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Abstract

We consider the detection and localization of gradual changes in the distribution1

of a sequence of time-ordered observations. Existing literature focuses mostly2

on the simpler abrupt setting which assumes a discontinuity jump in distribution,3

and is unrealistic for some applied settings. We propose a general method for4

detecting and localizing gradual changes that does not require any specific data5

generating model, any particular data type, or any prior knowledge about which6

features of the distribution are subject to change. Despite relaxed assumptions, the7

proposed method possesses proven theoretical guarantees for both detection and8

localization.9

1 Introduction10

In a sequence of time-ordered observations {Yt,T : t = 1, 2, · · · , T}, the aim of change point11

detection (CPD) is to (a) detect: answer the question of whether the distribution of Yt,T changes,12

and (b) localize: if it changes, answer the question of when. The classic formulation of CPD usually13

assumes that the possible change point is abrupt, i.e., there is a discontinuity jump in the distribution14

of Yt,T , leading to a simpler problem. However, in many real-life situations, the changes in a sequence15

happen smoothly or gradually, rather than abruptly. Let us consider some examples.16
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(b) S&P 500 stock index daily returns.

Figure 1: Examples of gradual changes. The vertical red dashed lines indicate the gradual change points
estimated by the method proposed in this paper.

The first example concerns climatology, and investigates the temperature patterns over years. Figure17

1a depicts the annual average temperature in central England from 1750 to 2020, where we observe18

a smooth increase starting around 1850. The second example comes from finance. The S&P 50019

stock index is an important indicator of the overall market. As shown in Figure 1b, its volatility level20

usually remains constant in a stable market, and then gradually increases with the development of21

some event such as the financial crisis in 2008 or the COVID-19 pandemic in 2020.22

Despite the wide variety of applications, inference for gradual changes is under-researched, and23

most existing methods require domain knowledge. Early research assumed that the gradual change24
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follows a particular parametric model. For example, Lombard (1987) considers a setting where some25

unknown parameter changes linearly, while others (Hušková, 1999; Hušková and Steinebach, 2002;26

Aue and Steinebach, 2002) consider models with polynomial changes.27

Recent methods also consider nonparametric settings. However, most of them still require specific28

assumptions on the data model. For example, Muller (1992); Raimondo (1998); Goldenshluger et al.29

(2006) consider the location model where first order moment of observations changes. Mallik et al.30

(2011, 2013) investigate a stronger assumption: the mean change is monotonic. Mercurio et al. (2004)31

consider the volatility model where second order moment of observations fluctuates. Quessy (2019)32

assumes that the sequence follows two stationary distributions at the beginning and the end, and the33

changing phase in-between is a mixture of them with weights changing linearly with time.34

As far as we know, Vogt et al. (2015) is the only nonparametric method that applies generally to35

any model and any data type. Despite its generality, the method proposed in Vogt et al. (2015)36

requires prior knowledge about which stochastic feature(s) might change. Moreover, their method37

requires specification of a threshold determined through expensive simulations. Also, Vogt et al.38

(2015) considers only the localization problem, while ignoring the detection step which is shown to39

be important for false positive control in real-data applications (Van den Burg and Williams, 2020).40

We propose a nonparametric method for detecting and localizing gradual changes. The proposed41

method requires no prior domain knowledge, and we offer theoretical guarantees on both detection42

(false positive rate, power) and localization (consistency).43

2 Problem Statement44

Suppose we observe a time-ordered independent sequence {Yt,T : t = 1, 2, · · · , T} taking values in45

a general metric space (Y, k · kY). Yt,T is observed at time u = t/T 2 [0, 1]. We are concerned with:46

1. (Detection) Deciding whether the distribution of observation changes with time u. This is47

formulated as a hypothesis testing problem with null H0 and alternative HA hypotheses, where48

H0 : Pu = P0, 8u 2 [0, 1]

HA : 9 ⇢⇤ 2 (0, 1), " 2 (0, 1� ⇢⇤) s.t. Pu = P0, 8u 2 [0, ⇢⇤], andPu 6= P0, 8u 2 (⇢⇤, ⇢⇤ + "],

where Pu is a probability measure on (Y, k · kY) and Yt,T ⇠ Pu for u = t/T . We require that all49

changes in Pu are gradual (or smooth) in the sense that50

8u, v 2 [0, 1], Pv weakly converges to Pu, as v ! u. (1)

2. (Localization) If rejecting H0 in step 1, obtain an estimator ⇢̂ of the gradual change point ⇢⇤ where51

the distribution starts to change.52

Notice that we do not put any assumptions on the data type or distribution of Yt,T and thus, our53

formulation allows a large number of special models such as54

location model: Yt,T = µ(t/T ) + "t, (2)
volatility model: Yt,T = �(t/T )"t, (3)

where µ(·),�(·) can be any continuous function, and "t’s are zero mean i.i.d errors.55

Notations. We use [x] to denote the integer part of x, 1d = (1, · · · , 1)> 2 Rd, Id the identity matrix56

in Rd⇥d. We use I to denote indicator function, w�! weak convergence, Z+ the set of positive integers.57

For a set of constants aT , bT and random variables XT , we write aT = ⇥(bT ) if there exist constants58

C1, C2 > 0, t0 2 Z+ such that C1aT  bT  C2aT for all T � t0. We write XT = Op(aT ) if59

XT /aT is stochastically bounded, and XT = op(aT ) if XT /aT converges to zero in probability.60

3 Methodology61

Existing statistic. We consider first univariate Yt,T ’s. Suppose the change is in EYt,T ; traditional62

CUSUM statistic (Page, 1954) solves CPD problem by defining63

bCT (u, v) = 1/T
P[vT ]

t=1 Yt,T � v/(uT )
P[uT ]

t=1 Yt,T , for any 0  v < u  1.

2
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Figure 2: Plots of Yt,T (top row) and their bDgen
T (t/T ) (bottom row) against t. The blue vertical line denotes true

change point. Data in column 1, 2 follow location model (2) with "t ⇠ N(0, 1), and µ1(u) = I(1/3  u 
2/3)(3u � 1)1.5 + I(u > 2/3), µ2(u) = 2 sin(4⇡(u � 1/3))I(1/3  u  2/3) + 2 sin(4⇡/3)I(u � 2/3),
respectively. Data in column 3 follows volatility model (3) with "t ⇠ N(0, 1) and �(·) = µ1(·) + 1. Column 1,
2 set F = {f : x 7! x}, and column 3 F = {f : x 7! x2}.

which compares cumulative sums of Yt,T over different time spans [0, v] and [0, u]. Then64

bDuni
T (u) = maxv2[0,u]| bCT (u, v)|, for any 0  u  1.

can be used to detect changes in feature EYt,T over time span [0, u]. Intuitively, if there are no changes65

over [0, u], bDuni
T (u) should be small. For example, in Figure 2, the first and second column depicts66

a sequence with change in EYt,T (shown in top row), and bDuni
T (shown in bottom row) take small67

values before ⌧⇤ = 200 where ⌧⇤ = [T⇢⇤], and then grow substantially. Thus, bDuni
T (u) essentially68

measures the variation over [0, u] in these univariate settings.69

For multivariate/non-Euclidean Yt,T or for changes in more general features of the form Ef(Yt,T )70

where f : Y ! R is a measurable function, Vogt et al. (2015) replaces bDuni
T with71

bDgen
T (u) = supf2F

maxv2[0,u]| bCT (u, v, f)|, where
bCT (u, v, f) = 1/T

P[vT ]
t=1 f(Yt,T )� v/(uT )

P[uT ]
t=1 f(Yt,T ). (4)

bDgen
T takes supremum over a pre-specified set of functions F to ensure that changes in Ef(Yt,T ) for72

all f 2 F are considered. This leads to scaling issues in the definition of bDgen
T . Note that bDuni

T is a73

special case of bDgen
T with F = {f : x 7! x}, and column 3 of Figure 2 sets F = {f : x 7! x2}.74

There are three main issues with bDgen
T . First, it relies heavily on the pre-specified function class75

F . Also, to calculate bDgen
T , F can only contain a finite (usually small) number of functions (e.g.,76

f : x 7! x or f : x 7! x2), the choice of which relies heavily on prior knowledge about which77

features might change. When F is misspecified, bDgen
T can be non-informative and fail subsequent tasks.78

Second, bDgen
T does not consider the scale of bCT (·, ·, f) which could be incomparable for different79

f ’s. Third, the limiting process to which bDgen
T (·) converges is unknown, leading to computational80

challenges in subsequent analyses.81

Proposed statistic. We introduce a new statistic that is applicable to any data type and any generating82

process, and free of the issues discussed above. It is motivated by the recent success of applying83

kernel approaches to abrupt CPD problems (e.g., Harchaoui et al. (2008); Li et al. (2015); see84

Section 7 for more details). These kernel approaches assume access to a positive semidefinite kernel85

k : Y ⇥ Y ! R that measures pairwise similarity among observations. Compared with features,86

kernels are more flexible and easier to specify, especially for non-Euclidean data, showing great87

potential for solving gradual CPD problem. Inference starts with measuring data variation in time88

span [0, u]; for each possible change point v < u, v divides the observations into two groups: those89

coming before [Tv] and those after [Tv]. Note that the average similarity among observations within90

the same group is:91

bSwithin
T (u, v) = 0.5(l)�2Pl

s,t=1k(Ys,T , Yt,T ) + 0.5(r � l)�2
Pr

s,t=l+1k(Ys,T , Yt,T ),
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where l = [vT ], r = [uT ], and the average similarity among observations between different groups is92

bSbetween
T (u, v) = [l(r � l)]�1Pl

s=1

Pr
t=l+1k(Ys,T , Yt,T ).

Intuitively, if v is the true change point, we expect bSwithin
T (u, v) to be large compared with93

bSbetween
T (u, v). This intuition underlies the following statistic,94

bDT (u) = maxv2[0,u]
bKT (u, v) where (5)

bKT (u, v) = 2v2(u� v)2/u2[bSwithin
T (u, v)� bSbetween

T (u, v)]. (6)

bDT takes the maximum over v 2 [0, u] using a similar idea as bDuni
T and bDgen

T . The scaling factor95

v2(u� v)2/u2 ensures that bDT is asymptotically well-defined for all u 2 [0, 1] (see more details in96

Section 4). bDT plays the same role as bDgen
T and measures data variation among [0, u].97

Note that bDT has also a CUSUM-style representation, which is crucial for understanding its theoretical98

properties. Define a centered kernel k0(y, y0) = k(y, y0) � 2EY⇠F0k(y, Y ) + EY,Y 0⇠F0k(Y, Y
0),99

which can be decomposed in terms of eigenfunctions { j}1j=1 with respect to F0 as:100

k0(y, y
0) =

P
1

j=1�j j(y) j(y0) with (7)

s k0(y, y0) j(y)dF0(y) = �j j(y
0), s  j(y) j0(y)dF0(y) = �j,j0 ,

and �j,j0 is the Kronecker delta function. We denote the feature map � associated with k0 as101

�(y) = (�1/21  1(y),�
1/2
2  2(y), · · · )> 2 H, h�(y),�(y0)iH :=

P
1

l=1�l(y)�l(y
0) = k0(y, y0).

Using properties of h·, ·i1/2
H

and denoting k · kH = h·, ·i1/2
H

, we have102

bKT (u, v) = k1/T
P[vT ]

t=1 �(Yt,T )� v/(uT )
P[uT ]

t=1 �(Yt,T )k2H =
P

1

j=1| bCT (u, v,�j)|2. (8)

Equation (8) helps the comparison of bDT against bDgen
T . In general, bDT has three advantages.103

First, recall that bDgen
T strongly depends on the specification of the function class F ; we allow104

implicitly a much larger F with infinite functions. For example, by using universal kernels such as105

k(y, y0) = exp{�ky � y0k2/2}, we consider any change in Ef(Yt,T ) where f 2 F = {f : x 7!106

xn, n = 1, 2, · · · }. Under mild assumptions, there exists f 2 F such that Ef(X) 6= Ef(X 0) when107

random variables X,X 0 follow different distributions. Second, the asymptotic distribution of bDgen
T is108

intractable, caused by its dependence structure on bCT . There are two key facts, under H0,109

bCT (u, v,�j) is asymptotically Gaussian, and E[ bCT (u, v,�j) bCT (u, v,�j0)] ! 0, 8j, j0 2 Z+.

It implies bCT (u, v,�j) are asymptotically independent Gaussian random variables (r.v.). Since the110

sum of independent Gaussian r.v. follows a known distribution (chi-square), in view of (8), the111

asymptotic distribution of our statistic is much simpler than that of bDgen
T . Third, using kernels to112

define bKT does not lead to technical/implementation issues. In contrast, if we define bKT directly113

using (8) with the function class F = {�j , j = 1, 2, · · · } replaced by an arbitrary function class of114

infinite cardinality, the infinite series will not necessarily converge, and even when it converges, it115

cannot not be calculated exactly.116

Remark 3.1. Some useful kernels for the gradual CPD problem: (i) For Y = Rd, we recommend117

using the dot-product kernel k(y, y0) = hy, y0iRd if location model (2) holds. Here �j : x =118

(x1, · · · , xd)> 7! xj � aj , 8j = 1, · · · , d. When d = 1, bDT with this kernel equals bDgen
T with119

F = {f : x 7! x � a1} and bDuni
T . (ii) For Y = R, we recommend using k(y, y0) = y2(y0)2 if120

volatility model (3) holds. Here �j : x 7! x2 � a where a = Ex⇠F0x
2. bDT with this kernel equals121

bDgen
T with F = {f : x 7! x2 � a}. (iii) For any general Y , k(y, y0) = exp{�ky � y0k2

Y
/(2h2)}122

is the RBF kernel with bandwidth h > 0. This can be set as the default kernel without any prior123

knowledge about data model.124

Now we will utilize bDT for the detection and localization of gradual change points.125
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Detection. As shown in Figure 2, under a good choice of k, bDT (u) summarizes the degree of126

variation over time span [0, u] and satisfies127

bDT (u) is
⇢

small, when u  ⇢⇤,
large, when u > ⇢⇤.

(9)

The case of no change point is equivalent to ⇢⇤ = 1. The existence of a change point can be128

tested using bDT (1). The p-value depends on the asymptotic null distribution of bDT (1), the rigorous129

establishment of which requires many technical details and is deferred to the next section (Theorem130

4.4). Practitioners only need the following formula to calculate p-values:131

P(T bDT (1) > x) ⇡ 2(q̂+3)/2[�(q̂/2)]�1p⇡(x/�̂1)(q̂�1)/2e�2x/�̂1
QT

l=q+1(1� �̂l/�̂1)�1/2, (10)

where �̂1 � �̂2 � · · · � �̂T are eigenvalues of the matrix (1/T )K0 where132

K0 = HKH 2 RT⇥T , K = [k(Yi,t, Yj,T )]
T
i,j=1 2 RT⇥T and H = IT � (1/T )1T1

>

T , (11)

and q̂ is the estimated multiplicity of the leading eigenvalue.133

Localization. Once a significant change point is detected, the next step is to localize it. Observing134

property (9) with bDT replaced by bDgen
T , Vogt et al. (2015) propose an estimator for ⇢⇤ as:135

⇢̂gen = T�1PT
t=1I(T 1/2 bDgen

T (t/T )  bT ),

where the scaling factor T 1/2 ensures that T 1/2 bDgen
T follows a non-degenerate distribution asymp-136

totically, and bT is set to the (1� ↵)-quantile of the limiting distribution of supv2[0,⇢⇤]
bDgen
T (v). In137

practice, both ⇢⇤ and limiting distribution of bDgen
T (·) are unknown, thus bT is approximated by a138

two-step procedure with expensive simulations. For our statistic, we find that under the null, bDT (u)139

and u bDT (1) follow the same limiting distribution for any u. It implies that we can estimate ⇢⇤ by140

⇢̂ = T�1PT
t=1I(T bDT (t/T )  cT (t/T )), where cT (u) = ubT , (12)

and the scaling factor T ensures that T bDT has a non-degenerate limiting distribution. Here, ⇢̂ is141

affected by cT : a larger cT will lead to a larger ⇢̂ and vice versa. Ideally, the optimal choice of cT142

should minimize some measure of error, and we propose using l1(⇢̂) = E |⇢̂� ⇢⇤| . It depends on the143

finite sample distribution of bDT and could be hard to control in nonparametric settings, but we know144

the asymptotic distribution of bDT (·) (Theorem 4.4), which is denoted here as L(·). Thus, we choose145

cT which minimizes the l1 error of the population version ⇢1 of ⇢̂:146

l1(⇢
1) = E|⇢1 � ⇢⇤| with ⇢1 =

R ⇢⇤

0 I(L(u)  cT (u))du+
R 1
⇢⇤I(T 1/2L(u)  cT (u))du,

where we divide between u 2 [0, ⇢⇤], u 2 (⇢⇤, 1] and add scaling factor T 1/2 for u 2 (⇢⇤, 1] to make147

sure that L(u) is well-defined. Under some assumptions, minimizing l1(⇢1) leads to148

bT = �̂1/(2) log T, (13)

where  � 2 is determined by the smoothness of gradual change and the smoother the change is, the149

larger  is. The derivation of Equation (13) is included in the next section. The theoretical value of 150

is defined in Assumption 4 in the next section, and depends on the alternative distribution of Yt,T151

and the kernel k. For practitioners, we only need to know that for abrupt changes and any choice of152

kernel,  = 2 (notice that our method is also applicable for abrupt changes). For RBF kernel, if the153

change in E exp{Yt,T } can be approximated by (u� ⇢⇤)� in time span u 2 [⇢⇤, ⇢⇤ + ") for some154

small " > 0, we have  = 2� + 2. We emphasize that choice of  does not affect the consistency of155

⇢̂. In experiments, using  = 4 works well. An alternative that is less sensitive to , the max-gap156

estimator, is introduced next.157

Max-gap estimator. Despite its good theoretical properties, ⇢̂ has often a large positive bias. This158

arises from the nature of gradual changes, and is common to previous gradual CPD methods as159

discussed in Vogt et al. (2015). Intuitively, we need to wait for enough signal strength in order to160

identify the gradual change point. To design a less biased estimator, recall that in Figure 2, we plotted161

bDT (·) against time and easily visually identified the change point as the time when bDT (·) starts to162

grow. For example, for data in the first column, a zoomed-in region is shown in Figure 3, where the163

black line is T bDT (·) and red line cT (·). In Figure 3, the growth starts around the point 285 (shown in164
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brown vertical line). However, using ⇢̂ gives ⌧̂ = 342 (shown165

in green vertical line). We want an algorithm capable of iden-166

tifying this elbow point. Note that from Theorem 4.4, we167

have168

E[cT (u)� T bDT (u)]

⇢
increases with u, if u  ⇢⇤

decreases with u, if u > ⇢⇤.

Thus, ⇢⇤ should be the u where cT (u)�T bDT (u) is maximized169

(in Figure 3, this is where the gap between the red line and170

black line is maximized). It suggests setting171

⇢̌ = margmaxu2(0,⇢̂][cT (u)� T bDT (u)], (14)
where margmax takes the largest value in the set formed by172

argmax. In Figure 3, ⇢̌ is shown by the brown line.173

Compared with the original estimator ⇢̂, empirical studies show that the max-gap estimator ⇢̌ has174

two advantages: it is more accurate, and is much less sensitive to choice of . Some intuition for175

insensitivity to : in Figure 3,  changes the slope of the red line and a slight change in slope does176

not influence the time where its gap between the black line is maximized. The higher accuracy of ⇢̌177

also has a theoretical explanation, which is included in the Appendix due to space limit. In short, the178

l1 error of ⇢̌ consists of two parts: the overestimation error E[⇢̌� ⇢⇤]+ and the underestimation error179

E[⇢⇤�⇢̌]+ with [x]+ denotes the positive part of x. There is always a trade-off between overestimation180

and underestimation. Asymptotically, ⇢̌ focuses more on controlling the overestimation error (delay)181

while guaranteeing consistency of the estimator, since delay is the main concern in small samples. In182

contrast, ⇢̂ controls the asymptotic over/under-estimation error equally, which has the optimal loss in183

theory but is less accurate in small samples.184

4 Theory185

This section establishes all theoretical results mentioned previously.186

Asymptotic distribution of bDT . In order to utilize bDT for downstream tasks, we need to know its187

asymptotic distribution. To establish that, we will first introduce some technical assumptions.188

Assumption 1. 9M 2 (0,+1), 8t 2 {1, 2, · · · , T}, k(Yt,T , Yt,T )  M2
almost surely (a.s.).189

Remark 4.1. Assumption 1 requires that the kernel is a.s. bounded for all Yt,T . It is a weak assumption190

which is satisfied when k(·, ·) is continuous and Y is closed and bounded, or when k is RBF kernel.191

Assumption 1 suffices for the asymptotic null distribution of bDT . Under HA, however, we will need192

to restrict the behavior of Yt,T . One useful concept is the locally stationary process introduced in193

Vogt et al. (2012).194

Assumption 2 (Locally Stationary Process). The array {Yt,T : t = 1, 2, · · · , T}1T=1 is a locally195

stationary process, i.e., 8u 2 [0, 1], there exists a strictly stationary process {Yt(u) : t 2 Z} s.t.196

kYt,T � Yt(u)kY  (|t/T � u|+ 1/T )Ut,T (u) a.s.

where {Ut,T (u) : t = 1, 2, · · · , T}1T=1 is an array of positive random variables which satisfies197

E[U�
t,T (u)]  c0 for some constant c0 2 (0,+1), � > 0.198

Remark 4.2. Assumption 2 is a more rigorous version of Equation (1), which ensures the change199

is gradual and has been used in Vogt et al. (2015). The intuition behind it is that {Yt,T } should200

be approximately stationary over short time periods. This is turned into rigorous mathematics by201

ensuring that locally around each u = t/T , {Yt,T } can be approximated by a stationary process202

{Yt(u)}.203

Define204

D(u) = maxv2[0,u]K(u, v) with K(u, v) = ksv0µ(w)dw � v/usu0µ(w)dwk2H, (15)

where µ(·) = (µ1(·), µ2(·), · · · )>, µj(·) = E�j(Yt(·)). Comparing Equations (15) and (8), we find205

that bKT (u, v) is in fact an estimator for K(u, v) and thus, bDT (u) is an estimator for D(u). Using the206

decomposition bDT (u) = D(u) + [ bDT (u) � D(u)], in order to study asymptotics of bDT , we only207

need to study the approximation error bDT �D. We will need the following assumptions:208

6



Assumption 3. The feature map � and stochastic processes {µj(u) : u 2 [0, 1]}, 8 j 2 Z+ satisfy209

(i) k�(y)� �(y0)k2
H

 C1ky � y0kmin(�,1)
Y

for all y, y0 2 Y , with � defined in Assumption 2.210

(ii)
P

1

j=1 maxu2(0,1)dµj(u)/du < +1.211

Remark 4.3. Condition (i) requires sufficient smoothness for � which is always satisfied for suffi-212

ciently smooth kernels k. The better {Yt,T } is approximated by {Yt(u)}, the larger � is, and the213

smoother k should be. Condition (ii) roughly says that µj has a well-defined Riemann integral over214

[0, 1] so that the integral in D can be approximated by the Riemann sum in bDT .215

Now we are ready to present our main result, where ⇢⇤ = 1 corresponds to no change point.216

Theorem 4.4. Suppose Assumption 1 holds.217

(1) For any u 2 (0, ⇢⇤],218

T [ bDT (u)�D(u)]
w�! maxv2[0,u]

P
1

l=1�l[Wl(v)� v
uWl(u)]2, (16)

where �l’s are defined in (7), and Wl(·), l = 1, · · · are independent standard Wiener processes.219

(2) If, in addition, Assumptions 2 and 3 hold, for any u 2 (⇢⇤, 1], we have220
p
T [ bDT (u)�D(u)]

w�! maxv2[0,u]G(v, u), (17)
where for any u, G(·, u) is a sample continuous Gaussian process.221

Remark 4.5. Both
P

1

l=1�l[Wl(·) � ·

uWl(u)]2 and G(·, u) are sample continuous and thus, the222

right hand size of (16) (17) are well-defined. �l’s are determined by F0, k and (16) states that the223

higher the noise level of F0 is, the more dispersed the asymptotic null of bDT will be. Note that the224

asymptotic behavior of bDT is completely different before and after the change point: before change225

point, bDT = Op(T�1) and after re-scaling, bDT is maximum of a chi-square process, while after226

change point, bDT = ⇥(T 1/2) +Op(T�1/2) and after re-centering and re-scaling, bDT is maximum227

of a Gaussian process. This distinct property of bDT is critical for the success of both detection and228

localization.229

Detection. To calculate p-values, Theorem 2.1 of Liu and Ji (2014) says that for 8n 2 Z+ and230

�1 = · · · = �q > �q+1 � �q+2 � · · · � �n > 0, as x ! 1,231

P(maxv2[0,1]

Pn
l=1�l [Wl(v)� vWl(1)]

2 > x)

= 2(q+3)/2[�(q/2)]�1p⇡ (x/�1)(q�1)/2 exp {�2x/�1}
Qn

l=q+1 (1� �l/�1)
�1/2 (1 + o(1)) .

Combined with Theorem 4.4, it implies (10). Also, we have the following:232

Corollary 4.1 (Power Consistency). Suppose Assumption 1, 2, 3 hold. If
p
TD(1) ! 1,233

8x > 0, P(T bDT (1) > x) ! 1, T ! 1.

Remark 4.6. Corollary 4.1 shows that power of the proposed test is affected by the magnitude of234

change measured in D(1). As long as D(1) goes to zero at a rate slower than T�1/2, the change will235

be detected if it exists; it ensures correctness of the detection step.236

Localization. Recall we need to optimize cT . This requires regulating the local behavior of D at ⇢⇤:237

Assumption 4. There is a cusp of order  at ⇢⇤ for D(·), i.e.,
D(u)

(u�⇢⇤) ! m > 0, u ! ⇢⇤ + .238

Remark 4.7. Assumption 4 says D can be locally approximated by a Taylor-type expansion around239

⇢⇤, which is a common assumption in gradual CPD literature (Mallik et al., 2013; Vogt et al., 2015).240

Theorem 4.8. Suppose Assumptions 1, 2, 3, 4 hold, and cT (u) = ubT . The cT minimizing l1(⇢1)241

satisfies242

cT (u) = (u�1r log T )/2, r � 1/. (18)
Remark 4.9. In Equation (18), the larger the noise level �1 is, the larger cT is. The smoother the243

gradual change is (the larger  is), the smaller cT is. And r can be viewed as a tuning parameter s.t.244

if we are less tolerant to delays in ⇢̂, we could set r to be small, and vice versa. In practice, ⇢̂ is often245

overestimated. Thus, we suggest choosing r = 1/, which ultimately leads to (13).246

Theorem 4.10. Under Assumptions 1, 2, 3, 4 and Equation (18), ⇢̂� ⇢⇤ = op(1), ⇢̌� ⇢⇤ = op(1).247

Remark 4.11. Theorem 4.10 shows that the original estimator and the max-gap estimator are both248

consistent, and establishes theoretical guarantees for the localization step.249
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Table 1: Comparison of average l1 localization error over 20 simulations. Numbers after ± are the standard
error of the average. Methods marked with ‘-’ means not applicable to that model.

MODEL LOCATION VOLATILITY NETWORK

DIM 1 1 1 1 10 20 50 1 1 102

CHANGE LINEAR QUADRATIC ONE-SIDED COMPLEX LINEAR LINEAR LINEAR LINEAR COMPLEX LINEAR

⇢̌ 0.09±0.01 0.15±0.01 0.03±0.00 0.03±0.01 0.07±0.01 0.06±0.01 0.05±0.01 0.15±0.01 0.05±0.00 0.10±0.02

⇢̂ 0.10±0.01 0.24±0.01 0.08±0.00 0.05±0.01 0.08±0.01 0.10±0.01 0.09±0.01 0.26±0.01 0.12±0.00 0.11±0.02

⇢̂POLY
0.05±0.01 0.09±0.02 0.10±0.01 0.23±0.00 - - - - - -

⇢̂ONE-SIDE 0.07±0.01 0.09±0.02 0.02±0.00 0.62±0.00 - - - - - -
⇢̂MIX

0.05±0.01 0.09±0.01 0.14±0.00 0.12±0.00 0.08±0.00 0.18±0.02 0.43±0.00 0.08±0.01 0.14±0.00 -
⇢̂GEN 0.17±0.01 0.24±0.01 0.07±0.00 0.05±0.00 0.13±0.01 0.15±0.01 0.14±0.00 0.26±0.01 0.12±0.00 0.27±0.00

Q 0.18±0.01 0.23±0.01 0.05±0.00 0.27±0.00 0.16±0.01 0.17±0.00 0.16±0.00 0.21±0.01 0.06±0.00 0.16±0.01
KCPA 0.18±0.01 0.23±0.01 0.05±0.00 0.27±0.00 0.16±0.01 0.16±0.00 0.16±0.00 0.21±0.01 0.06±0.00 0.16±0.01
Zw 0.24±0.04 0.29±0.04 0.09±0.02 0.29±0.01 0.16±0.01 0.17±0.01 0.18±0.01 0.18±0.03 0.16±0.03 0.16±0.02

5 Simulations250

To better understand finite sample properties of the proposed method, we evaluate its performance in251

simulations and against baselines.252

Data generating process. We set T = 600, ⇢⇤ = 1/3. Following Vogt et al. (2015), we consider253

a location model, a volatility model, and we add a network model. For the location model (2), we254

include univariate cases with "t ⇠ N(0, 1) and four different types of change ordered in increasing255

difficulty: (i) linear change µ1(u) = I(1/3  u  2/3)(3u � 3) + I(u � 2/3); (ii) quadratic256

change µ2(u) = I(1/3  u  2/3)(3u � 1)2 + I(u � 2/3); (iii) one-sided change µ3(u) =257

2 sin(2.5⇡(u�1/3))I(1/3  u  2/3)+I(u � 2/3) in the sense that µ3(u) > µ3(⇢⇤) for all u > ⇢⇤;258

and (iv) a complex change µ4(u) = 2 sin(4⇡(u�1/3))I(1/3  u  2/3)+2 sin(4⇡/3)I(u � 2/3).259

We also consider multivariate Yt,T 2 Rd where µ5 = µ11d, "t ⇠ Nd(0, Id). For volatility model260

(3), we consider �i(u) = µi(u) + 1, "t ⇠ N(0, 1), 8i = 1, 4. For network model, we set Yt,T as the261

Erdos-Renyi random graph with 10 nodes. At each time u 2 [0, 1], there exists a 3-node community262

such that the possibility of forming an edge among them follows Binomial(1, p(u)) independently.263

Here p(u) = 0.8I(1/3  u  2/3)(3u� 1) + 0.8I(u � 2/3) + 0.1. The probability of forming an264

edge between other pair of nodes follows a Binomial(1, 0.1).265

Baselines. We consider four gradual CPD baselines, ordered in increasing generality: ⇢̂poly (Hušková,266

1999) which requires univariate location model with polynomial change, ⇢̂one-side (Mallik et al., 2013)267

which requires univariate location model with one-sided change, ⇢̂mix (Quessy, 2019) which requires268

any general model with a mixture type of change whose mixture weight changes linearly with time,269

and ⇢̂gen (Vogt et al., 2015) which does not have any constraints on model or type of change. We also270

include three nonparametric abrupt CPD methods: KCpA (Harchaoui et al., 2008), Zw (Chu et al.,271

2019), and Q (Matteson and James, 2014)).272

Detailed setup. For ⇢̂one-side we tune the bandwidth on 20 independently generated datasets among273

{0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 5}. For each dataset, for fairness we use the274

same kernel for ⇢̂, ⇢̌ and KCpA, and use its corresponding distance for Q,Zw and function class F275

for ⇢̂gen. For location model, F = {f : x 7! xi, 8i = 1, · · · , d}; for network model, F = {f : x 7!276

xij , 8i, j = 1, · · · , 10}; forvolatility model, F = {f : x 7! x2}. For ⇢̂poly we set the polynomial277

to the true degree if the polynomial model is correct, and 1 otherwise. As recommended by their278

authors, we use a granularity of 20 for ⇢̂mix and minimum spanning tree to construct the binary graph279

for Zw. Threshold for ⇢̂gen is computed using strategy described in Section 6 of Vogt et al. (2015).280

More details are in the Appendix.281

Metrics and Results. We report the power and l1 error of estimated change points. For fairness,282

power of all methods are computed via 500 permutations under significance level ↵ = 0.05. Due to283

space limit, detailed results on power are included in the Appendix - performance of all abrupt as well284

as gradual CPD methods are similar. In terms of localization, however, performance varies. In Table285

1, the abrupt CPD methods (KCpA, Q, Zw) have a large error in most settings, which is not surprising286

because KCpA, Q can be proved as inconsistent for some gradual changes. For ⇢̂poly, ⇢̂one-side which287

require assumptions on the changing form, the localization is accurate when assumptions are satisfied,288

but poor otherwise. ⇢̂mix performs well in low dimensions and when the change (approximately)289

satisfies its assumption, but poorly when either one is violated. The proposed estimators ⇢̂, ⇢̌ are290

robust across different settings and ⇢̌ has improved performance over ⇢̂. ⇢̂gen is also significantly291

outperformed by ⇢̌. Finally, note that ⇢̂mix, ⇢̂gen are much more computationally expensive than the292

others.293
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6 Real Data Applications294

Different from most machine learning tasks, there are currently no benchmarking dataset with human295

annotations for gradual CPD. Thus, we consider the applications introduced in Section 1, and compare296

our result with known external events and/or other CPD estimators.297

Central England Temperature. The Central England Temperature (CET) record (Parker et al.,298

1992) under Open Government License is the oldest temperature record worldwide and is a valuable299

source for studying climate change. It contains the monthly mean temperature in central England300

from 1750 to 2020. Since there is a cycle of 12 months for the measurements, following Horváth301

et al. (1999), we view the data as n = 271 curves with 12 measurements on each curve. We set302

k(y, y0) = y>y0 where y, y0 2 R12. Using max-gap estimator, we identify 1827 as the change303

point (shown in red vertical line in Figure 1a), which roughly corresponds to the beginning of mass304

industrialization and is close to the 1850 estimated by Berkes et al. (2009).305

S&P 500 Index. The S&P 500 is a stock market index which tracks the stock of 500 large US306

companies and is usually used as a benchmark of the overall market. We investigate the daily return307

data of the S&P 500 index1 in two periods, one from 2008/01/02 to 2008/12/31 and another from308

2019/06/03 to 2020/06/01. Both time periods contains a change point where volatility level gradually309

increases. Following Vogt et al. (2015), the daily return Yt,T roughly follows the volatility model310

(3) and our task is to identify changes in �(·). We define the kernel as k(y, y0) = y2(y0)2 where311

y, y0 2 R. In both periods, we detect a change under ↵ = 0.05. The first period has an esimated312

change point 2008/09/16, following Lehman Brothers Bankruptcy in September 15 which is often313

viewed as a turning point in the crisis. The second period has an estimated change point 2020/02/24,314

days in the initial phase of the community spread of COVID-19 in the United States. The estimated315

change points are shown in red vertical lines in Figure 1b.316

7 Related Work317

Difference with Vogt et al. (2015). The major improvements of this work over Vogt et al. (2015)318

are discussed in detail in Section 1, 3. Other differences include: Vogt et al. (2015) allow correlated319

observations, while we assume independence; Vogt et al. (2015) uses estimator (3), while we propose320

a refined max-gap estimator that performs better empirically. We note that the our method can also321

be adapted for the correlated case, a possible direction for future work.322

Abrupt CPD. Abrupt CPD methods assume the distribution remains stationary until the change point323

when it jumps to another distribution, and remains stationary there. There is a rich literature on them;324

see Niu et al. (2016); Aminikhanghahi and Cook (2017); Truong et al. (2020) for detailed surveys.325

Kernel-based CPD methods. Existing kernel-based CPD methods all focus on the abrupt settings326

(Harchaoui et al., 2008; Arlot et al., 2012; Li et al., 2015; Garreau et al., 2018). We emphasize that327

their method is fundamentally different from ours, and, as far as we know, none of them produces a328

consistent localization estimator in settings considered in this paper.329

CUSUM. The CUSUM principle was proposed by Page (1954) and has led to a rich literature. Some330

papers have investigated using CUSUM under gradual changes (Bissell, 1984a,b; Gan, 1992), but331

they considered only simple settings with a linear trend in the mean of univariate data, and their332

analyses are based mostly on empirical studies.333

8 Discussion334

We propose a general method to detect and to localize gradual changes in sequence data. Despite the335

relaxed assumptions, the proposed method is theoretically guaranteed, and the proposed max-gap336

estimator achieves good empirical performance. Note that the proposed method also works for abrupt337

CPD with Corollary 4.1 and Theorem 4.10 hold. In contrast, many abrupt CPD methods perform338

poorly in gradual change settings. The trade-off is that for abrupt changes or gradual changes with a339

known pattern (e.g., polynomial), our method often does not perform as good as the ones especially340

designed for those settings. There are no foreseeable negative social impacts of this work.341

1S&P Dow Jones Indices LLC, S&P 500 [SP500], retrieved from https://finance.yahoo.com/quote/
%5EGSPC/history/.
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