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Abstract

Limited compute and communication capabilities of edge users create a significant1

bottleneck for federated learning (FL) of large models. We consider a realistic, but2

much less explored, cross-device FL setting in which no client has the capacity3

to train a full large model nor is willing to share any intermediate activations4

with the server. To this end, we present Principal Sub-Model (PriSM) training5

methodology, which leverages models’ low-rank structure and kernel orthogonality6

to train sub-models in the orthogonal kernel space. More specifically, by applying7

singular value decomposition (SVD) to original kernels in the server model, PriSM8

first obtains a set of principal orthogonal kernels in which each one is weighed by9

its singular value. Thereafter, PriSM utilizes a novel sampling strategy that selects10

different subsets of the principal kernels independently to create sub-models for11

clients. Importantly, a kernel with a large singular value is assigned with a high12

sampling probability. Thus, each sub-model is a low-rank approximation of the13

full large model, and all clients together achieve the near full-model training. Our14

extensive evaluations on multiple datasets in resource-constrained settings show15

that PriSM can yield an improved performance of up to 10% compared to existing16

alternatives, with only around 20% sub-model training.17

1 Introduction18

Federated Learning (FL) is emerging as a popular paradigm for distributed and privacy-preserving19

machine learning as it allows local clients to perform ML optimization jointly without directly sharing20

local data [21, 15, 19]. Thus, it enables privacy protection on local data, and leverages distributed21

local training to attain a better global model. This creates opportunities for many edge devices rich in22

data to participate in the joint training without direct data sharing. For example, resource-limited23

smart home devices can train local vision or language models using private data, and achieve a server24

model that generalizes well to all users via federated learning [23].25

Despite significant progress in FL in the recent past, several crucial challenges still remain when26

moving to the edge. In particular, limited computation and communication capacities prevent clients27

from learning large models for leveraging vast amounts of local data at the clients. This problem28

has attracted a lot of attention [8, 11, 30, 27, 9]. For example, [8, 11, 30] propose to assign clients29

with different subsets of server model depending on their available resources. However, these works30

have an underlying assumption that some of the clients have sufficient resources to train a nearly31

full large model. As a result, server model size is limited by the clients with maximum computation32

and communication capacities. To overcome resource constraints on clients, prior works such as33

[27, 9] change the training paradigm by splitting a model onto server and clients. The computational34

burden on the clients is therefore relieved as the dominant part of the burden is offloaded to the server.35

However, such a methodology requires sharing of intermediate activations and/or labels with the36

server, which directly leaks input information and potentially compromises privacy promises of FL.37
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Figure 1: Number of principal kernels
in the orthogonal space required to accu-
rately approximate each of the two con-
volution layers in the first two ResBlocks
in ResNet-18 during FL training. Blocki-
j indicates j-th convolution layer in i-th
ResBlock. Each of these convolution lay-
ers has 64 kernels in the original space.

To overcome the aforementioned limitations in prior38

works, we focus on an even more constrained and real-39

istic setting at the edge, in which no client is capable of40

training a large model nor is willing to share any interme-41

diate data and/or labels with the server. To this end, we42

propose Principal Sub-Model (PriSM) training to allow43

each client to only train a small sub-model, while still en-44

abling the server model to achieve comparable accuracy45

as the full-model training. We exploit low-rank structure46

in models during the training, which is commonly used47

in reducing compute costs [16, 7]. However, naive low-48

rank approximation in FL [30], where all clients only train49

top-k kernels based on their capacities, incurs a notable50

accuracy drop, especially in very constrained settings. In51

Figure 1, we delve into this issue by showing the number52

of principal kernels required in the orthogonal space to53

accurately approximate each convolution layer in the first54

two ResBlocks in ResNet-18 [10] during FL training1. We55

observe that even at the end of the FL training, around56

half of the principal kernels are still needed to sufficiently57

approximate each convolution layer. We have similar findings for the remaining convolution layers.58

Therefore, to avoid the reduction in server model capacity, it is essential to ensure that all server-side59

principal kernels are collaboratively trained on clients, especially when each client can only train a60

very small sub-model (e.g., <50% of the server model).61

Based on our above observations, PriSM employs a novel probabilistic strategy to select a subset62

of kernels and create a sub-model for each client as shown in Figure 2. More specifically, PriSM63

first converts the model into orthogonal space where original convolution kernels are decomposed64

into principal kernels using singular value decomposition (SVD). To approximate the original server65

model, PriSM utilizes our novel sampling process, that is based on the singular values, such that66

a principal kernel with a larger singular value has a higher sampling probability. Furthermore, the67

probabilistic process ensures that all sub-models can together provide a near server model coverage,68

thus leading to the near full-model training performance.69
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Figure 2: Creating clients’ sub-models. PriSM randomly samples a subset of principal kernels to
create a client’s sub-model based on its computation and communication capacity. The sampling
probability is derived from singular values of principal kernels. It ensures every sub-model approxi-
mates the full large model, and all sub-models together provide a near full server model coverage.

We conduct extensive evaluations for PriSM on vision and language tasks under resourced-constrained70

settings where no client is capable of training the large full model. Our results demonstrate that PriSM71

delivers consistently better performance compared to other prior works, especially when participating72

clients have very limited capacities. For instance, on ResNet-18/CIFAR-10, we show that PriSM73

only incurs around 2% and 3% accuracy drop for i.i.d and highly non-i.i.d datasets under a very74

constrained setting where all clients can only train around 20% of the server model. Compared to75

other solutions, PriSM improves the accuracy by up to 10%.76

1See Sec B for further details, especially for calculating the required number of principal kernels.
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2 Method77

In this section, we first motivate our proposal, Principal random Sub-Model training (PriSM), with an78

observation of orthogonality in convolution layers. Then, we describe the details of PriSM.79

Notations. We denote the Frobenius norm as ∥·∥F , and σi as i-th singular value in matrix A. ⊛80

indicates convolution operation, and · indicates simple matrix multiplication. ⟨·, ·⟩ denotes sum of81

element-wise multiplication or inner product. tr(A) is the trace of matrix A.82

2.1 Motivation: An Observation on Orthogonality83

We consider a convolution layer with kernels W ∈ RN×M×k×k and input X ∈ RM×H×W , where N84

and M denote the number of output channels and the number of input channels, k is kernel size, and85

H ×W is the size of the input image along each channel. Based on a common technique im2col [5],86

the convolution layer can be converted to matrix multiplication as Y = W ·X , where W ∈ RN×Mk2

87

and X ∈ RMk2×HW . For kernel decorrelation, we apply singular value decomposition (SVD) to88

map kernels into orthogonal space as: W =
∑N

i=1 σi · ui · vT
i , where {ui}Ni=1, {vi}Ni=1 are two sets89

of orthogonal vectors2. The convolution can be decomposed as follows:90

Y =
N∑
i=1

Y i =
N∑
i=1

σi · ui · vT
i ·X. (1)

For ∀i ̸= j, it is easy to verify that
〈
Y i, Y j

〉
= σi ·σj · tr(X

T ·vi ·uT
i ·uj ·vT

j ·X) = 0, namely the91

output features Y i and Y j are orthogonal. Therefore, if we regard W i = σi · ui · vT
i as a principal92

kernel, different principal kernels create orthogonal output features. To illustrate this, Figure 3 shows93

a input image (left) and the outputs (right three) generated by principal kernels. We can observe that94

principal kernels captures different features and serve different purposes.95

As [29, 3, 28] reveal, imposing orthogonality leads to better training performance. This motivates us96

to initiate the training with a set of orthogonal kernels. Furthermore, to preserve kernel orthogonality97

during training, it is critical to constantly refresh the orthogonal space through re-decomposition. The98

above intuitions play an important role in PriSM, which is described in the following section.

Figure 3: Orthogonal outputs generated by principal kernels W i. Different principal kernels capture
different features: Kernel 1 extracts the outline of an object, Kernel 2 and 3 capture detailed textures
of the object but on distinct regions.99

2.2 PriSM: Principal Random Sub-Model Training100

In the realistic setting considered in our paper, participating clients are very resource-limited and101

incapable of performing full large model training. Therefore, to train a large server model in FL, it is102

essential to distribute the training workloads among clients. One way toward this goal is to conduct103

sub-model training on clients. Based on the motivation in Section 2.1, we select sub-models and104

sample from the orthogonal space. Further, as we observe in Section 2.1, different principal kernels105

capture distinct features in the orthogonal space, and their contributions are further weighed by their106

corresponding singular values as shown in Eq. (1). Therefore, we propose a novel importance-aware107

sampling strategy to create sub-models for clients. This provides two key benefits: 1) each sub-model108

is a low-rank approximation to the server model; 2) the conglomerate of the sampled sub-models109

enables a near-full server model coverage. Each participating client trains its sub-model and uploads110

it to the server. The server then aggregates the updated sub-models, obtain the full model in the111

original space, and then re-decompose it to refresh the orthogonal space for the next round.112

2We assume w.l.o.g W is a tall matrix.
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Algorithm 1 PriSM: Principal Random Sub-Model Training

Input: layer parameters W , client capacities.
1: for communication round t = 1, · · · , T do
2: Decompose W into orthogonal kernel using SVD→

{
W i

}N
i=1

.
3: Choose a subset of clients→ C.
4: for each client c ∈ C do
5: Compute the sub-model size for client c→ |Ic|.
6: Obtain a sub-model using random sampling based on Eq. (2)→ Ic,W

c
.

7: Perform LocalTrain↔ Ic,W
c
. // Local training

8: end for
9: Aggregate parameters based on Eq. (3) W ←

{
W

c
}
c∈C

. // Sub-model aggregation

10: Reconstruct W from W . // Orthogonal space refresh
11: end for

|———————————————————————————————
12: LocalTrain↔ Ic,W

c

13: for local iteration k = 1, · · · ,K do
14: Sample an input batch from the local dataset→ Dk.
15: Perform the forward and backward pass← Dk,W

c
.

16: Compute additional gradients from regularization based on Eq. (4)← reg.
17: Update the local sub-model using SGD→W

c
.

18: end for
|———————————————————————————————

We describe each components of PriSM below.113

Sub-model sampling. Given a resource budget in the client, suppose it can at most process r114

principal kernels for a convolution layer. For a convolution layer with principal kernels
{
W i

}N
i=1

,115

and the corresponding singular values {σi}Ni=1, we randomly sample r principal kernels denoted by116

Ic without replacement with sampling probability for i-th kernel as follows:117

pi =
σκ
i∑N

j=1 σ
κ
j

. (2)

Here, κ in Eq. (2) is a smooth factor that controls the probability distribution for principal kernels to118

be chosen. Therefore, with our proposed stochastic sampling strategy, important kernels with large119

singular values are more likely to be chosen, and all sub-models together provide a near-full model120

coverage. Other element-wise layers such as ReLU and batch normalization remain the same.121

Local training. On each client, when performing optimization, the selected {ui,vi}i∈Ic
are opti-122

mized, together with trainable parameters in other layers. While in PriSM, singular values {σi}i∈Ic
123

are not updated during local training. This is because each singular value indicates importance of each124

principal kernel. Thus, freezing singular values across clients helps maintain consistency regarding125

importance for kernels and is useful in the aggregation of the sub-models as described next.126

Sub-model aggregation. On the server side, with sub-models obtained from clients, we first aggregate127

i-th principal kernel as follows:128

W i = σi ·

(∑
c∈C

αc
iu

c
i

)
·

(∑
c∈C

αc
iv

c
i

)T

, (3)

where C denotes the subset of active clients, αi is the aggregation coefficient for i-th kernel. We129

propose a weighted averaging scheme: if i-th kernel is selected and trained by Ci clients, then130

αc
i = 1/Ci. Furthermore, for principal kernels that are not sampled during creation of sub-models,131

they remain intact during aggregation.132
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Orthogonal space refresh. The full model in the original space is constructed by converting133

each 2-dimensional W i to the original dimension RM×k×k and combining them. For the next134

communication round, the orthogonal space is refreshed by decomposing the updated W using SVD.135

We further use two additional techniques to improve learning efficiency in the orthogonal space:136

activation normalization, and regularization on orthogonal kernels.137

Activation normalization. We apply batch normalization without tracking running statistics; namely,138

the normalization always uses current batch statistics in the training and evaluation phases. Each139

client applies normalization separately with no sharing of statistics during model aggregation. Such140

an adaptation is effective in ensuring consistent outputs between different sub-models and avoids141

potential privacy leakage through the running statistics [2]. Hence, it has been used in several142

sub-model FL training schemes [8, 30].143

Regularization. When learning a sampled subset of principal kernels on a client, naively applying144

weight decay to ui and vi separately results in poor final accuracy. Inspired by [17], for training on145

client c, we add regularization to the subset of kernels as follows:146

reg =
λ

2

∥∥∥∥∥∑
i∈Ic

σi · ui · vT
i

∥∥∥∥∥
2

F

, (4)

where λ is the regularization factor, Ic denotes the subset of principal kernels on client c.147

Algorithm 1 presents an overall description of PriSM. We only show the procedure on a single148

convolution layer with kernels W for the sake of simplifying notations.149

In the following remarks, we differentiate PriSM from Dropout and Low-Rank compression.150

Remark 2.1. PriSM vs Dropout. PriSM shares some computation similarity with model training151

using regular dropout [26]. However, regular dropout on the original kernels leads to significant152

convergence instability, especially with a high dropout probability [11]. In contrast, PriSM performs153

importance-aware sampling based on singular values. Therefore, each sub-model is an approximation154

to the full model, and training different sub-models on clients does not create significant inconsistency.155

Remark 2.2. PriSM vs Low-Rank Compression. While PriSM exploits low-rank properties in156

models, it is not a low-rank compression method. Low-rank compression methods aim to construct a157

smaller server model by completely discarding some kernels even though they can still contribute to158

model performance. PriSM randomly select sub-models so that every kernel is possible to be learned.159

3 Experiments160

We evaluate PriSM under resourced-constrained settings where no clients can train the large full161

model. Specifically, we consider homogeneous settings with all clients having the same limited162

compute and communication capacity. We also compare PriSM with two other baselines: ordered163

kernel dropout in orthogonal space (OrthDrop), such as in [30]; and ordered kernel dropout in original164

space (OrigDrop), such as in [11, 8]. At a high level, our results demonstrate that PriSM achieves165

comparable server model accuracy even when only training very small sub-models on clients.166

Baselines. Prior methods such as FjORD [11] and HeteroFL [8] select sub-models from the original167

kernel space, for which we denote as OrigDrop. On the other hand, we use OrthDrop to denote168

selecting fixed top-k principal kernels from the orthogonal space such as in FedHM [30].169

Models and Datasets. We train ResNet-18 on CIFAR-10 [18], CNN on FEMNIST [4] and LSTM170

model on IMDB [20]3. ResNet-18 is optimized for CIFAR-10, where kernel size in the first convolu-171

tion layer is reduced to 3× 3. CNN is a small model with two convolution layers.172

Data Distribution. For CIFAR-10 and IMDB, we create balanced datasets during training with FL.173

Given the total number of samples and participating clients, we uniformly sample the equal number174

of training images for each client when creating i.i.d datasets. For non-i.i.d datasets, we first use175

Dirichlet function Dir(α) [25] to create sampling probability for each client and then sample an equal176

number of training images for clients. We create two different non-i.i.d datasets with α = 1 and177

α = 0.1, where a smaller α denotes a higher degree of non-i.i.d. For FEMNIST [4], we directly use178

the dataset without any additional preprocessing.179

3Due to the page limit, FEMNIST and LSTM results are deferred to Appendix A.2
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FL Setting. We simulate an FL setting with 100 clients, and 20 clients are chosen uniformly at180

random in each communication round. Each client trains its model for 2 local epochs and then181

uploads it to the aggregation server. We use SGD with momentum in the local training. Further182

details are provided in Appendix A.1.2.183

Performance on homogeneous clients. In this setting, we assume that all clients have the same184

limited compute and communication capacity. We vary the client sub-model size from 0.2 to 0.8 of185

the full server model, where 0.× indicates only a 0.× subset of the principal kernels are sampled186

in each convolution layer from the server model (denoted as keep ratio in the results). In Table 1,187

we list the computational and communication footprints for different sub-models of ResNet-18. For188

OrthDrop, we follow the strategy in [30] and select the top 0.× principal kernels for all clients. For189

OrigDrop, we select the first 0.× original kernels as in [8, 11].190

Table 1: Model size and compute costs for different sub-models in PriSM.
Model fraction Full 0.8 0.6 0.4 0.2

ResNet-18 on CIFAR-10

Params 11 M 9.9 M (90%) 7.4 M (67%) 4.9 M (44%) 2.5 M (22%)
MACs 1.1 G 0.9 G (80%) 0.7 G (60%) 0.5 G (45%) 0.25 G (22%)

Figure 4 shows final validation accuracy of ResNet-18 with different sampled sub-model sizes on i.i.d191

and non-i.i.d (α = 1, 0.1) local datasets. We note that PriSM constantly delivers better performance192

than the other two baselines. The performance gap is even more striking under very constrained193

settings. For instance, when only 0.2× sub-models are supported on clients, PriSM attains comparable194

accuracy as full-model training, and achieves up to 10% performance improvement compared to195

OrthDrop on non-i.i.d dataset with α = 0.1. Furthermore, we make two key observations. First,196

training with sub-models in the orthogonal space (OrthDrop) provides better performance than in the197

original space (OrigDrop), which aligns with our intuition in Section 2.1. Second, our importance-198

aware sampling strategy for creating sub-models is indispensable as demonstrated by the notable199

performance gap between PriSM and OrthDrop.

Figure 4: Training performance on CIFAR-10 on homogeneous clients. PriSM constantly delivers
better performance compared to prior baselines, especially under very constrained settings.

200

4 Conclusion201

We have considered the practical, yet under-explored, problem of federated learning in a resource-202

constrained edge setting, where no participating client has the capacity to train a large model. As our203

main contribution, we propose the PriSM training methodology, that empowers the resource-limited204

clients by enabling them to train smaller sub-models. At the same time, PriSM utilizes a novel205

sampling approach to obtain sub-models for the clients, all of which together ensure that the server206

model achieves close to the full-model performance. Our extensive empirical results demonstrate that207

PriSM performs significantly better than the prior baselines, especially when each client can train208

only a very small sub-model. In particular, when each client is required to train a sub-model that is209

only around 20% in size of the server model, we demonstrate that PriSM achieves a performance210

advantage of up to 10% over the prior baselines.211
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(c) Did you report error bars (e.g., with respect to the random seed after running experi-320

ments multiple times)? [Yes]321

(d) Did you include the total amount of compute and the type of resources used (e.g., type322

of GPUs, internal cluster, or cloud provider)? [Yes] Detailed information is provided323

in the Appendix.324

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...325

(a) If your work uses existing assets, did you cite the creators? [Yes]326

(b) Did you mention the license of the assets? [N/A]327

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]328

(d) Did you discuss whether and how consent was obtained from people whose data you’re329

using/curating? [Yes]330

(e) Did you discuss whether the data you are using/curating contains personally identifiable331

information or offensive content? [No] All datasets used are well-known open datasets.332

5. If you used crowdsourcing or conducted research with human subjects...333

(a) Did you include the full text of instructions given to participants and screenshots, if334

applicable? [N/A]335

(b) Did you describe any potential participant risks, with links to Institutional Review336

Board (IRB) approvals, if applicable? [N/A]337

(c) Did you include the estimated hourly wage paid to participants and the total amount338

spent on participant compensation? [N/A]339

A Appendix340

A.1 Models and Hyperparameters341

In this section, we provide detailed information about models and hyperparameter settings for the342

results presented in the paper. We will open-source our code upon acceptance of the paper.343

A.1.1 Models344

ResNet-18/CIFAR-10. We use a ResNet-18 optimized for CIFAR-10, in which kernel size in the345

first convolution layer is changed from 7× 7 to 3× 3. Details are shown in Table 2.346

CNN/FEMNIST. We use a similar architecture as in FjORD [11]. The detailed model is shown in347

Table 3.348

LSTM/IMDB. We use a common LSTM model as shown in Table 4.349
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Table 2: ResNet-18/CIFAR-10
Module #kernels size stride Batch Norm ReLU Downsample

Conv1 64 3 1 ✓ ✓ ✗

ResBlock 1 Block1-1 64 3 1 ✓ ✓
✗Block1-2 64 3 1 ✓ ✓

ResBlock 2 Block2-1 64 3 1 ✓ ✓
✗Block2-2 64 3 1 ✓ ✓

ResBlock 3 Block3-1 128 3 1 ✓ ✓
✓Block3-2 128 3 1 ✓ ✓

ResBlock 4 Block4-1 128 3 1 ✓ ✓
✗Block4-2 128 3 1 ✓ ✓

ResBlock 5 Block5-1 256 3 1 ✓ ✓
✓Block5-2 256 3 1 ✓ ✓

ResBlock 6 Block6-1 256 3 1 ✓ ✓
✗Block6-2 256 3 1 ✓ ✓

ResBlock 7 Block7-1 512 3 1 ✓ ✓
✓Block7-2 512 3 1 ✓ ✓

ResBlock 8 Block8-1 512 3 1 ✓ ✓
✗Block8-2 512 3 1 ✓ ✓

Classification 10 - - ✗ ✗ ✗

Table 3: CNN/FEMNIST
Module #kernels size stride ReLU

Conv1 64 5 1 ✓
Pooling1 - 2 2 ✗

Conv12 64 3 1 ✓
Pooling2 - 2 2 ✗

Classification 10 - - ✗

Table 4: LSTM/IMDB
Module input size output size hidden size #layers

Embedding 1001 64 - -
LSTM 64 256 256 2

FC 256 1 - -

A.1.2 Training Hyperparameters350

ResNet-18/CIFAR-10 on homogeneous clients. We simulate 100 clients during FL training, in351

which each client is assigned 500 training samples for both i.i.d and non-i.i.d datasets. In each352

communication round, each client performs local training for 2 epochs using the local data, then353

uploads parameters to the server for aggregation. Table 5 lists detailed hyperparameters during FL354

training with ResNet-18.355

CNN/FEMNIST on homogeneous clients. We simulate 100 clients during FL training, in which356

each client is assigned 10 users’ data from the original training dataset. We use the whole validation357

dataset to compute the validation accuracy. Table 6 lists detailed hyperparameters during FL training358

with CNN.359

LSTM/IMDB on homogeneous clients. During training, we simulate 100 clients, in which each360

client is assigned 375 training samples. We create local datasets with two different distributions using361
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Table 5: Hyperparameters for ResNet-18/CIFAR-10 on homogeneous clients

Datasets #clients #samples distribution augmentation

100 500 i.i.d, non-i.i.d (α = 1, 0.1) flip, random crop

Training #Rounds #local epochs batch size #active clients smooth factor κ

1000 2 32 20 2.5

Optimization Optimizer Momentum wd initial lr scheduler

SGD 0.9 0.0005 0.1 cosine annealing

Table 6: Hyperparameters for CNN/FEMNIST on homogeneous clients

Datasets #clients #users distribution augmentation

100 10 natural non-i.i.d None

Training #Rounds #local epochs batch size #active clients smooth factor κ

300 2 32 20 2

Optimization Optimizer Momentum wd initial lr scheduler

SGD 0.9 0.0005 0.01 cosine annealing

the same method as in CIFAR-10: i.i.d and non-i.i.d (α = 0.1). Table 7 list detailed hyperparameters362

for training LSTM/IMDB.363

Table 7: Hyperparameters for LSTM/IMDB on homogeneous clients

Datasets #clients #samples distribution augmentation

100 375 i.i.d, non-i.i.d (α = 0.1) None

Training #Rounds #local epochs batch size #active clients smooth factor κ

300 2 32 20 2

Optimization Optimizer Momentum wd initial lr scheduler

SGD 0.9 0.0002 0.1 cosine annealing

A.2 Experiments on CNN/FEMNIST and LSTM/IMDB364

Figure 5 and 6 show the training performance of PriSM on CNN/FEMNIST and LSTM/IMDB.365

Similar as in ResNet/CIFAR-10, PriSM consistently delivers the best final server model accuracy on366

both i.i.d and non-i.i.d datasets.367

B Model’s Rank during Training368

To analyze the server model’s low-rank structure, we adopt a similar method as in [1] to calculate369

the required number of principal kernels to accurately approximate each layer as 2− log(
∑

i pi log pi).370

Here, pi is calculated as in Eq. (2) with κ = 2. Figure 7 shows the number of kernels required to371

approximate each layer with 3× 3 kernels in ResNet-18 during FL with full models, where Blocki-j372

indicates j-th convolution layer in i-th ResBlock. First, we observe that while the server model373

attains a low-rank structure during training, a randomly initialized model does not exhibit a low-rank374

structure. Therefore, selecting a fixed set of top-k principal kernels for the sub-models inevitably375

causes reductions in the server model capacity. Furthermore, even at the end of the FL training,376

around half principal kernels are still required to approximate most layers. In fact, some layers require377

even more principal kernels. Therefore, our probabilistic sampling scheme is essential in preserving378

the server model capacity during FL training with sub-models.379
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Figure 5: Training performance on FEMNIST on homogenous clients.

Figure 6: Training performance on IMDB on homogenous clients.

(a) ResBlock 3, 4 (128 kernels). (b) ResBlock 5, 6 (256 kernels). (c) ResBlock 7, 8 (512 kernels).

Figure 7: The number of principal kernels required to accurately approximate each convolution layer
in ResBlocks 3-8 in ResNet-18 (Results of ResBlocks 1 and 2 are discussed in Figure 1).

C Related Works380

Factorized Models. Training neural networks with layer factorization has been extensively studied381

in prior literature [7, 16, 14, 22, 13]. Specifically, these works are based on the observation that382

well-trained neural networks have inherently low-rank structure and exhibit large-correlations across383

kernels. Hence, one can potentially down-size the model with a low-rank approximation to provide384

significant reduction in computations thus speeding up training. Furthermore, this can make model385

training more affordable for resource-constrained devices.386

Resource-Constrained Federated Learning. While federated learning opens the door for collabora-387

tive model training over edge users having rich (but private) data, the computational and communica-388

tion footprint prohibits training of large high-performance models at the resource-constrained clients.389

To address these resource limitations in federated learning, a number of works have been proposed in390

the literature [8, 11, 30, 8, 11, 30, 27, 24, 6, 9]. Particularly, in split learning [27, 24, 6], the model is391

partitioned into two parts, one (small) part is assigned to clients for local training, while the other392
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(large) part is outsourced to the server. [9] proposes FedGKT that combines the model splitting393

approach with a novel bi-directional knowledge transfer technique between server and clients to394

achieve resource-constrained FL with much fewer communications than split learning. However,395

works such as split learning and FedGKT require sharing of intermediate activations (and in many396

cases, logits as well as labels) with the server, directly leaking input information and potentially397

compromising privacy promises of FL [31].398

The works closely related to ours are HeteroFL [8], FjORD [11] and FedHM [30], that aim to399

enable participation of a resource-constrained client by letting it train a smaller sub-model based400

on its capabilities. In particular, HeteroFL and FjORD create sub-models for clients by selecting401

certain fixed number of original kernels of the server model. On the other hand, FedHM creates sub-402

models using fixed subsets of factorized principal kernels. However, in these works, the size of the403

server model gets limited by the clients with maximum computation and communication capacities,404

sacrificing the model performance. This becomes even more critical in a realistic, cross-device FL405

setting wherein no client has the capacity to train a large model. While another work, FedPara406

[12], proposes a low-rank factorized model training to reduce communication costs, computational407

footprint still remains prohibitive as every client is required to perform full-model training.408

13


	Introduction
	Method
	Motivation: An Observation on Orthogonality
	PriSM: Principal Random Sub-Model Training

	Experiments
	Conclusion
	Appendix
	Models and Hyperparameters
	Models
	Training Hyperparameters

	Experiments on CNN/FEMNIST and LSTM/IMDB

	Model's Rank during Training
	Related Works

