
One Layer is All You Need

Anonymous Author(s)
Affiliation
Address
email

Abstract

A deeper network structure generally handles more complicated non-linearity and1

performs more competitively. Nowadays, advanced network designs often contain2

a large number of repetitive structures (e.g., Transformer). They empower the3

network capacity to a new level but also increase the model size inevitably, which4

is unfriendly to either model restoring or transferring. In this study, we are the5

first to investigate the representative potential of fixed random weights with limited6

unique values by iteratively learning different masks, leading to a new paradigm for7

model compression to diminish the model size. Concretely, we utilize one random8

initialized layer, accompanied with different masks, to convey different feature9

mappings and represent repetitive modules in a deep network. As a result, the10

model can be expressed as one-layer with a bunch of masks, which significantly11

reduce the model storage cost. Furthermore, we enhance our strategy by learning12

masks for a model filled by padding a given random weights sequence. In this13

way, our method can further lower the space complexity, especially for models14

without many repetitive architectures. We validate the potential of leveraging15

random weights and test our compression paradigm based on different network16

architectures.17

1 Introduction18

Deep neural networks have emerged in several application fields and achieved state-of-the-art perfor-19

mances [5, 13, 23]. Along with the data explosion in this era, huge amount of data gathered to build20

network models with higher capacity [2, 4, 19] In addition, researchers also pursue a unified network21

framework to deal with multi-modal and multi-task problems as a powerful intelligent model [19, 25].22

All these trending topics inevitably require even larger and deeper network models to tackle diverse23

data flows, arising new challenges to compress and transmit models, especially for mobile systems.24

Despite the success of recent years with promising task performances, advanced neural networks25

suffer from their growing size, which causes inconvenience for both model storage and transferring.26

To reduce the model size of a given network architecture, neural network pruning is a typical27

technique [17, 15, 9]. Pruning approaches remove redundant weights using designed criteria and the28

pruning operation can be conducted for both pretrained model (conventional pruning: [10, 9]) and29

randomly initialized model (pruning at initialization: [16]). Another promising direction is to obtain30

sparse network by dynamic sparse training [6, 18]. They jointly optimize network architectures31

and weights to find good sparse networks. However, the methods mentioned above demand regular32

training, and the final weights are updated by optimization algorithms like SGD automatically.33

Now that the trained weights have such a great representative capacity, one may wonder what is34

the potential of random and fixed weights or is it possible to achieve the same thing on random35

weights? If we consider a whole network, the answer is obviously negative as a random network36

cannot provide informative and distinguishable outputs. However, picking a subnetwork from a37

random dense network make it possible as feature mapping varies with changes of subnetwork38

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



Several sparse 
weight matrix

… …

One-Layer is All You NeedConventional Sparse Network Random fixed weightsOptimized weights

Pruning using criteria Selecting using masks

…

Feature mappings Feature mappings

One-layer with
several masks

…

Figure 1: Comparison of different ways to represent a neural network. Different features mappings
are shown as blue rectangles. Squares with different color patches inside serve as parameters of
different layers. Left is the conventional fashion where weights are optimized and sparse structures
are decided by certain criteria. Right is our approach to represent a network where one-layer weights
are fixed and repetitively used to fill in the whole network and different masks are learned to deliver
different feature mappings. Following this line, we explore the representative potential of random
weights and propose a novel paradigm to achieve model compression by combining a set of random
weights and a bunch of masks.

structures. Then, the question has been updated as what is the potential of random and fixed39

weights with selecting subnetwork structures? Pioneer work LTH [7] shows the winning ticket40

exists in random network with good trainability but cannot be used directly without further training.41

Supermasks [26] enhances the winning ticket and enable it being usable directly. Recent work42

Popup [20] significantly improves subnetwork capacity from its dense counterpart by learning the43

masks using backpropagation. Following this insightful perspective, we further ask a question – what44

is the maximum representative potential of a set of random weights? In our work, we first make a45

thorough exploration of the question. Then, back to our practical starting point, we propose a new46

network compression paradigm by combining a set of fixed random weights with different learned47

masks to represent different subnetworks.48

We focus on the recent popular network architectures which adopt a similar design style, i.e., building49

a small-scale encoding module and stacking it to obtain a deep neural network [5, 22, 21]. Based50

on this point, we naturally propose the One-layer strategy by using one module as a prototype and51

copy its parameter into other repetitive structures. More generally, we further provide two versions:52

max-layer padding (MP) and random weight padding (RP) to handle diverse network structures.53

Specifically, MP chooses the layer with the most number of parameters as the prototype and uses54

first certain parameters of prototype to fill in other layers. RP even breaks the constraint of network55

architecture. It samples a fixed length random vector as the prototype which is copied several times to56

fill in all other layers based on their different lengths. RP is architecture-agnostic and can be seen as57

a most general strategy in our work. Three strategies are from specific to general manner and reduce58

the number of unique parameters gradually. We first employ these strategies to randomly initialize59

network. Then, we learn different masks to explore the random weights potential and positively60

answer the question above. Leveraging on it, we propose a new network compression paradigm61

by using a set of random weights with a bunch of masks to represent a network model instead of62

restoring sparse weights for all layers (see Fig. 1). We conduct comprehensive experiments to explore63

the random weights potential and test the model compression performance to validate our paradigm.64

We summarize our contributions as below:65

• We explore the maximum representative potential of random weights with limited unique66

values, leveraging on learning different masks to represent different feature mappings.67

• A novel network compression paradigm is proposed by fully utilizing the representative68

capacity of random weights. We restore a network based on a given random vector with69

different masks instead of retaining all the sparse weights.70

• Extensive experimental results explore the random weights potential and test the compression71

performance of our new paradigm. We expect our work can inspire more interesting72

explorations in this direction.73

2



2 Related Works74

2.1 Sparse Network Training75

Our work is related to sparse network training. Conventional pruning techniques finetune the pruned76

network from pretrained models [9, 10] with various pruning criteria [17, 11, 12]. Instead of pruning77

a pretrained model, pruning at initialization approaches attempt to find winning ticket from the78

random weight. Gradient information is considered to build pruning criteria in [16, 24]. Different79

from pruning methods above, sparse network training also can be conducted in a dynamic fashion. To80

name a few, Rigging the Lottery [6] edits the network connections and jointly updates the learnable81

weights. Dynamic Sparse Reparameterization [18] modifies the parameter budget among the whole82

network dynamically. Sparse Networks from Scratch [3] proposes a momentum based approach to83

adaptively grow weights and empirically verifies its effectiveness. Most of the sparse network training84

achieve the network sparsity by keeping necessary weights and removing others, which reduces the85

cost of model storage and transferring. In our work, we propose a novel model compression paradigm86

by leveraging the potential of random weights accompanied with subnetwork selection.87

2.2 Random Network Selection88

Our work inherits the research line of exploring the representative capacity of random network. The89

potential of randomly initialized network is pioneeringly explored by the Lottery Ticket Hypothe-90

sis [7]. It articulates that there exists a winning ticket subnetwork in a random dense network. This91

subnetwork can be trained in isolation and achieves comparable results with its dense counterpart.92

Moreover, the potential of the winning ticket is further explored in Supermasks [26]. It surprisingly93

discovers the subnetwork can be identified from dense network to obtain reasonable performance94

without training. It extends and proves the potential of subnetwork from good trainability to being95

used directly. More recently, the representative capacity of subnetworks is enhanced by Popup96

algorithm proposed by [20]. Based on random dense initialization, the learnable mask is optimized to97

obtain subnetwork with promising results. Instead of considering network with random weights, the98

network with the same shared parameters can also delivery representative capacity to some extent,99

which is investigated by Weight Agnostic Neural Network [8] and also inspires this research direction.100

We are highly motivated by these researches to validate how is the representative potential of random101

weights with limited unique values and repetitive structures.102

3 Methodology103

3.1 Instinctive Motivation104

Overparameterized randomly initialized neural network benefits network optimization to get higher105

performance. Inevitably, the trained network contains redundant parameters but can be further106

compressed, which defines the conventional neural network pruning. On the other side, the network107

redundancy also ensures a large random network contains a huge number of possible subnetworks,108

thus, carefully selecting a specific subnetwork should obtain promising performances. This point109

of view has been proved by [20, 26]. These works demonstrate the huge potential of certain subset110

combinations of a given random weights. Following this lane, we naturally ask a question: what111

is the maximum potential of a set of random weights? or in another word: can we use less random112

weights with selected subnetwork to represent a usable network? We answer this question as positive:113

we can use less random weights to deliver a usable network. Moreover, leveraging on 1) compared114

with trained network where the weight values cannot be predicted, we can pre-access the random115

weights before we select the subnetwork; 2) selected subnetwork can be efficiently represented by a116

bunch of masks, we can extremely reduce the network storage size and establish a new paradigm for117

model compression.118

3.2 Sparse Selection119

We follow [20] to conduct the sparse network selection. We start from a randomly initialized neural120

network consisting of L layers. For each l ∈ {1, 2, ..., L}, it has121

Il+1 = σ(F [Il;wl]), (1)

3



…

… …

Regular One-Layer

Max-Padding

…

Random-Padding

Randomly initialized Prototype

Prototype
… …

Prototype
… …

Figure 2: Illustrations of different strategies to represent network structures. Compared with regular
fashion where all parameters are randomly initialized, our work provides three versions to fully
explore the representative capacity of random weights.

where Il and Il+1 are the input and output of layer l. σ is the activation. F represents the encoding122

layer such as convolutional or linear layer with parameter wl = {w1
l , w

2
l , ..., w

dl

l }, where dl is the123

parameter dimension of layer l. To perform the sparse selection, all the weights w = {w1, w2, ..., wL}124

are fixed and denoted as w̃. To pick the fixed weights for subnetwork, each weight wj
l is assigned a125

learnable element-wise score sjl to indicate its importance in the network. The Eq. 1 is rewrited as126

Il+1 = σ(F [Il;wl ⊙ h(sl)]), (2)

where sl = {s1l , s2l , ..., s
dl

l } is the score vector and h(·) is the indicator function to create the mask. It127

outputs 1 when the value of sjl belongs to the top K% highest scores and outputs 0 for others, where128

K is predefined sparse selection ratio. Through optimizing s with fixed w, a subset of original dense129

weights is finally selected. Since h(·) is a non-derivable function, the gradient of each sjl cannot130

be obtained directly. The straight-through gradient estimator [1] is applied to treat h(·) as identity131

function during gradient backwards pass. Formally, the gradient of s is approximately computed as132

g̃(sjl ) =
∂L

∂Ĩl+1

∂Ĩl+1

∂sjl
≈ ∂L

∂Il+1

∂Il+1

∂sjl
, (3)

where Ĩl+1 = σ(F [Il;wl ⊙ sl]), which is applied estimation. g̃(sjl ) is approximately estimated133

gradient of weight score sjl . In this way, the dense network is randomly initialized but fixed, but one134

of its subnetwork can be selected using Backpropagation. In our work, we name this optimization135

process as sparse selection.136

3.3 One Layer is All You Need137

Sparse selection initializes a dense network as a pool to pick certain weights. It provides a novel138

direction to find admirable subnetwork without pretraining and pruning. However, with increasing of139

network scales, the cost of restoring and transfering a neural network grows rapidly. Noticed that140

more popular network structures follow a similar design style: proposing a well-designed modeling141

block and stacking it several times to boost network capacity, we are inspired to explore the feasibility142

of finding a subnetwork by iteratively selecting different subnetworks in one set of repetitive modules.143

Formally, a L-layer randomly initialized network NL can be represented as a series of parameters:144

NL : w = [w1, w2, ..., wL];wl ∈ Rl, l ∈ {1, 2, ..., L}, (4)

where wl is used for various layers. Rl denotes different parameter spaces (e.g., RI×O
l for linear,145

RN×H×W
l for CNN layer, where I/O are input/output dimensions and N /H/W are CNN kernel146

4



dimensions). From shallow to deep layer, we first sample the prototype layers for the whole network147

with unique parameter spaces, represented as wpro = [wpro1 , wpro2 , ..., wproP ]. For each wprop , we148

use its parameters to replace its target layers wtarp which share the same parameter space:149

wtarpt
← wprop ;Rtarpt

= Rprop , t ∈ {1, 2, ..., T p}. (5)

The whole network filled by several layers with unique weight size and Eq. 4 can be rewrited as150

NL : w∗ = [

T 1+T 2+...+TP︷ ︸︸ ︷
wpro1 , ..., wpro2 , ..., wprop , ..., wproP ];

∑
T p = L. (6)

We take a simple 5-layer MLP to clarify this operation: its dimensions are [512, 100, 100, 100, 10]151

with 4 weight matrices w1 ∈ R512×100, w2 ∈ R100×100, w3 ∈ R100×100, and w4 ∈ R100×10. In this152

case, w1, w2 and w4 are three prototype layers. w2 has two target layers w3 and itself. w1/w4 only153

has itself as target layer. The general algorithm is summarized in Alg. 1.154

Algorithm 1 One-Layer

1: Input: A random network with L-layer: w =
{w1, w2, ..., wL}

2: Output: A L-layer network filled by P
prototype layers with parameters: w∗ =
{wpro1 , wpro2 , ..., wproP }

3: Randomly initialize layers from 1 to L
4: Record parameter space dimensions:
{R1,R2, ...,RL}

5: Initialize a prototype layers list: Listpro = []
6: for l in 1, 2, ..., L do
7: if ∀Rprop ∈ Listpro ̸= Rl then
8: Append wl into Listpro
9: else

10: Find wprop , where Rprop = Rl

11: Replace wl with wprop

12: end if
13: end for
14: Return updated w as w∗

In this way, any repetitive modules in a given net-155

work structure can be represented by one bunch156

of random weights. Using the sparse selection157

strategy, we iteratively pick subnetworks in the158

same set of random weights to obtain diverse fea-159

ture mappings. Therefore, the cost to represent160

the network significantly reduces, especially for161

deep network with many repetitive blocks. In162

other words, one random layer with different163

masks can represent the majority of a complete164

network structure, which is named as one layer165

is all you need (one-layer).166

3.4 Random Weights Padding167

One-layer strategy efficiently handles networks168

with many repetitive modules. The majority of169

the whole network can be compressed into one170

random layer accompanied with a set of masks.171

However, in real-world applications, various net-172

work architectures may not follow a tidy pattern173

resulting in different shapes for different layers. Hence, the one-layer strategy is not flexible enough174

to efficiently represent such networks. Naturally, we further propose a enhanced strategy, Random175

Weights Padding, to handle this scenario. We provide two versions, Max-Layer Padding and Random176

Vector Padding, to achieve it. We first formally rewrite Eq. 4 as177

NL : w = [w1, w2, ..., wL];wl ∈ Rdl , l ∈ {1, 2, ..., L}, (7)

where wl is flatten into a vector with dimension dl (e.g., dl = I ×O for linear and dl = N ×H ×W178

for CNN).179

Max-Layer Padding (MP). It chooses the layer wm as the prototype where dm =180

max([d1, d2, ..., dL]) is the highest dimension. All other layers in NL have fewer parameters than181

wm. We keep the prototype as it is and simply pick the first dl parameters from wm to replace the182

parameters in wl, which is described by183

wl ← wm[: dl]; l ∈ {1, 2, ..., L}. (8)

Random Vector Padding (RP). Instead of picking a complete layer as prototype, RP further reduces184

the granularity of random prototype from a layer to a random weights vector with a relatively short185

length. We let vpro ∈ Rdv as the random weights vector with length dv. For each layer l, we repeat186

vpro several times to reach the length of wl. It can be formally described as187

wl ← [

dl︷ ︸︸ ︷
vpro, ...]; l ∈ {1, 2, ..., L}. (9)

5



After the padding operation, weights in Eq. 7 are reshaped back into the format of Eq. 4 to perform188

as a network. These two padding strategies are summarized in Alg. 2 and Alg. 3.189

In the series of one-layer, MP, RP, based on sparse selection, we explore using fewer unique weights190

to represent the whole network. Leveraging on the property of the fixed weight values, the cost of191

delegating a network keeps decreasing by using a random vector with a bunch of masks. By this mean,192

we fully explore the representative capacity of random weights with limited length. Furthermore,193

a novel model compression paradigm is correspondingly established by restoring a set of random194

weights with different masks. Our three strategies compared to regular network setting are shown in195

Fig. 2.196

Algorithm 2 Max-Layer Padding

1: Input: A L-layer random network with
parameters: w = {w1, w2, ..., wL}

2: Output: A L-layer network with MP: w∗ =
{wm[: d1], wm[: d2], ..., wm[: dL]}

3: Randomly initialize layers from 1 to L
4: Find the layer wm with the maximum dm

among all wl, l = {1, 2, ..., L}
5: for l in 1, 2, ..., L do
6: Replace wl with the first dl values in wm

given by wm[: dl]
7: end for
8: Return updated w as w∗

Algorithm 3 Random Vector Padding

1: Input: A L-layer random network with
parameters: w = {w1, w2, ..., wL}

2: Output: A L-layer network with RP: w∗ =
{wm[: d1], wm[: d2], ..., wm[: dL]}

3: Randomly initialize layers from 1 to L
4: Randomly initialize a weights vector vpro ∈

Rdv with dv dimension
5: for l in 1, 2, ..., L do
6: Repeat vpro until reaching the length dl
7: Replace wl with the repeated vector vpro
8: end for
9: Return updated w as w∗

197

4 Experiments198

Our experiments conduct empirically validations on two aspects of our interests. Firstly, following199

the sparse selection line, how large is the representative potential of random weights with limited200

unique values? Secondly, leveraging on the pre-accessibility of random weights and lightweight201

storage cost of binary mask, it is promising to establish a new model compression paradigm.202

4.1 Preparation203

We comprehensively use several classic or recently popular backbones for image classification task204

to conduct general validations. Backbones include ResNet32, ResNet56 [13], ConvMixer [22], and205

ViT [5]. We use CIFAR10 and CIFAR100 datasets [14] for our experiments.206

4.2 Representative Random Weights207

We first explore the representative potential of random weights based on our proposed strategies,208

One-Layer, Max-Layer Padding (MP), and Random Vector Padding (RP), in Sec. 3. We use a CNN209

based architecture Convmixer [22] and a MLP based model ViT [5] to conduct our experiments on210

CIFAR10 dataset [14].211

In Fig. 3, we show 8 pairs of experiments based on 2 backbones (ConvMixer, ViT) using 2 depth212

numbers (6, 8) and 2 hidden dimensions (256, 512). Each pair includes a dense network performance213

and a series of results obtained by sparse selection with different random weighting strategies.214

Specifically, Mask learns the mask on the whole network. One-layer, MP, and RP represent our215

proposed strategies. To simplify the comparison, we use a rate number after RP to show how many216

unique parameters used in RP compared with MP. From the left Mask to right RP 1e-5, the number217

of unique parameters gradually decreases. Different settings show the similar patterns concluded as:218

1) Compared with regular trained dense model, sparse selection approach generally obtains promising219

results, even if with a performance drop caused by the constraint of fixing all the parameters; 2) From220

left to right on X-axis, the performance gradually drops. This is caused by the decreasing number221

of unique values in network, which makes network has less representative capacity; 3) However,222

performance drop arises when the number of unique parameters is extremely low (e.g., RP 1e-4,223

RP 1e-5). The results remain stable for the most of random weights strategies; 4) Larger depth and224

6



 Mask One-layer MP RP_1e-1 RP_1e-2 RP_1e-3 RP_1e-4 RP_1e-5 
79

81

83

85

87

89

91

93

95

Ac
c 

(%
)

Dense_256
Dense_512
Mask_256
Mask_512
One-layer_256
One-layer_512
MP-RP_256
MP-RP_512

(a) 6-block ConvMixer with 256/512 dimensions.

 Mask One-layer MP RP_1e-1 RP_1e-2 RP_1e-3 RP_1e-4 RP_1e-5 
82

84

86

88

90

92

94

96

Ac
c 

(%
)

Dense_256
Dense_512
Mask_256
Mask_512
One-layer_256
One-layer_512
MP-RP_256
MP-RP_512

(b) 8-block ConvMixer with 256/512 dimensions.

 Mask One-layer MP RP_1e-1 RP_1e-2 RP_1e-3 RP_1e-4 RP_1e-5 
64

68

72

76

80

Ac
c 

(%
)

Dense_256
Dense_512
Mask_256
Mask_512
One-layer_256
One-layer_512
MP-RP_256
MP-RP_512

(c) 6-block ViT with 256/512 dimensions.

 Mask One-layer MP RP_1e-1 RP_1e-2 RP_1e-3 RP_1e-4 RP_1e-5 
71

73

75

77

79

81

83

85

Ac
c 

(%
)

Dense_256
Dense_512
Mask_256
Mask_512
One-layer_256
One-layer_512
MP-RP_256
MP-RP_512

(d) 8-block ViT with 256/512 dimensions.

Figure 3: Performances of ConvMixer and ViT backbones on CIFAR10 dataset with different model
hyperparameters. Y-axis represent the test accuracy and X-axis denotes different network parameter
settings. Dense means the model is trained in regular fashion. Mask is the sparse selection strategy.
One-layer, MP, and RP are our strategies. The decimal after RP means the number of unique
parameters compared with MP. From Mask to RP 1e-5, the unique values of network decrease.
Different experimental settings illustrate the representative potential of random weights.

hidden dimension boost the model capacity for different configurations. The performance drop of225

random weights strategies from their dense counterpart is also decreased. In addition, ViT shows226

some unstable fluctuation when fewer unique parameter, compared with ConvMixer with relatively227

stable patterns. This may caused by the difficulty of training MLP based network itself and will not228

affect our main conclusions.229

The performance stability shown above illustrate the network representative capacity can be realized230

not only by overparameterizing the model, but also carefully picking different combinations of limited231

random parameters. In this way, we can represent a network using a random parameters prototype232

with different learned masks, instead of typically restoring all the different parameters. This property233

inspires us to deliver a new model compression paradigm proposed in following section.234

4.3 A New Compression Paradigm235

Practically, our work proposes a new network compression paradigm based on a group of random236

weights with different masks. We first elaborate the network compression and storage processes to237

clarify our advantages then report the empirical results.238

4.3.1 Sparse Network Storage239

Previous works aim to remove redundant weights (e.g., unstructured pruning) among different layers.240

The trivial weights are set to zero based on different criteria. The ratio of zero-weight in the whole241

network is regarded as sparsity ratio. Different approaches are compared based on their final test242

accuracy with a given sparsity ratio. Different from this conventional fashion which restoring sparse243

trained weights, we instead use fixed random weights with different masks to represent a network. To244

compare these two paradigm, we calculate the required storage size as an integrated measurement.245

7



89 90 91 92 93 94 95 96 97
Size Compression Ratio (%)

77

79

81

83

85

87

89

91

93

Ac
c 

(%
)

Dense_32
Random_32
Minimum_32
Ours_32
Dense_56
Random_56
Minimum_56
Ours_56

(a) ResNet32/ResNet56 on CIFAR10 dataset.

89 90 91 92 93 94 95 96 97
Size Compression Ratio (%)

35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69

Ac
c 

(%
)

Dense_32
Random_32
Minimum_32
Ours_32
Dense_56
Random_56
Minimum_56
Ours_56

(b) Resnet32/ResNet56 on CIFAR100 dataset.

Figure 4: Compression performance validation on CIFAR10/CIFAR100 datasets on
ResNet32/ResNet56 backbones. Y-axis denotes the test accuracy. X-axis means the network size
compression ratio. Different colors represent different network architectures. The straight lines on the
top are performance of dense model with regular training. Lines with different symbol shapes denote
different settings. For ResNet, our three points are based on MP, RP 1e-1, and RP 1e-2, respectively.
This pair of figures show that our proposed paradigm achieves admirable compression performance
compared with baselines. In very high compression ratios, we can still maintain the test accuracy.

Assuming we have a trained network with p as parameter numbers and r as sparsity ratio. Due to246

its sparsity, we only need to restore the non-zero weight values accompanied with their position [9]247

denoted as a binary mask. The storage cost can be separated into two parts, Cw for weight values and248

Cm for mask given by249

C = Cw + Cm. (10)

For conventional setting, Cw restores the values of kept sparse weights which is p · (1− r) for the250

whole network. It needs to be restore in float format. Cm restores sparse positions of these weights,251

which can be restored into compressed sparse column (CSC) or compressed sparse row (CSR) formats252

with cost around 2p · (1− r) [9]. In our new paradigm, Cw records the values of the given random253

weights. For example, the one-layer requires to record all weights of non-repetitive layers and one254

prototype weights of all repetitive layers. MP requires to keep the values of layer with the largest255

number of parameters. RP only requires to restore the values of a random vector with given length.256

Cm is also for the sparse positions to record the selected subnetwork.257

4.3.2 Compression Performance Validation258

We test the compreesion performance on CIFAR10 and CIFAR100 datasets using ConvMixer with259

6/8 depths, ResNet32, and ResNet56 backbones. The compression ratio is based on the storage size as260

we discussed instead of the conventional pruning ratio. Since we propose a new strategy to compress261

network, we involve two sparse network training baselines in our experiments. Specifically, we train262

a sparse network from scratch by removing random weight and minimum magnitude weights. For263

compression ratio, we set four settings for baselines: 90%, 92%, 94%, and 96%. We directly refer to264

settings, MP, RP from Sec. 4.2 for our paradigm. Their compression ratio is calculated using the265

same measurement as baselines.266

In Fig. 4, we show 4 pairs of comparison based on 2 backbones (ResNet32/ResNet56) and 2 datasets267

(CIFAR10/CIFAR100). Each pair includes dense model, 2 baselines with 4 compression ratios, and268

our results in 3 ratios. Two baselines are sparse network training by pruning random weights and269

minimum magnitude weights, respectively. For convenience, we do not follow exactly the same270

compression ratios as baseline but directly use settings from Sec.4.2. For ResNet, we use MP,271

RP 1e-1, and RP 1e-2. Their corresponding compression ratios are computed as shown in figures.272

Experiments based on different networks and datasets show the similar conclusions summarized273

as: 1) our method outperforms the baselines by a significant margin, with even higher compression274

ratio; 2); Compared with conventional sparse network training where compressed model performance275

decreases obviously along with increasing compression ratio, our method is relatively robust to the276

compressed model size; 3) If we compare cross different models, we find compressed small model277

by our method even performs better than baselines using larger model; 4) Network scale affects the278

8



compression performance, compared with ResNet32, ResNet56 basically contains more parameters279

and performance drop between compressed network with its dense counterpart is relatively small.280

90 91 92 93 94 95 96 97
Size Compression Ratio (%)

74

76

78

80

82

84

86

88

90

92

94

96

Ac
c 

(%
)

Dense_d6
Random_d6
Minimum_d6
Ours_d6
Dense_d8
Random_d8
Minimum_d8
Ours_d8

Figure 5: Compression performance validation on
CIFAR10 dataset on ConvMixer backbone. Y-axis
is the test accuracy. X-axis means compression
ratio. Two pairs of comparisons are for different
depths shown in different colors. Straight line on
the top is the dense model performance. Curves
in different symbols represent baselines and our
method. For ConvMixer, our three points are based
on RP 1e-1, RP 1e-2, and RP 1e-3, respectively.

In Fig. 5, we show compression performance on281

CIFAR10 dataset using ConvMixer with depth 6282

and 8. The settings are basically similar to Fig. 4.283

We can also draw the similar conclusions: 1)284

Our method outperforms the baselines on Con-285

vMixer with different depths; 2) Our method286

compresses network into lower size but main-287

tains higher performance.288

In our Sec. 4, our experiments can be separated289

into two parts. Firstly, we investigate the repre-290

sentative potential of random weights which are291

used to fill in the complete network structure us-292

ing different proposed strategies. Secondly, the293

promising conclusion (Sec. 4.2) for this inves-294

tigation naturally leads to the newly proposed295

network compression paradigm. Different from296

conventional fashion restoring sparse weights,297

we instead restore the fixed random weights and298

different masks. Empirically, we validate the299

effectiveness of our new paradigm for network300

compression. Our experiments involve diverse301

network architectures to demonstrate the pro-302

posed paradigm can be generalized into different303

network designs.304

5 Discussion and Conclusion305

Discussion We summarize our intuitive logic and potential research direction in the future. Our306

foundamental insight is motivated by Supermasks [26] and Popup [20] showing random network307

encodes informative pattern by selecting subnetworks. They inspire us to understand neural net-308

work in a decoupled perspective: the informative output is delivered by certain weight-structure309

combination. Even if weights are fixed, the flexibility of learnable masks still provides promising310

capacity to represent diverse semantic information. We are the first to fully explore the potential311

of random weights, and practically, a new network compression paradigm is naturally established.312

We further discuss some research directions in the future following this study. Firstly, compared313

with conventional approaches need to record learned weights, our paradigm records random weights314

which can be pre-accessed, can this property be used for improve the model security? Moreover,315

leveraging on the property that repetitive random weights existing in networks for our strategies, is it316

possible to specifically design hardware deployment configurations to achieve further compression or317

acceleration? We leave these topics in our future work.318

Conclusion We first explore the maximum representative potential of a set of fixed random weights,319

which leverages different learned masks to obtain different feature mappings. Specifically, we320

naturally propose three strategies, one-layer, max-layer padding (MP), and random vector padding321

(RP), to fill in a complete network with given random weights. We find that a large neural network322

with even limited unique parameters can achieve promising performance. It shows that parameters323

with fewer unique values have great representative potential achieved by learning different masks.324

In this way, we can represent a complete network by combining a set of random weights with325

different masks. Inspired by this observation, we propose a novel network compression paradigm.326

Compared with traditional approaches, our paradigm can be restore and transfer a network by only327

keeping a random vector with masks, instead of recording sparse weights for all layers. Since the328

cost of restoring a mask is significantly lower than weight, we can achieve admirable compression329

performance. We conduct comprehensive experiments based on several popular and classic network330

architectures to explore the random weights potential and test the compression performance of331

our new paradigm. We expect our work can inspire further researches for both exploring network332

representative potential and network compression.333

9



References334

[1] Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through stochastic335

neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.336

[2] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,337

G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural338

information processing systems, 33:1877–1901, 2020.339

[3] T. Dettmers and L. Zettlemoyer. Sparse networks from scratch: Faster training without losing340

performance. arXiv preprint arXiv:1907.04840, 2019.341

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional342

transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.343

[5] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,344

M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for345

image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.346

[6] U. Evci, T. Gale, J. Menick, P. S. Castro, and E. Elsen. Rigging the lottery: Making all tickets347

winners. In International Conference on Machine Learning, pages 2943–2952. PMLR, 2020.348

[7] J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural349

networks. arXiv preprint arXiv:1803.03635, 2018.350

[8] A. Gaier and D. Ha. Weight agnostic neural networks. Advances in neural information351

processing systems, 32, 2019.352

[9] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural networks with353

pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.354

[10] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for efficient355

neural network. Advances in neural information processing systems, 28, 2015.356

[11] B. Hassibi and D. Stork. Second order derivatives for network pruning: Optimal brain surgeon.357

Advances in neural information processing systems, 5, 1992.358

[12] B. Hassibi, D. G. Stork, and G. J. Wolff. Optimal brain surgeon and general network pruning.359

In IEEE international conference on neural networks, pages 293–299. IEEE, 1993.360

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In361

Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–362

778, 2016.363

[14] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.364

[15] Y. LeCun, J. Denker, and S. Solla. Optimal brain damage. Advances in neural information365

processing systems, 2, 1989.366

[16] N. Lee, T. Ajanthan, and P. H. Torr. Snip: Single-shot network pruning based on connection367

sensitivity. arXiv preprint arXiv:1810.02340, 2018.368

[17] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for efficient convnets.369

arXiv preprint arXiv:1608.08710, 2016.370

[18] H. Mostafa and X. Wang. Parameter efficient training of deep convolutional neural networks by371

dynamic sparse reparameterization. In International Conference on Machine Learning, pages372

4646–4655. PMLR, 2019.373

[19] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,374

P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision.375

In International Conference on Machine Learning, pages 8748–8763. PMLR, 2021.376

[20] V. Ramanujan, M. Wortsman, A. Kembhavi, A. Farhadi, and M. Rastegari. What’s hidden in a377

randomly weighted neural network? In Proceedings of the IEEE/CVF Conference on Computer378

Vision and Pattern Recognition, pages 11893–11902, 2020.379

10



[21] I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Unterthiner, J. Yung, A. Steiner,380

D. Keysers, J. Uszkoreit, et al. Mlp-mixer: An all-mlp architecture for vision. Advances in381

Neural Information Processing Systems, 34, 2021.382

[22] A. Trockman and J. Z. Kolter. Patches are all you need? arXiv preprint arXiv:2201.09792,383

2022.384

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and385

I. Polosukhin. Attention is all you need. Advances in neural information processing systems,386

30, 2017.387

[24] C. Wang, G. Zhang, and R. Grosse. Picking winning tickets before training by preserving388

gradient flow. arXiv preprint arXiv:2002.07376, 2020.389

[25] Y. Zhang and Q. Yang. A survey on multi-task learning. IEEE Transactions on Knowledge and390

Data Engineering, 2021.391

[26] H. Zhou, J. Lan, R. Liu, and J. Yosinski. Deconstructing lottery tickets: Zeros, signs, and the392

supermask. Advances in neural information processing systems, 32, 2019.393

Checklist394

The checklist follows the references. Please read the checklist guidelines carefully for information on395

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or396

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing397

the appropriate section of your paper or providing a brief inline description. For example:398

• Did you include the license to the code and datasets? [Yes]399

• Did you include the license to the code and datasets? [No] The code and the data are400

proprietary.401

• Did you include the license to the code and datasets? [N/A]402

Please do not modify the questions and only use the provided macros for your answers. Note that the403

Checklist section does not count towards the page limit. In your paper, please delete this instructions404

block and only keep the Checklist section heading above along with the questions/answers below.405

1. For all authors...406

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s407

contributions and scope? [Yes]408

(b) Did you describe the limitations of your work? [Yes] See supplementary material.409

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See410

supplementary material.411

(d) Have you read the ethics review guidelines and ensured that your paper conforms to412

them? [Yes]413

2. If you are including theoretical results...414

(a) Did you state the full set of assumptions of all theoretical results? [N/A]415

(b) Did you include complete proofs of all theoretical results? [N/A]416

3. If you ran experiments...417

(a) Did you include the code, data, and instructions needed to reproduce the main experi-418

mental results (either in the supplemental material or as a URL)? [No]419

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they420

were chosen)? [Yes] See supplementary material.421

(c) Did you report error bars (e.g., with respect to the random seed after running experi-422

ments multiple times)? [Yes] See supplementary material.423

(d) Did you include the total amount of compute and the type of resources used (e.g., type424

of GPUs, internal cluster, or cloud provider)? [Yes] See supplementary material.425

11



4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...426

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 4.427

(b) Did you mention the license of the assets? [Yes] See Section 4.428

(c) Did you include any new assets either in the supplemental material or as a URL? [No]429

(d) Did you discuss whether and how consent was obtained from people whose data you’re430

using/curating? [No]431

(e) Did you discuss whether the data you are using/curating contains personally identifiable432

information or offensive content? [No]433

5. If you used crowdsourcing or conducted research with human subjects...434

(a) Did you include the full text of instructions given to participants and screenshots, if435

applicable? [N/A]436

(b) Did you describe any potential participant risks, with links to Institutional Review437

Board (IRB) approvals, if applicable? [N/A]438

(c) Did you include the estimated hourly wage paid to participants and the total amount439

spent on participant compensation? [N/A]440

A Appendix441

Optionally include extra information (complete proofs, additional experiments and plots) in the442

appendix. This section will often be part of the supplemental material.443

12


	Introduction
	Related Works
	Sparse Network Training
	Random Network Selection

	Methodology
	Instinctive Motivation 
	Sparse Selection
	One Layer is All You Need
	Random Weights Padding

	Experiments
	Preparation
	Representative Random Weights
	A New Compression Paradigm
	Sparse Network Storage
	Compression Performance Validation


	Discussion and Conclusion
	Appendix

