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ABSTRACT

In this work, we present Lexical Unit Analysis (LUA), a framework for general
sequence segmentation tasks. Given a natural language sentence, LUA scores all
the valid segmentation candidates and utilizes dynamic programming (DP) to ex-
tract the maximum scoring one. LUA enjoys a number of appealing properties
such as inherently guaranteeing the predicted segmentation to be valid and facil-
itating globally optimal training and inference. Besides, the practical time com-
plexity of LUA can be reduced to linear time, which is very efficient. We have
conducted extensive experiments on 5 tasks, including syntactic chunking, named
entity recognition (NER), slot filling, Chinese word segmentation, and Chinese
part-of-speech (POS) tagging, across 15 datasets. Our models have achieved the
state-of-the-art performances on 13 of them. The results also show that the F1
score of identifying long-length segments is notably improved.

1 INTRODUCTION

Sequence segmentation is essentially the process of partitioning a sequence of fine-grained lexical
units into a sequence of coarse-grained ones. In some scenarios, each composed unit is assigned a
categorical label. For example, Chinese word segmentation splits a character sequence into a word
sequence (Xue, 2003). Syntactic chunking segments a word sequence into a sequence of labeled
groups of words (i.e., constituents) (Sang & Buchholz, 2000).

Currently, there are two mainstream approaches for sequence segmentation. The most common is
to regard it as a sequence labeling problem by using IOB tagging scheme (Mesnil et al., 2014; Ma
& Hovy, 2016; Liu et al., 2019a; Chen et al., 2019a; Luo et al., 2020). The representative work is
Bidirectional LSTM-CRF (Huang et al., 2015), which adopts LSTM (Hochreiter & Schmidhuber,
1997) to read the input sentence and CRF (Lafferty et al., 2001) to decode the label sequence. This
type of method is very effective, providing tons of state-of-the-art results. However, it is vulnerable
to producing invalid segments, for instance, a segment starting with I-tag. This problem becomes
more severe in low resource settings (Peng et al., 2017).

Recently, there is a growing interest in span-based models (Zhai et al., 2017; Li et al., 2019; Yu et al.,
2020). They treat the span rather than the token as the basic unit for labeling. Li et al. (2019) cast
named entity recognition (NER) to a machine reading comprehension (MRC) task, where entities
are extracted as retrieving answer spans. Yu et al. (2020) rank all the spans in terms of the scores
predicted by a bi-affine model (Dozat & Manning, 2016). In NER, span-based models have signif-
icantly outperformed their sequence labeling based counterparts. While these methods circumvent
the use of IOB tagging scheme, they mostly rely on post-processing rules to guarantee the extracted
span set to be valid. Moreover, since span-based models are locally normalized at span level, they
potentially suffer from the label bias problem (Lafferty et al., 2001).

This paper seeks to provide a new framework which infers the segmentation of a unit sequence by
directly selecting from all valid segmentation candidates, instead of manipulating tokens or spans.
To this end, we propose Lexical Unit Analysis (LUA) in this paper. LUA assigns a score to every
valid segmentation candidate and leverages dynamic programming (DP) (Bellman, 1966) to search
for the maximum scoring one. The score of a segmentation is computed by using the scores of its
all segments. Besides, we adopt neural networks to score each segment of an input sentence. The
purpose of using DP is to solve the intractability of extracting the maximum scoring segmentation
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Figure 1: A toy example to show LUA and how it differs from prior methods. The items in blue and
red respectively denote valid and invalid predictions.

candidate by brute-force search. The theoretical time complexity of LUA is quadratic time. By per-
forming parallel matrix computations, it can be optimized to linear time, which is very efficient. For
training criterion, we induce a hinge loss between the ground truth and the predicted segmentation.
We also optimize LUA in terms of capturing label correlation. While sacrificing little running time,
it further improves the performances on some tasks.

Figure 1 illustrates the comparison between previous methods and the proposed LUA. Prior models
at token level and span level are vulnerable to invalid predictions, and hence rely on heuristic rules
to fix them. LUA scores all possible segmentation candidates and uses DP to extract the maximum
scoring one. In this way, our models inherently guarantee the predictions to be valid. Moreover, the
globality of DP addresses the label bias problem.

Extensive experiments are conducted on syntactic chunking, NER, slot filling, Chinese word seg-
mentation, and Chinese part-of-speech (POS) tagging across 15 tasks. We have obtained new state-
of-the-art results on 13 of them and performed competitively on the others. In particular, we observe
that LUA is expert at identifying long-length segments.

2 METHODOLOGY

We denote an input sequence (i.e., fine-grained lexical units) as x = [x1, x2, · · · , xn], where n is
the sequence length. An output sequence (i.e., coarse-grained lexical units) is represented as the
segmentation y = [y1, y2, · · · , ym] with each segment yk being a triple (ik, jk, tk). m denotes its
length. (ik, jk) specifies a span that corresponds to the phrase xik,jk = [xik , xik+1, · · · , xjk ]. tk
is a label from the label space L. We define a valid segmentation candidate as its segments are
non-overlapping and fully cover the input sequence.

A case extracted from CoNLL-2003 dataset (Sang & De Meulder, 2003):

x = [[SOS],Sangthai,Glory, 22/11/96, 3000,Singapore]
y = [(1, 1,O), (2, 3,MISC), (4, 4,O), (5, 5,O), (6, 6,LOC)]

.

Start-of-sentence symbol [SOS] is added in the pre-processing stage.

2.1 MODEL: SCORING SEGMENTATION CANDIDATES

We denote Y as the universal set that contains all valid segmentation candidates. Given one of its
members y ∈ Y , we compute the score f(y) as

f(y) =
∑

(i,j,t)∈y

(
sci,j + sli,j,t

)
, (1)
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Algorithm 1: Inference via Dynamic Programming (DP)

Input: Composition score sci,j and label score sli,j,t for all possible segments (i, j, t).
Output: The maximum segmentation scoring candidate ŷ and its score f(ŷ).

1 Set two n× n shaped matrices, cL and bc, for computing maximum scoring labels.
2 Set two n-length vectors, g and bg , for computing maximum scoring segmentation.
3 for 1 ≤ i ≤ j ≤ n do
4 Compute the maximum label score for each span (i, j): cLi,j = maxt∈L c

l
i,j,t.

5 Record the backtracking index: bci,j = argmaxt∈L c
l
i,j,t.

6 Initialize the value of the base case x1,1: g1 = sc1,1 + sL1,1.
7 for i ∈ [2, 3, · · · , n] do
8 Compute the value of the prefix x1,i: gi = max1≤j≤i−1

(
gi−j + (sci−j+1,i + sLi−j+1,i)

)
.

9 Record the backtracking index: bgi = argmax1≤j≤i−1
(
gi−j + (sci−j+1,i + sLi−j+1,i)

)
.

10 Get the maximum scoring candidate ŷ by back tracing the tables bg and bc.
11 Get the maximum segmentation score: f(ŷ) = gn.

where sci,j is the composition score to estimate the feasibility of merging the fine-grained units
[xi, xi+1, · · · , xj ] into a coarse-grained unit and sli,j,t is the label score to measure how likely the
label of this segment is t. Both scores are obtained by a scoring model.

Scoring Model a scoring model scores all the possible segments (i, j, t) of an input sentence x.
Firstly, we get the representation of each fine-grained unit. Following prior works (Li et al., 2019;
Luo et al., 2020; Yu et al., 2020), we adopt BERT (Devlin et al., 2018), a powerful pre-trained
language model, as the sentence encoder. Specifically, we have

[hw
1 ,h

w
2 · · · ,hw

n ] = BERT(x), (2)

Then, we compute the representation of a coarse-grained unit xi,j , 1 ≤ i ≤ j ≤ n as

hp
i,j = hw

i ⊕ hw
j ⊕ (hw

i − hw
j )⊕ (hw

i � hw
j ), (3)

where ⊕ is vector concatenation and � is element-wise product.

Eventually, we employ two non-linear feedforward networks to score a segment (i, j, t): sci,j =
(
vc
)T

tanh(Wchp
i,j)

sli,j,t =
(
vl
t

)T
tanh(Wlhp

i,j)
, (4)

where vc, Wc, vl
t, t ∈ L, and Wl are all learnable parameters. Besides, the scoring model used

here can be flexibly replaced by any regression model.

2.2 INFERENCE VIA DYNAMIC PROGRAMMING

The prediction of the maximum scoring segmentation candidate can be formulated as

ŷ = argmax
y∈Y

f(y). (5)

Because the size of search space |Y| increases exponentially with respect to the sequence length n,
brute-force search to solve Equation 5 is computationally infeasible. LUA uses DP to address this
issue, which is facilitated by the decomposable nature of Equation 1.

DP is a well-known optimization method which solves a complicated problem by breaking it down
into simpler sub-problems in a recursive manner. The relation between the value of the larger prob-
lem and the values of its sub-problems is called the Bellman equation.

Sub-problem In the context of LUA, the sub-problem of segmenting an input unit sequence x is
segmenting its prefixes x1,i, 1 ≤ i ≤ n. We define gi as the maximum segmentation score of the
prefix x1,i. Under this scheme, we have maxy∈Y f(y) = gn.
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The Bellman Equation The relatinship between segmenting a sequence x1,i, i > 1 and segment-
ing its prefixes x1,i−j , 1 ≤ j ≤ i− 1 is built by the last segments (i− j + 1, i, t):

gi = max
1≤j≤i−1

(
gi−j + (sci−j+1,i +max

t∈L
sli−j+1,i,t)

)
. (6)

In practice, to reduce the time complexity of above equation, the last term is computed beforehand
as sLi,j = maxt∈L s

l
i,j,t, 1 ≤ i ≤ j ≤ n. Hence Equation 6 is reformulated as

gi = max
1≤j≤i−1

(
gi−j + (sci−j+1,i + sLi−j+1,i)

)
. (7)

The base case is the first token x1,1 = [[SOS]]. We get its score g1 as sc1,1 + sL1,1.

Algorithm 1 shows how DP is applied in inference. Firstly, we set two matrices and two vectors to
store the solutions to the sub-problems (1-st to 2-nd lines). Secondly, we get the maximum label
scores for all the spans (3-rd to 5-th lines). Then, we initialize the trivial case g1 and recursively
calculate the values for prefixes x1,i, i > 1 (6-th to 9-th lines). Finally, we get the predicted seg-
mentation ŷ and its score f(ŷ) (10-th to 11-th lines).

The time complexity of Algorithm 1 is O(n2). Since the max operation of Equation 7 is performed
in parallel on GPU, it can be optimized to only O(n), which is highly efficient. Besides, DP, as
the backbone of the proposed model, is non-parametric. The trainable parameters only exist in the
scoring model part. These show LUA is a very light-weight algorithm.

2.3 TRAINING CRITERION

We adopt max-margin penalty as the loss function for training. Given the predicted segmentation ŷ
and the ground truth segmentation y∗, we have

J = max
(
0, 1− f(y∗) + f(ŷ)

)
. (8)

3 EXTENSION TO UNLABELED SEQUENCE SEGMENTATION

In some tasks (e.g., Chinese word segmentation), the segments are unlabeled. We denote this type
of a segment as yk = (ik, jk). The Equation 1 and Equation 7 are also reformulated as

f(y) =
∑

(i,j)∈y

sci,j

gi = max
1≤j≤i−1

(gi−j + sci−j+1,i)
. (9)

4 EXTENSION TO CAPTURING LABEL CORRELATION

In some tasks, such as Chinese POS tagging, the labels of successive segments are strongly corre-
lated. To incorporate this type of information, we redefine f(y) as

f(y) =
∑

1≤k≤m

(
scik,jk + slik,jk,tk

)
+

∑
2≤k≤m

sdtk−1,tk
. (10)

Score sdtk−1,tk
models the label dependency between two successive segments, yk−1 and yk. In

practice, we parameterize a learnable matrix Wd ∈ R|V|×|V| to implement it.

The corresponding Bellman equation to above scoring function is

gi,t = max
1≤j≤i−1

(
max
t′∈L

(gi−j,t′ + sdt′,t) + (sci−j+1,i + sli−j+1,i,t)
)
, (11)

where gi,t is the maximum score of labeling the last segment of the prefix x1,i with t. For initial-
ization, we set the value of gd1,O as 0 and the others as −∞. By performing the inner loops of two
max operations in parallel, the practical time complexity for computing gi,t, 1 ≤ i ≤ n, t ∈ L is
also O(n). Ultimately, the segmentation score f(ŷ) is obtained by maxt∈L gn,t.

This extension further improves the results on syntactic chunking and Chinese POS tagging, as both
tasks have rich sequential features among the labels of the segments.
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Model Chunking NER
CoNLL-2000 CoNLL-2003 OntoNotes 5.0

Bi-LSTM + CRF (Huang et al., 2015) 94.46 90.10 -
Flair Embeddings (Akbik et al., 2018) 96.72 93.09 89.3

GCDT w/ BERT (Liu et al., 2019a) 96.81 93.23 -
BERT-MRC (Li et al., 2019) - 93.04 91.11

HCR w/ BERT (Luo et al., 2020) - 93.37 90.30
BERT-Biaffine Model (Yu et al., 2020) - 93.5 91.3

This Work LUA 96.95 93.46 92.09
LUA w/ Label Correlation 97.23 - -

Table 1: Experiment results on syntactic chunking and NER.

5 EXPERIMENTS

We have conducted extensive experiments on 5 tasks, including syntactic chunking, NER, slot fill-
ing, Chinese word segmentation, Chinese POS tagging, across 15 datasets. Firstly, our models have
achieved new state-of-the-art performances on 13 of them. Secondly, the results demonstrate that
the F1 score of identifying long-length segments has been notably improved. Finally, we show that
LUA is a very efficient algorithm concerning the running time.

5.1 SETTINGS

We use the same configurations for all 15 datasets. The hidden dimension of scoring model is 300.
L2 regularization and dropout ratio are respectively set as 1 × 10−6 and 0.2 for reducing overfit.
We use Adam (Kingma & Ba, 2014) to optimize our model. Following prior works, BERTBASE is
adopted as the sentence encoder. We adopt uncased BERTBASE for slot filling, Chinese BERTBASE

for Chinese tasks (e.g., Chinese POS tagging), and cased BERTBASE for others (e.g., syntactic
chunking). We tokenize all the complete tokens into the sub-word pieces (Devlin et al., 2018) and
expand the corresponding spans. In addition, the improvements of our models over all baselines are
statistically significant with p < 0.05 under t-test.

5.2 SYNTACTIC CHUNKING AND NER

Syntactic chunking identifies and labels the constituents of an input word sequence. We use CoNLL-
2000 dataset (Sang & Buchholz, 2000), which defines 11 syntactic chunk types (NP, VP, PP, etc.).
Standard data includes train set and test set. NER locates and classifies the named entities mentioned
in unstructured text into predefined categories. We use CoNLL-2003 dataset (Sang & De Meulder,
2003) and OntoNotes 5.0 dataset (Pradhan et al., 2013). CoNLL-2003 dataset consists of 22137
sentences totally and is split into 14987, 3466, and 3684 sentences for the training set, development
set, and test set, respectively. It’s tagged with four linguistic entity types (PER, LOC, ORG, MISC).
OntoNotes 5.0 dataset contains 76714 sentences from a wide variety of sources (e.g., magazine and
newswire). It includes 18 types of named entity, which consists of 11 types (Person, Organization,
etc.) and 7 values (Date, Percent, etc.). We follow the same format and partition of above datasets as
in (Li et al., 2019; Luo et al., 2020; Yu et al., 2020). At test time, we convert the predicted segments
into IOB format and utilize conlleval script1 to compute the F1 score.

Table 1 shows the experiment results. We adopt the results of all baselines from (Akbik et al., 2018;
Li et al., 2019; Luo et al., 2020; Yu et al., 2020). Besides, following (Luo et al., 2020), we rerun
the source code2 of GCDT and report its performance on CoNLL-2000 using standard evaluation
method. On CoNLL-2000 and Ontonotes 5.0, our models have significantly outperformed previ-
ous methods and obtained state-of-the-art performances. We improve the F1 scores by 0.43% on
CoNLL-2000 and 0.87% on Ontonotes 5.0. Compared with the strong baseline, Flair Embedding,
the increasements are 0.53% and 3.12%. All these results confirm the great effectiveness of LUA.
Besides, incorporating the label correlation contributes to 0.29% improvement on CoNLL-2000,

1https://www.clips.uantwerpen.be/conll2000/chunking/conlleval.txt.
2https://github.com/Adaxry/GCDT.

5



Under review as a conference paper at ICLR 2021

Model ATIS SNIPS MTOD
Slot-Gated SLU (Goo et al., 2018) 95.20 88.30 95.12

Bi-LSTM + EMLo (Siddhant et al., 2019) 95.42 93.90 -
Joint BERT (Chen et al., 2019b) 96.10 97.00 96.48

CM-net (Liu et al., 2019b) 96.20 97.15 -

This Work LUA 96.15 97.10 97.53
LUA w/ Intent Detection 96.27 97.20 97.55

Table 2: Experiment results on the three datasets of slot filling.

Model AS MSR CITYU PKU CTB6
Rich Pretraining (Yang et al., 2017) 95.7 97.5 96.9 96.3 96.2

Bi-LSTM (Ma et al., 2018) 96.2 98.1 97.2 96.1 96.7
Multi-Criteria Learning + BERT (Huang et al., 2019) 96.6 97.9 97.6 96.6 97.6

BERT (Meng et al., 2019) 96.5 98.1 97.6 96.5 -
Glyce + BERT (Meng et al., 2019) 96.7 98.3 97.9 96.7 -

Unlabeled LUA 96.94 98.27 98.21 96.88 98.13

Table 3: Experiment results on Chinese word segmentation.

which verifies the idea proposed in Section 4. On CoNLL-2003, we achieve competitive perfor-
mances. The F1 score of LUA is lower than Biaffine Model by only 0.04%.

5.3 SLOT FILLING

Slot filling, as a crucial task in spoken language understanding (SLU), extracts semantic constituents
from an utterance. We use ATIS dataset (Hemphill et al., 1990), SNIPS dataset (Coucke et al., 2018),
and MTOD dataset (Schuster et al., 2018). ATIS dataset consists of audio recordings of people
making flight reservations. The training set contains 4478 utterances and the test set contains 893
utterances. SNIPS dataset is collected by Snips personal voice assistant. The training set contains
13084 utterances and the test set contains 700 utterances. MTOD dataset has three domains, includ-
ing Alarm, Reminder, and Weather. We use the English part of MTOD dataset, where training set,
dev set, and test set respectively contain 30521, 4181, and 8621 utterances. We follow the same
partition of above datasets as in (Goo et al., 2018; Schuster et al., 2018).

Table 2 shows the experiment results. For ATIS and SNIPS, we follow the results of all baselines
as reported in (Liu et al., 2019b). For MTOD, we rerun the open source toolkit Slot-gated SLU3

and Joint BERT4. Previous methods all joint model slot filling and intent detection (a classification
task of SLU). For a fair comparison, we also report the results (last row) of using the hidden repre-
sentation of [CLS] to predict the intent of an input utterance x. On the one hand, our models have
surpassed prior all approaches and obtained the state-of-the-art results on the three datasets. We in-
crease the F1 scores by 0.07% on ATIS, 0.05% on SNIPS, and 1.11% on MTOD. On the other hand,
compared with the strong baseline (i.e., Joint BERT), LUA achieves the improvements of 0.18%
and 0.21% on ATIS and SNIPS without even modeling intent detection. All above results strongly
verify the great effectiveness of LUA.

5.4 CHINESE WORD SEGMENTATION

Chinese word segmentation divides a Chinese character sequence into successive words. We use
SIGHAN 2005 bake-off (Emerson, 2005) and Chinese Treebank 6.0 (CTB6) (Xue et al., 2005).
SIGHAN 2005 back-off consists of 5 datasets: AS, MSR, CITYU, and PKU. Following (Ma et al.,
2018), we randomly select 10% training data as development set. We convert all digits, punctuation,
and Latin letters to half-width for handling full/half-width mismatch between training and test set.
We also convert AS and CITYU to simplified Chinese. For CTB6, we follow the same format and
partition as in (Yang et al., 2017; Ma et al., 2018).

3https://github.com/MiuLab/SlotGated-SLU.
4https://github.com/monologg/JointBERT.
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Model CTB5 CTB6 CTB9 UD1
Bi-RNN + CRF (Single) (Shao et al., 2017) 94.07 90.81 91.89 89.41

Bi-RNN + CRF (Ensemble) (Shao et al., 2017) 94.38 - 92.34 89.75
Lattice-LSTM (Meng et al., 2019) 95.14 91.43 92.13 90.09

Glyce + Lattice-LSTM (Meng et al., 2019) 95.61 91.92 92.38 90.87
BERT (Meng et al., 2019) 96.06 94.77 92.29 94.79

Glyce + BERT (Meng et al., 2019) 96.61 95.41 93.15 96.14

This Work LUA 96.79 95.39 93.22 96.01
LUA w/ Label Correlation 97.96 96.63 93.95 97.08

Table 4: Experiment results on the four datasets of Chinese POS tagging.

Model 1− 3 (8695) 4− 7 (2380) 8− 11 (151) 12− 24 (31) Overall
HCR w/ BERT 91.15 85.22 50.43 20.67 90.27

BERT-Biaffine Model 91.67 87.23 70.24 40.55 91.26
LUA 92.31 88.52 77.34 57.27 92.09

Table 5: The study is conducted on OntoNotes 5.0 dataset.

Table 3 demonstrates the experiment results. We adopt the performances of all baselines from (Yang
et al., 2017; Ma et al., 2018; Huang et al., 2019; Meng et al., 2019). We have achieved new state-
of-the-art performances on all the datasets, except for MSR. Our model improves the F1 score by
0.25% on AS, 0.32% on CITYU, 0.19% on PKU, and 0.54% on CTB6. Note that our model doesn’t
use any external resource, such as glyph information (Meng et al., 2019) or POS tags (Yang et al.,
2017). On MSR, we are slightly lower than Glyce + BERT by 0.03%.

5.5 CHINESE POS TAGGING

Chinese POS tagging assigns a POS tag to every segmented word of a character sequence. We use
Chinese Treebank 5.0 (CTB5), CTB6, Chinese Treebank 9.0 (CTB9) (Xue et al., 2005), and the
Chinese section of Universal Dependencies 1.4 (UD1) (Nivre et al., 2016). CTB5 is comprised of
newswire data. CTB9 consists of source texts in various genres, which cover CTB5. we convert the
texts in UD1 from traditional Chinese into simplified Chinese. We follow the same train/dev/test
split of above datasets as in (Yang et al., 2017).

Table 4 shows the experiment results. We follow the performances of all baselines reported in (Meng
et al., 2019). Our models have obtained new state-of-the-art results on all the datasets. We increase
the F1 scores by 1.40% on CTB5, 1.28% on CTB6, 0.86% on CTB9, and 0.98% on UD1. Besides,
integrating the label dependency contributes to the improvements of 1.21%, 1.30%, 0.78%, and
1.11%. Single LUA also outperforms Glyce + BERT by 0.19% on CTB5 and 0.08% on CTB9. All
these results further verify the effectiveness of LUA and its variant.

5.6 LONG-LENGTH SEGMENT IDENTIFICATION

Intuitively, the proposed LUA should be more accurate in recognizing long-length segments than
sequence labeling based methods. To verify it, we measure the F1 scores of the segments of different
lengths on OntoNotes 5.0. LUA is compared to a best sequence labeling based model (i.e., HCR)
and a best span-based model (i.e., Biaffine Model). We reproduce the results of baselines by using
open source codes, biaffine-ner5 and Hire-NER6.

Table 5 demonstrates the experiment results. The column names denote the segment length range
and the total number in test corpus. On the one hand, both LUA and Biaffine Model obtain much
higher scores of identifying long-length entities than HCR. For example, LUA increases F1 score
of 12 − 24 range by almost twofold. These results verify our intuition. On the other hand, LUA
achieves much better results than Biaffine Model. It improves the performances by 10.11% on 8−11
range and 41.23% on 12− 24 range. We attribute this to the optimality of DP.

5https://github.com/juntaoy/biaffine-ner.
6https://github.com/cslydia/Hire-NER.
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Model Theoretical Complexity Practical Complexity Running Time
BERT O(n) O(1) 5m11s

BERT + CRF O(n|L|2) O(n) 7m33s
LUA O(n2) O(n) 7m2s

LUA w/ Label Correlation O(n2|L|2) O(n) 8m15s

Table 6: Running time comparison on CoNLL-2000 dataset.

5.7 RUNNING TIME ANALYSIS

Table 6 shows the running time of different models. The middle columns are the time complexity of
decoding a label sequence. The last column records the time cost of one epoch in training. We set
batch size as 16 and run models on 1 GPU. The results indicate that LUA is very fast. For example,
LUA is only 1m51s slower than BERT (Devlin et al., 2018).

6 RELATED WORK

Tasks in sequence segmentation aim to partition a fine-grained unit sequence into multiple labeled
coarse-grained units. Traditionally, there are two types of approaches. The most common is to cast
it into a token-level sequence labeling task (Mesnil et al., 2014; Ma & Hovy, 2016; Chen et al.,
2019a) by using IOB tagging scheme. Every word in the sentence is labeled with B-tag if it’s the
beginning of a segment, I-tag if it’s inside but not the first one within the segment, or O otherwise.
Although the segments are indirectly extracted, this method is very effective, providing a number
of state-of-the-art results. For example, Akbik et al. (2018) present Flair Embeddings that pretrain
character embedding in a large corpus and directly use it, instead of word representation, to encode
a sentence. Liu et al. (2019a) introduce GCDT that deepens the state transition path at each position
in a sentence, and further assigns each word with global representation. Luo et al. (2020) use
hierarchical contextualized representations to incorporate both sentence-level and document-level
information. Nevertheless, these models are vulnerable to producing invalid segments, for instance,
a segment starting with I-tag. This problem becomes more severe in low resource settings (Peng
et al., 2017). Moreover, in Section 5.6, we observe that it performs much worse on identifying
long-length segments than the proposed LUA.

An alternative approach that is less studied uses a transition-based system to incrementally segment
and label input sequence (Zhang et al., 2016; Lample et al., 2016). For instance, Qian et al. (2015)
present a transition-based model for joint word segmentation, POS tagging, and text normalization.
Wang et al. (2017) apply a transition-based model to disfluency detection task, which helps cap-
ture non-local chunk-level features. These models have many advantages like theoretically lower
time complexity and directly recognizing the segments. However, to our best knowledge, no recent
transition-based model surpasses its sequence labeling based counterparts.

More recently, there is a surge of interest in span-based models. They treat the segment, instead
of the word, as the basic unit for labeling. For example, Li et al. (2019) regard NER as an MRC
task, where entities are recognized as retrieving answer spans. Since these methods are locally
normalized at span level, they rely on rules to ensure the extracted span set to be valid and severely
suffer from the label bias problem. Span-based methods also emerge in other fields of NLP. In
constituent parsing, Stern et al. (2017) integrate the LSTM-minus feature (Wang et al., 2017) into
parsing models. In coreference resolution, (Lee et al., 2018) consider all spans in the text as the
potential mentions and learn distributions over possible antecedents.

7 CONCLUSION

This work presents a novel LUA for general sequence segmentation tasks. LUA directly scores all
the valid segmentation candidates and uses dynamic programming to extract the maximum scoring
one. Compared with previous models, LUA naturally guarantees the predicted segmentation to be
valid and circumvents the label bias problem. Extensive experiments are conducted on 5 tasks across
15 datasets. We have achieved the state-of-the-art performances on 13 of them. Importantly, the F1
score of identifying long-length segments is significantly improved.
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