.170

However, at the same time, this also significantly limits the applicability of GEM-MINER(0) as171

one cannot obtain a highly sparse gem. Shown as a dark blue curve in Fig. 2 is the sparsity of172

GEM-MINER(0). Here, we run GEM-MINER with a randomly initialized MobileNet-V2 network on173

CIFAR-10. Note that the sparsity stays around 50% throughout the run, which is consistent with the174

observation by Ramanujan et al. [28] that accuracy of subnetworks at initialization is maximized at175

around 50% sparsity.176

Algorithm 1: GEM-MINER

Input: Dataset D = {(xi, yi)}, learning rate η,
rounding function r(·), number of epochs
E, freezing period T , target sparsity
s ∈ [0, 1]

Output: Mask m = r(p)⊙ q ∈ {0, 1}d

1 c← ln (1/s)
E

, q ← 1d

2 w,p← random vector in Rd,
3 random vector in [0, 1]d

4 for j in 1, 2, . . . , E do
5 for (xi, yi) ∈ D do
6 weff ← (w ⊙ q)⊙ r(p)
7 p← p− η∇p ℓ(f(weff ;xi), yi)
8 /* STE */
9 p← proj[0,1]d p

10 if mod(j, T ) = 0 then
11 I1 ← {i : qi = 1}
12 psorted ← sort(pi∈I1)

13 pbottom ← Bottom-(1− ecT ) fraction
14 of psorted

15 q ← q ⊙ 1pi /∈pbottom

Regularization and Iterative freezing. GEM-177

MINER(0) is a good baseline algorithm for find-178

ing accurate subnetworks at initialization, but it179

cannot be used to find rare gems, which need180

to be sparse and trainable. To overcome this181

limitation, we apply a standard trick – we add a182

regularization term to encourage sparsity. Thus,183

in addition to the task loss computed with the184

effective weights, we also compute the L2 or L1185

norm of the score vector p and optimize over186

the total regularized loss. More formally, we187

minimize ℓ := ℓtask + λℓreg, where λ is the hy-188

perparameter and ℓreg is either L2 or L1 norm189

of the score vector p.190

We call this variant GEM-MINER(λ), where λ191

denotes the regularization weight. This naming192

convention should explain why we called the193

initial version GEM-MINER(0).194

The experimental results in Fig. 2 show that this195

simple modification indeed allows us to control196

the sparsity of the solution. We chose to use197

the L2 regularizer, however preliminary exper-198

iments showed that L1 performs almost identi-199

cally. By varying λ from λ = 0 to λ = 7 · 10−6200

and λ = 1.5 · 10−5, the final sparsity of the gem found by GEM-MINER(λ) becomes 2.5% and 1.4%,201

respectively.202

One drawback of this regularization approach is that it only indirectly controls the sparsity. If we203

have a target sparsity s, then there is no easy way of finding the appropriate value of λ such that the204

resulting subnetwork is s-sparse. If we choose λ to be too large, then it will give us a gem that is way205

too sparse; too small a λ and we will end up with a denser gem than what is needed. As a simple206

heuristic, we employ iterative freezing, which is widely used in several existing pruning algorithms,207

including IMP [8, 11, 38]. More specifically, we can design an exponential function s(j) = e−cj for208

some c > 0, which will serve as the upper bound on the sparsity. If the total number of epochs is E209

and the target sparsity is s, we have s(E) = e−cE = s. Thus, we have c = ln (1/s)/E.210

Once this sparsity upper bound is designed, the iterative freezing mechanism regularly checks the211

current sparsity to see if the upper bound is violated or not. If the sparsity bound is violated, it finds212

the smallest scores, zeros them out, and freezes their values thereafter. By doing so, we can guarantee213

the final sparsity even when λ was not sufficiently large. To see this freezing mechanism in action,214

refer the blue curve in Fig. 2. Here, the sparsity upper bounds (decreasing exponential functions) are215

visualized as dotted lines. Note that for the case of λ = 3 · 10−6, the sparsity of the network does216

not decay as fast as desired, so it touches the sparsity upper bound around epoch 220. The iterative217

freezing scheme kicks in here, and the sparsity decay is controlled by the upper bound thereafter,218

achieving the specified target sparsity at the end.219

The full pseudocode of GEM-MINER is provided in Algorithm 1. There are two minor implementation220

details which differ from the explanation above: (i) we impose the iterative freezing every T epochs,221

not every epoch and (ii) iterative freezing is imposed even when the sparsity bound is not violated.222
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Figure 3: Performance of different pruning algorithms on CIFAR-10 for benchmark networks. Top: post-finetune
accuracy; Bottom: sanity check methods suggested in Frankle et al. [10] applied on GEM-MINER (GM). GM
achieves similar post-finetune accuracy as IMP, and typically outperforms it in the sparse regime. GM has higher
post-finetune accuracy than EP and Smart Ratio (SR). GM also passes the sanity checks suggested in Frankle
et al. [10]. Finally, GM (which prunes at init) nearly achieves the performance of Renda et al. (which is a
pruning after training method) in the sparse regime, e.g., 1.4% sparsity in ResNet-20.

4 Experiments223

In this section, we present the experimental results1 for the performance of GEM-MINER across224

various tasks.225

Tasks. We evaluate our algorithm on (Task 1) CIFAR-10 classification, on various networks226

including ResNet-20, MobileNet-V2, VGG-16, and WideResNet-28-2, (Task 2) TinyImageNet227

classification on ResNet-18 and ResNet-50, and (Task 3) Finetuning on the Caltech-101 [7] dataset228

using a ResNet-50 pretrained on ImageNet. The detailed description of the datasets, networks and229

hyperparameters can be found in Section A of the Appendix.230

Proposed scheme. We run GEM-MINER with an L2 regularizer. If a network reaches its best231

accuracy after E epochs of weight training, then we run GEM-MINER for E epochs to get a sparse232

subnetwork, and then run weight training on the sparse subnetwork for another E epochs.233

Comparisons. We tested our method against five baselines: dense weight training and four pruning234

algorithms: (i) IMP [9], (ii) Learning rate rewinding [29], denoted by Renda et al., (iii) Edge-Popup235

(EP) [28], and (iv) Smart-Ratio (SR) which is the random pruning method proposed by Su et al. [34].236

We also ran the following sanity checks, proposed by Frankle et al. [10]: (i) (Random shuffling): To237

test if the algorithm prunes specific connections, we randomly shuffle the mask at every layer. (ii)238

(Weight reinitialization): To test if the final mask is specific to the weight initialization, we reinitialize239

the weights from the original distribution. (iii) (Score inversion): Since most pruning algorithms240

use a heuristic/score function as a proxy to measure the importance of different weights, we invert241

the scoring function to check whether it is a valid proxy. More precisely, this test involves pruning242

the weights which have the smallest scores rather than the largest. In all of the above tests, if the243

accuracy after finetuning the new subnetwork does not deteriorate significantly, then the algorithm is244

merely identifying optimal layerwise sparsities.245

4.1 Rare gems obtained by GEM-MINER246

Task 1. Fig. 3 shows the sparsity-accuracy tradeoff for various pruning methods trained on CIFAR-247

10 using ResNet-20, MobileNet-V2, VGG-16 and WideResNet-28-2. For each column (network),248

we compare IMP, IMP with learning rate rewinding (Renda et al.), GEM-MINER, EP, and SR in two249

performance metrics: the top row shows the accuracy of the subnetwork after weight training and250

bottom row shows the result of the sanity checks on GEM-MINER.251

1Our codebase can be found at https://anonymous.4open.science/r/pruning_is_enough-F0B0.
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Figure 4: Accuracy on image classification tasks on TinyImageNet, ImageNet and Caltech-101. For Caltech-101,
we pruned a pre-trained ImageNet model (ResNet-50). Top: post-finetune accuracy, bottom: sanity check
methods suggested in Frankle et al. [10] applied on GEM-MINER.

As shown in the top row of Fig. 3, GEM-MINER finds a lottery ticket at initialization. It reaches252

accuracy similar to IMP after weight training. Moreover, for in the sparse regime (e.g., below 1.4%253

for ResNet-20 and MobileNet-V2), GEM-MINER outperforms IMP in terms of post-finetune accuracy.254

The bottom row of Fig. 3 shows that GEM-MINER passes the sanity check methods. For all networks,255

the performance in the sparse regime (1.4% sparsity or below) shows that the suggested GEM-MINER256

algorithm enjoys 3–10% accuracy gap with the best performance among variants. The results in the257

top row show that GEM-MINER far outperforms the random network with smart ratio (SR).258
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Figure 5: Convergence plot for CIFAR-10,
MobileNet-V2 experiments, where we apply
GEM-MINER for 300 epochs and then fine-
tune the sparse model for another 300 epochs,
to reach 1.16% sparse model. We added the
accuracy of weight training (dense model)
and IMP (1.4% sparse model) as a reference.
Note that we compared with 300 epochs of
weight training, and compared with IMP us-
ing 20 rounds of iterative pruning, i.e., 300
× 20 = 6000 epochs, to reach 1.4% spar-
sity. GEM-MINER achieves a higher accu-
racy than IMP despite its 19× shorter run-
time to find a sparse subnetwork.

Tasks 2–4. Fig. 4 shows the sparsity-accuracy tradeoff259

for Tasks 2–4. Similar to Fig. 3, the top row reports the ac-260

curacy after weight training, and the bottom row contains261

the results of the sanity checks.262

As shown in Fig. 4a and Fig. 4b, the results for Task 2263

show that (i) GEM-MINER achieves accuracy comparable264

to IMP as well as Renda et al. (IMP with learning rate265

rewinding) even in the sparse regime, (ii) GEM-MINER has266

non-trivial accuracy before finetuning (iii) GEM-MINER267

passes all the sanity checks, and (iv) GEM-MINER outper-268

forms EP and SR. These results show that GEM-MINER269

successfully finds rare gems even in the sparse regime for270

Task 2.271

Fig. 4c shows the result for Task 3. Unlike other tasks,272

GEM-MINER does not reach the post-finetune accuracy273

of IMP, but GEM-MINER enjoys over an 8% accuracy274

gap compared with EP and SR. Moreover, the bottom row275

shows that GEM-MINER has over 20% higher accuracy276

than the sanity checks below 5% sparsity showing that277

the subnetwork found by GEM-MINER is unique in this278

sparse regime.279

4.2 Comparison to ProsPr280

Alizadeh et al. [1] recently proposed a pruning at init method called ProsPr which utilizes meta-281

gradients through the first few steps of optimization to determine which weights to prune, thereby282

accounting for the “trainability” of the resulting subnetwork. In Table 2 we compare it against GEM-283

MINER on ResNet-20, CIFAR-10 and also run the (i) Random shuffling and (ii) Weight reinitialization284

sanity checks from Frankle et al. [10]. We were unable to get ProsPr using their publicly available285

codebase to generate subnetworks at sparsity below 5% and therefore chose that sparsity. Note286

that GEM-MINER produces a subnetwork that is higher accuracy despite being more sparse. After287

finetuning for 150 epochs, our subnetwork reaches 83.4% accuracy while the subnetwork found by288
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Table 2: We compare ProsPr [1] vs GEM-MINER on ResNet-20, CIFAR-10 and run the random shuffling as well
as the weight reinit sanity checks. Note that GEM-MINER produces a subnetwork that is higher accuracy despite
being more sparse. Moreover, ProsPr does not show significant decay in performance after the sanity checks
while GEM-MINER does. Therefore, it is likely that ProsPr is merely identifying good layerwise sparsity ratios.

Algorithm Sparsity Accuracy after finetune Accuracy after Random shuffling Accuracy after Weight reinitialization

ProsPr 5% 82.67% 82.15% 81.64%
GEM-MINER 3.72% 83.4% 78.73% 78.6%

ProsPr only reaches 82.67% after training for 200 epochs. More importantly, ProsPr does not show289

significant decay in performance after the random reshuffling or weight reinitialization sanity checks.290

Therefore, as Frankle et al. [10] remark, it is likely that it is identifying good layerwise sparsity ratios,291

rather than a mask specific to the initialized weights.292

4.3 Observations on GEM-MINER293

Convergence of accuracy and sparsity. Fig. 5 shows how the accuracy of GEM-MINER improves294

as training progresses, for MobileNet-V2 on CIFAR-10 at sparsity 1.4%. This shows that GEM-295

MINER, reaches high accuracy even early in training, and can be finetuned to accuracy higher than296

that of IMP (which requires 19× the runtime than our algorithm).297
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Figure 6: Performance of different pruning algorithms before finetuning on CIFAR-10 for benchmark networks.
GEM-MINER finds subnetworks that already have reasonably high accuracy even before weight training. Note
that, while IMP and SR have scarcely better than random guessing at initialization, subnetworks found by
GEM-MINER typically perform even better than EP, especially in the sparse regime.
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Figure 7: The layerwise sparsity for ResNet-20 pruned
by GEM-MINER, IMP, Smart Ratio, and EP. The dark
bar is the layerwise number of parameters. Both GEM-
MINER and IMP save the most portion of parameter in
the first layer and the last layer.

High pre-finetune accuracy. A shown in298

Fig. 6, GEM-MINER finds subnetworks at ini-299

tialization that have a reasonably high accuracy300

even before the weight training, e.g., above 90%301

accuracy for 1.4% sparsity in VGG-16, and 85%302

accuracy for 1.4% sparsity in MobileNet-V2.303

Note that, in contrast, IMP and SR have accu-304

racy scarcely better than random guessing at305

initialization. Clearly, GEM-MINER fulfills its306

objective in maximizing accuracy before fine-307

tuning and therefore finds rare gems – lottery308

tickets at initialization which already have high309

accuracy.310

Limitations of GEM-MINER. We observed311

that in the dense regime (50% sparsity, 20% spar-312

sity), GEM-MINER sometimes performs worse313

than IMP. While we believe that this can be314

resolved by appropriately tuning the hyperpa-315

rameters, we chose to focus our attention on the316

sparse regime. We would also like to remark that GEM-MINER is fairly sensitive to the choice of317

hyperparameters and for some models, we had to choose different hyperparameters for each sparsity318

to ensure optimal performance. Though this occurs rarely, we also find that an extremely aggressive319

choice of λ can lead to layer-collapse where one or more layers gets pruned completely. This happens320

when all the scores p of that layer drop below 0.5.321
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Table 3: We construct different variants of EP and compare their performance with GEM-MINER, for ResNet-20,
CIFAR-10, 0.59% sparsity. We establish that having a global score metric and gradually pruning is key to
improved performance.

Pruning
Method EP Global EP

Global EP with
Gradual Pruning

Global EP with
Gradual Pruning and Regularization GEM-MINER

Pre-finetune acc (%) 19.57 22.22 31.56 19.67 45.30
Post-finetune acc (%) 24.47 34.42 63.54 63.72 66.15

Layer-wise sparsity. We compare the layer-wise sparsity pattern of different algorithms for ResNet-322

20 trained on CIFAR-10 in Fig. 7. Both GEM-MINER and IMP spend most of their sparsity budget323

on the first and last layers. By design, SR assigns 30% sparsity to the last layer and the budget decays324

smoothly across the others. EP maintains the target sparsity ratio at each layer and therefore is always325

a horizontal line.326

How does GEM-MINER resolve EP’s failings? An open problem from Ramanujan et al. [28] is327

why the subnetworks found by EP are not fine-tunable. While GEM-MINER is significantly different328

from EP, it is reasonable to ask which modification allowed it to find lottery tickets without forgoing329

high accuracy at initialization. Table 3 shows how we can modify EP to improve the pre/post-finetune330

performance, for ResNet-20, CIFAR-10 at 0.59% sparsity. Here, we compare EP, GEM-MINER, as331

well as three EP variants that we construct. (i) (Global EP): is a modification where the bottom-k332

scores are pruned globally, not layer-wise. This allows the algorithm to trade-off sparsity in one333

layer for another. (ii) (Gradual pruning) reduces the parameter k gradually as opposed to setting it334

to the target sparsity from the beginning. (iii) (Regularization): we add an L2 term on the score p335

of the weights to encourage sparsity. The results indicate that global pruning and gradual pruning336

significantly improve both the pre and post-finetune accuracies of EP. Adding regularization does not337

improve the performance significantly. Finally, adding all three features to EP allows it to achieve338

63.72% accuracy, while GEM-MINER reaches 66.15% accuracy. It is important to note that even with339

all three features, EP is inherently different from GEM-MINER in how it computes the supermask340

based on the scores. But we conjecture that aggressive, layerwise pruning is the key reason for EP’s341

failings.342

Table 4: Comparison of GEM-MINER and its longer version, for ResNet-20, CIFAR-10, 1.4% sparsity. LONG
GEM-MINER, when given the same number of epochs improves post-finetune accuracy by 1.5%, rivaling the
performance of Renda et al. [29]

Method GM (cold) Long GM (cold) IMP (warm) Renda et al. (pruning after training)

Number of Epochs 300 3000 3000 3000
Accuracy (%) 77.89 79.50 74.52 80.21

Applying GEM-MINER for longer periods. Recall that GEM-MINER uses 19 × fewer training343

epochs than iterative train-prune-retrain methods like IMP [9] and Learning rate rewinding (Renda344

et al. [29]), to find a subnetwork at 1.4% sparsity which can then be trained to high accuracy. Here,345

we consider a long version of GEM-MINER to see if it can benefit if it is allowed to run for longer.346

Table 4 shows the comparison of post-finetune accuracy for GEM-MINER, LONG GEM-MINER,347

IMP and Renda et al. [29] tested on ResNet-20, CIFAR-10, sparsity=1.4% setting. Conventional348

GEM-MINER, applies iterative freezing every 5 epochs to arrive at the target sparsity in 150 epochs.349

LONG GEM-MINER instead prunes every 150 epochs and therefore reaches the target sparsity in350

3000 epochs.351

We find that applying GEM-MINER for longer periods improves the post-finetune accuracy in this352

regime by 1.5%. This shows that given equal number of epochs, GEM-MINER, which prunes at353

initialization, can close the gap to Learning rate rewinding [29] which is a prune-after-training354

method.355

5 Conclusion356

In this work, we resolve the open problem of pruning at initialization by proposing GEM-MINER357

that finds rare gems – lottery tickets at initialization that have non-trivial accuracy even before358

finetuning and accuracy rivaling prune-after-train methods after finetuning. Unlike other methods,359

subnetworks found by GEM-MINER pass all known sanity checks and baselines. Moreover, we show360

that GEM-MINER is competitive with IMP despite not using warmup and up to 19× faster.361
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