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Abstract

High-quality automated poetry generation sys-
tems are currently only available for a small
subset of languages. We introduce a new model
for generating poetry in Czech, a heavily in-
flected Slavic language with rather regular or-
thography and prosody. We find that appro-
priate tokenization is crucial, showing that to-
kenization methods based on syllables or in-
dividual characters instead of subwords prove
superior in generating poetic strophes. We also
demonstrate that guiding the generation pro-
cess by explicitly specifying strophe param-
eters within the poem text can improve the
effectiveness of the model. We further en-
hance the results by introducing Forced Genera-
tion, adding explicit specifications of meter and
verse parameters at inference time based on the
already generated text. We evaluate a range
of setups, showing that our proposed approach
achieves high accuracies in several aspects of
formal quality of the generated poems.

1 Introduction

End-to-end pre-trained language models, such as
GPT-2 (Radford et al., 2019) or Llama-2 (Touvron
et al., 2023), have gained immense popularity for
fine-tuning on various downstream tasks. The emer-
gence of Large Language Models (LLMs), notably
those fine-tuned on dialog data and open-domain
communication such as Orca (Mukherjee et al.,
2023) or ChatGPT/GPT-4 (OpenAl, 2023), has
introduced a paradigm shift in model adaptation,
moving away from traditional fine-tuning towards
a more prompt-centric approach.

However, despite their versatility, open-domain
models may face a potential drawback when ap-
plied to languages and tasks less prevalent in the
training data (Liu et al., 2023). The Czech language
and Czech poetry present such a scenario, where
the models, lacking sufficient exposure during train-
ing, struggle to adhere to the structural nuances of

strophes and the associated parameters, resulting
in sub-optimal performance on these specific tasks.
Therefore, we resort to the more traditional practice
of fine-tuning GPT base models.

The Czech language also differs in several im-
portant characteristics from other usually studied
languages, most notably by its rich inflection but
rather regular orthography and prosody, which mo-
tivates the approach we take in this work.

We draw inspiration from treating text as a se-
quence of syllables (Oncevay and Rojas, 2020).
Our primary focus lies not in the semantic intrica-
cies of the text, a domain where models with stan-
dard tokenizers like BPE (Wang et al., 2019) excel,
but rather in the phonetic aspects and the adherence
to meter, which are paramount for our task. Syl-
labic modeling proves particularly advantageous
in generating neologisms, common in poetry to
maintain prescribed rhyme scheme and meter.

In pursuit of this, we have delved into tokenizer-
free models (Xue et al., 2022), offering maximal
flexibility in constructing neologisms and pairing
characters to align with stipulated strophe parame-
ters. This approach, already demonstrated to be ef-
fective in poetry generation by the byGPTS5 system
(Belouadi and Eger, 2023), showcased proficiency
in both rhyme scheme and meter adherence.

We also experiment with several ways of guid-
ing the generation process by interleaving explicit
annotations with the strophe text.

Tvéalod’ jde po vy-so-kém mo-fi, A iamb
; né ;ré—;du j_a—kvo st;f—b;o re_—jej B iamb
;VOLI [;ff—d; V_movd—ré_ Vl—:ly ;o—vh’ A iamb
;bok_svﬁjvpén—_né d(v) p_e—fve—j;. ) B iamb

[ - — - — v v v

Table 1: An ABAB strophe with meter annotation.



2 Parameters of Poetry

In poetic strophes, there are two main parameters
that govern their structure: rhyme and meter (even
though many strophes are crafted without adhering
to rthyme or are constructed in free verse). While
the rhyme scheme applies to the entire strophe, the
meter may vary from verse to verse. Consequently,
in our analysis, we meticulously annotate the meter
for each individual verse.

2.1 Rhyme

Utilizing the standard approach, we designate the
rhyme scheme with capital letters, such as ABAB,
where each character denotes an individual verse
in the strophe, also allowing X for non-rhyming
verses. We include configurations of both 4 and
6 lines. The rhyming scheme thus can be e.g.
AABBCC, where each verse has a corresponding
rhyming pair, as well as e.g. XAXA, where only
the second verse rhymes with the fourth.

2.2 Meter

We considered the following meter types that occur
in our dataset (labelled with one-letter labels):

iamb (J) First syllable is short and unstressed, sec-
ond is long and stressed. E.g. ‘attempt’ =>
‘at-tempt’, stress is on second syllable ‘tempt’.

trochee (T) Reverse of iamb, first syllable is
stressed, second is unstressed. E.g. ‘double’
=> ‘dou-ble’ with stress on first syllable.

dactyl (D) Three part meter with stress on first
long syllable. Next two syllables are short and
unstressed. E.g. ‘poetry’ => ‘po-et-ry’ with
stress on first syllable.

amphibrach (A) Three part meter with stress on
second syllable. E.g. ‘the scenes of’, where
stress is placed on the word ‘scenes’.

dactylotrochee (X) Combination of dactyl and
trochee.

dactylotrochee with anacrusis (Y) Anacrusis is
a set of unstressed syllables preceding the first
stressed dactylotrochee syllable.

hexameter (H) Non-rhyming verse with 6 parts.
pentameter (P) Non-rhyming verse with 5 parts.

free verse (N) Does not pertain to any meter.

See Figure 1 for an example of a strophe with
the ABAB rhyme scheme and iamb meter for each
verse. To illustrate how each verse adheres to the
iambic meter, we mark unstressed syllables with
"-" and stressed syllables with "-".

3 Dataset

We opted for the Corpus of Czech Verse (Plechac
and Kolar, 2015), curated by the Institute of Czech
Literature of the Czech Academy of Sciences.'
This corpus comprises 1,305 volumes of poetry,
each annotated for poetic meters, rhymes, phonetic
transcription, word tokenization, lemmatization,
and morphological tagging. The annotation is semi-
automatic and can thus contain errors; e.g. meter
annotation has an estimated accuracy of 95.3%
(Plechac, 2016). The metadata include informa-
tion such as the author name, book editors, and the
publication years of the book.

3.1 Dataset Preprocessing

The utilized corpus lacks direct specification of
rhyme schemes, instead providing information on
whether two or more verses rhyme or if a verse is
non-rhyming. Consequently, we transformed this
information into standardized rhyme schemes such
as AABB, AABBCQC, as discussed earlier. Given
that the metadata lacks details about the type of po-
etry (Lyric, Narrative) or the specific style in which
a poem was composed, we inferred that the publica-
tion year of the book containing the poem serves as
the most indicative feature. However, as Language
Models struggle with numerical data and benefit
from fine-tuning for improved comprehension (Sp-
ithourakis and Riedel, 2018), we bucketized the
publishing year data into 20-year periods to better
categorize poems into distinct styles. Some poems
lacked information about their publication year,
and for these instances, we introduced the category
NaN to encompass such examples.

3.2 Dataset Makeup

To gain a more comprehensive understanding of
potential biases in our model, it was crucial to scru-
tinize the composition of the processed data. The
combined corpus encompasses 2,310,917 verses,
forming 374,537 strophes, which collectively con-
stitute 66,428 poems. We split the dataset into a
train set (95%) and a test set (5%).

Yhttps://github.com/versotym/corpusCzechVerse
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Rhyme schemes Our processing identified 218
different schemes (primarily due to our leniency
towards non-rhyming verses), with a very uneven
distribution. Figure 1a depicts the 10 most frequent
rhyme schemes, which together constitute 74% of
the dataset. Conversely, we identified 149 distinct
rhyme schemes with a presence below 0.05% each
(fewer than 200 strophes) in our corpus, thus prob-
ably constituting noise rather than meaningful pat-
terns that our model could learn from.

Meter We observe a modest variety with only 9
distinct types of meter (8 metric and 1 free verse).
However, as illustrated in Figure 1b, over 85% of
all verses pertain to either iamb (J) or trochee (T),
whereas the least frequent meter types (H, Y, P)
each individually constitute less than 0.2% of the
data. Therefore, in the absence of specific instruc-
tions, our model is likely to predominantly generate
Jand T verses.

Year of poem publication Figure 2 illustrates a
more even distribution across all categories than for
rhyme schemes and meters. Only NaN exhibits a
presence below 0.5%, while 6 out of the 10 defined
regions have a presence exceeding 5%.

4 Data Format

Standard language modelling is done on the plain
text. However, for poetry modelling, previous
works have demonstrated strong benefits of explic-
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itly encoding various properties within the text by
using annotations via functional tokens interleaved
with the actual language tokens. We therefore ex-
plore three variants of specifying strophe and verse
parameters.

BASIC Our initial method, as previously ex-
plored in the ByGPTS5 article (Belouadi and Eger,
2023), involves adding the rhyme scheme, theme
(i.e. publishing year), and the most prevalent meter
as the first line, while the subsequent lines con-
tain the strophe in plain text; see the example in
Figure 3.

# ABAB # 1900 #J

Tva lod’ jde po vysokém mofi,
v né brazdu jako stiibro reje,
svou piidu v modré viny nof{
a bok svij pénné do pefeje.

Figure 3: Example of a strophe using the BASIC model
input format.

VERSE_PAR While the initial approach is
promising, insights from the GPoet-2 article (Lo
et al., 2022) indicate that relying solely on raw at-
tention may be insufficient, necessitating reverse
modeling to achieve rhyming verses. In response
to this, we considered the inclusion of a set of verse
parameters, syllable line length and ending syl-
lable, as a prefix to each line, to provide more
guidance to the attention mechanism in individual
verses. This modification is reflected in the exam-
ple in Figure 4.

# ABAB # 1900 #J

9 #1i# Tvé lod’ jde po vysokém mofi,
9 # je # v n€ brazdu jako stribro reje,
9 # I # svou pfidu v modré vlny nofi
9 # je # a bok svij pénné do pefeje.

Figure 4: Example of a strophe using the VERSE_PAR
model input format with verse parameters.



METER_VERSE Building upon our prior con-
siderations, and given the availability of data for
the meter of each individual verse, we recognize
the potential value in incorporating meter informa-
tion for each verse individually instead of the full
strophe. This additional input, which can vary be-
tween sets of rhyming verses (e.g., from iamb to
trochee), provides enhanced guidance to the atten-
tion mechanism, particularly in achieving a clear
separation of non-rhyming verses. The resulting
input scheme is illustrated in Figure 5.

# ABAB # 1900

J#9#1i# Tvd lod jde po vysokém motfi,
J# 9 # je # v né brazdu jako stfibro reje,
J#9 # i # svou pifidu v modré viny nofi
J#9 # je # a bok sviij pénné do pereje.

Figure 5: Example of a strophe using the ME-
TER_VERSE model input format with meter as verse
parameter.

5 Tokenization

We recognize tokenization as a critical element in
our task, given our emphasis on formal aspects
(rthyming, meter) rather than meaning, as well as
our explicit inclusion of functional tokens spec-
ifying desired properties (thyming, meter, year)
interleaved with actual language tokens. We em-
barked on a series of experiments to address the
following objectives:

* Distinguish between actual language tokens
and functional tokens.

* Segment words into tokens that aid in guiding
meter and inflection.

* Facilitate the swapping of small chunks to
encourage fitting the formal requirements and
the generation of neologisms.

The standard approach in current NLP is sub-
word tokenization, such as BPE (Sennrich et al.,
2016). Given the nature of the Czech language
with its reliance on inflection, our focus on formal
properties, and the incorporation of neologisms in
poetry, particularly for rhyming purposes, we also
drew inspiration from approaches involving the
separation of words into syllables (Oncevay and
Rojas, 2020) or even individual characters (Xue
etal., 2022).

Therefore, we experiment with the following
four tokenization approaches:

BASE The  original tokenizer of the
czech-gpt2-oscar model (Chaloupsky,
2022) which we use.

OUR A BPE tokenizer trained on our dataset.

SYLLABLE Splitting the text into syllables, us-
ing the Sekacek tool (Machacek, 2014).2

UNICODE Splitting the text into individual char-
acters.

The benefit of training a standard BPE tokenizer
on our dataset is that it can learn to keep functional
annotations as single tokens, as shown in Figure 6.3

INPUT: # ABAB # 1900

BASE:  [#] [ AB] [AB] [ #] [ 1900]

OUR: [#] [ ABAB] [ #] [ 1900]

SYLL.: [#][ ABAB][#][ 1900]

UNIC.:  [#][ I[AIBI[AIBIL 1F#1[ 1[11[91[01[0]

Figure 6: Tokenization of strophe parameters.

Obviously, SYLLABLE and UNICODE encode
sequences into larger amounts of shorter tokens;
see Figure 7. This allows the model to make fine
generation decisions with a higher granularity, so
that it can better fit the prescribed formal proper-
ties (meter, rhyme). It also makes production of
nealogisms easier. However, as mentioned by Be-
louadi and Eger (2023), the time required for model
training and inference increases accordingly.

INPUT: a v duchu

BASE: [a] [ v] [ duchu]

OUR: [a] [ v] [ duchu]

SYLLABLE: [a][ V][ duch] [u]

UNICODE:  [a] [1[][v][][d] [u][c][h] [u]

Figure 7: Tokenization of verse text.

6 Training the Models

As our base model, we have selected
czech-gpt2-oscar by Chaloupsky (2022),%
a GPT-2-small model (Radford et al., 2019) trained
on the Czech part of the OSCAR dataset (Sudrez
et al., 2020).

Zhttps://github.com/Gldkslfmsd/sekacek

30f course, this is only effective for annotations that are
sufficiently frequent in our dataset.

4https ://huggingface.co/lchaloupsky/
czech-gpt2-oscar
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H Tokenizer Model Parameters H

BASE 137M
OUR 137M
SYLLABLE 105M
UNICODE 86M

Table 2: Sizes of the fine-tuned models, depending on
the tokenization approach.

We then fine-tune the model on our dataset, us-
ing one of the three data formats (Section 4) and
one of the four tokenizers (Section 5).

We explore two different approaches of training
the model for the selected data format. We either
simply train the model using only the selected data
format, or we first pre-train the model using the
METER_VERSE format, and then fine-tune it us-
ing the BASIC or VERSE_PAR format; the motiva-
tion for this approach is that each of these formats
can be regarded as a subset of the METER_VERSE
format.

For our model to accept the format of strophe and
to follow the parameters of strophe and verses in it,
we have, instead of using secondary tasks, utilized
only attention, as recommended by Vaswani et al.
(2017). For our loss computation, we employ the
conventional Cross Entropy Loss, with our input
serving as labels as well. Given the GPT-based
nature of our model, we refrain from employing
input masking, as the preferred training method for
GPT-2 involves next word prediction.

For using our custom tokenizers, we have fol-
lowed the model recycling approach of de Vries
and Nissim (2021), which utilizes overlap in cur-
rent and target vocabularies to jump-start the model
by keeping large parts of the embedding matrix.

The sizes of the resulting fine-tuned models can
be seen in Table 2. As SYLLABLE and UNICODE
tokenizers have smaller vocabularies, the resulting
models are smaller; on the other hand, the data
format has no effect on the model size.

7 Text Generation

To further enhance the model’s proficiency in ad-
hering to strophe and verse parameters at inference,
we propose an alternative approach to the standard
text generation method.

Basic Decoding The prompt consists of the first
line which specifies the strophe parameters. Then,
generation proceeds token by token until the end-
of-sequence token is generated.

Forced Generation This iterative method in-
volves examining an already accepted rhyme
scheme and compelling verse parameters for lines
intended to rhyme. After generating each verse, the
generation process stops, and if the next verse to be
generated should rhyme with an already generated
verse, then the verse parameters are copied (forced)
as the prefix for the next line before resuming the
generation process, as illustrated in Figure 8. More
formally, if the model has already generated meter
X, syllable length Y and ending syllable Z as anno-
tations for a verse connected to character A in the
rhyme scheme, all other verses linked to character
A will be prompted with verse parameters X # Y #
Z #. Obviously, this approach is only applicable for
VERSE_PAR and METER_VERSE input formats.

# AABB # 1900
T # 8 # ani # A kdyzZ prijde z nenadéni,
T#8#ani# ...

Figure 8: Forced Generation. According to the AABB
rhyme scheme, the second verse should rhyme with the
first verse. Thus, after generating the first verse, the
verse parameters for the second verse (underlined) are
forced, i.e. copied from the first verse (in bold).

We have also experimented with beam-search
and top-k sampling. For the UNICODE tokenizer,
this led to better results, while other models re-
mained unaffected. Consequently, we will report
results using the best setup for each model.

8 Validators

Comprehensive automated quality evaluation of
text generation is hard. In our setting, we have
decided to focus on a narrower subtask, mostly
evaluating formal quality of the generated poetry.
Rule-based approaches exist (Plechac, 2018), but
given the large annotated dataset at our disposal, we
can train validator models directly on the dataset.
Specifically, we train classifiers that label strophes
with the rhyme scheme, meter, and year. We can
then simply evaluate whether the predicted value
matches the value specified on the input.

The general approach we take is to train a soft-
max classifier attached to the class token represen-
tation in a masked language model; we use either
RoBERTa (Liu et al., 2019), or its Czech version,
RobeCzech (Straka et al., 2021).



H Base model Input type | Accuracy H
robeczech-base | Syllable | 97.17 %
robeczech-base Raw 72.77 %
roberta-base Syllable | 96.66 %
roberta-base Raw 79.91 %

| Baseline | NA | 1865% |

Table 3: Rhyme scheme prediction validator.

H Base model ‘ Input type ‘ Accuracy H
robeczech-base | Syllable | 95.60 %
robeczech-base Raw 84.36 %
roberta-base Syllable | 95.60 %
roberta-base Raw 90.90 %
Baseline NA 48.52 %
Upper bound NA 95.30 %

Table 4: Meter prediction validator.

8.1 Validator Input Preprocessing

As syllables are useful text units when concerned
with formal properties of poetry, we again experi-
ment with splitting the input into syllables before
feeding it into the ROBERTa/RobeCzech model.

This approach simplifies the tasks of rhyme and
meter validators, as they no longer need to guess
word partitioning. Their focus is now solely on
learning syllabic thyming patterns and stress pat-
terns associated with syllables.

However, the effectiveness of syllabification for
the year validator is uncertain. Understanding
themes requires both grasping the employed met-
rical and rhyming structures, where syllabification
helps, as well as discerning the semantic meaning,
where syllabification causes a partial disruption.

8.2 Validators Accuracies

Using the train and test parts of the dataset, we
train and evaluate validators for rhyme scheme pre-
diction (Table 3), meter prediction (Table 4) and
publishing year prediction (Table 5). We also report
the Baseline as the most common class, and for
meter, we have included an Upper bound based
on the accuracy of the semi-automatic annotation
in the dataset (Plechac, 2016).

Syllabification Pre-splitting the input into sylla-
bles significantly aids the validators in classifying
syllable-based parameters, i.e. meter and rhyme
scheme, but seems to be irrelevant or even harmful
for the year classification. This aligns with our ex-

Base model Input type | Accuracy H

robeczech-base | Syllable | 58.93 %
robeczech-base Raw 58.86 %
roberta-base Syllable | 41.72 %
roberta-base Raw 47.79 %

| Baseline NA 31.33% |

Table 5: Year of publishing prediction validator.

pectations, as the year of publishing is more closely
tied to the subject of the poem, a facet disrupted by
the syllabification process.

Rhyme scheme and meter prediction The val-
idators on syllabified input achieve very high ac-
curacies, reaching or approaching the maximum
accuracies achievable on the dataset, as the semi-
automated annotation of the dataset is not perfect
and contains errors. The accuracies of RobeCzech
are slightly higher than RoBERTa or identical.

Year prediction Using RobeCzech leads to sig-
nificantly higher accuracies than using RoBERTa.
We believe this is because this task also requires
understanding the semantics of the text, whereas
the other tasks focus on the formal properties of the
text, and thus the model pre-trained on Czech data
has a significant advantage. Still, all the accuracies
on this task are rather low, and we do not deem
them sufficient for using this validator to reliably
evaluate the results of poetry generation.

Token granularity In the context of rhyme
scheme and meter, we have observed that the effect
of syllabification is less pronounced for RoOBERTa
than for RobeCzech. We posit that this is because
RoBERTa is not pre-trained on Czech texts and
thus its subword tokenization needs to split the text
into shorter tokens to represent Czech words.

H Tokenizer Chars per token H
roberta-base 1.5
robeczech-base 2.7

Table 6: Tokenizer influence on token granularity

We evaluated the model tokenizers by analyzing
10,000 verses and calculating the average number
of characters per token. As showcased in Table 6,
RoBERTa already tokenizes the text more granu-
larly, resulting in further syllabification having a
weaker effect than in the case of RobeCzech.



9 Model Validation

Through our validators, we can evaluate the poetry
generation model’s adherence to the rhyme scheme
and meter. In addition to these metrics, we also
assess conformity to the number of syllables and
the ending syllable for each verse as generated (or
forced) in the prefix annotation at the start of the
line. We also measure the uniqueness of the gener-
ated syllables as an indicator for non-repetitiveness.
Altogether, we compute these characteristics:

Num Syl Proportion of verses with number of syl-
lables matching the prefix annotation.

End acc Proportion of verses with ending syllable
matching the prefix annotation.

Unique Ratio of unique syllables among all syl-
lables in the strophe; the optimal value here
is not 100%, but rather the value observed on
the true data in the dataset (87.90%).

Rhyme acc Proportion of strophes with rhyme
scheme matching the first line annotation.

Meter acc Proportion of strophes with the meter
of all verses matching the annotation.

We use the annotations of the strophes in the test
part of our dataset as inputs (as in Figure 9), and
evaluate the generated outputs (now disregarding
the actual texts of the strophes in the test dataset).

#AXAX # 1880
T# ..

Figure 9: Example of an input prompt using ME-
TER_VERSE format.

9.1 Influence of Data Format

We first evaluate the effect of the data format (Sec-
tion 4), while using the BASE tokenizer and Basic
text generation.

The model was either trained using only the se-
lected data format for 8 epochs, or it was first pre-
trained using METER_VERSE format for 8 epochs

H Data Format ‘ Pre-train ‘ Rhyme acc ‘ Meter acc H

BASIC False 35.44 % 84.53 %
BASIC True 57.32 % 85.37 %
VERSE_PAR False 48.22 % 85.06 %
VERSE_PAR True 66.68 % 86.28 %
METER_VERSE NA 66.50 % 87.59 %

Table 7: Influence of Data Format on accuracy.

and then fine-tuned for further 4 epochs using the
selected format.

Table 7 demonstrates that incorporating the indi-
vidual verse parameters using either VERSE_PAR
or METER_VERSE format significantly con-
tributes to the model performance, particularly in
terms of adhering to the rhyme scheme. The in-
clusion of more detailed meter parameters in ME-
TER_VERSE scheme further enhances the ability
of the model to follow the correctly meter.

Furthermore, the performance with both BASIC
and VERSE_PAR formats improves considerably
when the model is first pretrained using the ME-
TER_VERSE format.

9.2 Final Validation

Finally, we train four models, exploring all the pre-
sented tokenizers (BASE, OUR, SYLLABLE, UNI-
CODE), using the METER_VERSE data format,
and training for 16 epochs. We generate strophes
using either Basic Decoding or Forced Generation.

As shown in Table 8, the best results are obtained
by using the UNICODE tokenizer and Forced Gen-
eration, often surpassing the other setups with a
large margin. This underscores the viability of
character-level large language models, particularly
in morphological and phonetic tasks. For meter
accuracy, OUR tokenizer and Basic Decoding per-
form best; however most of the setups perform
quite competitively in this characteristic.

9.3 Validation Results Analysis

Forced Generation Our proposed approach to
generation consistently demonstrated the ability
to significantly enhance rhyme scheme accuracy
while only minimally impacting meter accuracy,
number of syllables accuracy, ending syllable accu-
racy, and unique syllables ratio. We posit that the
improvements in thyme scheme accuracy can be
attributed to the fact that Forced Generation con-
strains the model to generate matching verses with
the same ending syllable and length in syllables,
both of which play a substantial role in rhyming.
This constraint is also the reason behind the usual
decrease in meter accuracy and unique syllables ra-
tio. The enforced ending syllable is not unique, and
it compels the model to generate proper meter in-
clusive of it, which, especially with single-syllable
unstressed words, can pose a challenge.

OUR tokenizer The performance of OUR tok-
enizer was the least satisfactory among the consid-



H Tokenizer Generation | Num Syl | End acc | Unique | Rhyme acc | Meter acc H
BASE Basic 9236 % | 96.20 % | 86.01 % 66.40 % 87.37 %
BASE Forced 9255% | 96.22 % | 84.72 % 69.62 % 86.40 %
OUR Basic 91.63% | 94.64 % | 84.716 % | 47.56 % 88.17 %
OUR Forced 91.67% | 94.52 % | 83.46 % | 49.14 % 87.44 %
SYLLABLE Basic 95.84 % | 98.17 % | 84.73 % 72.10 % 88.09 %
SYLLABLE Forced 95.57% | 98.18 % | 83.39 % 74.12 % 87.08 %
UNICODE Basic 9131 % | 92.24 % | 89.74 % 68.92 % 83.34 %
UNICODE Forced 9749 % | 98.94 % | 87.64 % | 87.96 % 86.19 %

| Target 100% | 100% | 87.90% | 100 % 100% |

Table 8: Validation results for the final models.

H Tokenizer Chars per token H H Tokenizer Year accuracy H
BASE 3.37 BASE 54.70 %
OUR 3.77 OUR 51.00 %
SYLLABLE 243 SYLLABLE 41.76 %
UNICODE 1.00 UNICODE 40.90 %

Table 9: Tokenizer influence on token granularity

ered options. We contend that this can be attributed
to the fact that OUR tokenizer was trained solely
on poetry data, comprising only 2 GB in size. The
resulting number of characters per token is exces-
sively large, rendering it less efficient for poetry
generation. Unlike SYLLABLE or UNICODE to-
kenizer, OUR tokenizer lacks the capability for
syllable or character substitution. To substantiate
this observation, we conducted the same analysis
as for validator tokenizers (Section 8.2, Table 6).
In Table 9, we can observe that OUR tokenizer
encodes 3.77 characters per token, which is the
highest value among all tokenizers. This character-
istic diminishes flexibility, restricting words to be
represented by only 1 token.

9.4 Year Accuracy

Driven by curiosity, we also employed our valida-
tor to assess the probable publishing year accuracy,
which is our proxy for poetic style; keeping in mind
that this validator is highly unreliable as its accu-
racy is rather low. Our hypothesis was grounded in
the belief that OUR tokenizer, with its capacity to
tokenize entire words in a single token, might excel
in tasks oriented more towards semantic meaning.

The results in Table 10 show that the models
trained with subword tokenizers (BASE, OUR)
achieve distinctly higher scores, which is in line
with our expectations. Yet, contrary to our expec-
tations, OUR tokenizer still lags behind BASE to-

Table 10: Year accuracy as reported by the validator
model. For each tokenizer, we report the best result
observed among all investigated configurations. Note
that the year validator is highly unreliable.

kenizer; this may be an artifact of the unreliable
validator, but it may also be the effect of OUR to-
kenizer being trained on smaller and specific data,
constraining its ability to capture meaning as com-
prehensively as the more versatile BASE tokenizer.

10 Conclusion

In this work, we proposed and implemented a novel
comprehensive approach to poetic strophe gener-
ation, focusing on formal qualities of poetry. We
trained and evaluated our models using a corpus of
Czech poetry.

Our results reveal superior rhyming accuracy of
character and syllable tokenization compared to
standard subword tokenization methods. Moreover,
we highlight the significant performance boost
achieved by Forced Generation, which encourages
the model to generate formally more coherent stro-
phes. This is particularly evident with character
tokenization, where rhyming accuracy increased
by 19%. We have also shown that enriching the
plain text with interleaved explicit annotations can
help to better guide the model.

In future work, we want to expand our generation
to full poems with strophes that are thematically
and schematically connected.



11 Ethical Considerations

A topic of active discussion is whether it is ethi-
cal (or even legal) to use various kinds of data for
training large language models, e.g. without ex-
plicit consents of the data authors. In our work, we
train the language model on a dataset composed
exclusively of poems in the public domain (due to
the authors having died more than 70 years ago),
which we consider to be non-problematic.

The base GPT-2 model, which we further fine-
tune on that dataset, was trained on various kinds of
data, including potentially problematic data. How-
ever, our approach can be in principle applied to
any base model; thus, if there is ever a consensus
that it is not ethical to use this base model, our ap-
proach can be repeated and reevaluated using any
other base model.

It is becoming the norm (and may be soon re-
quired by laws, such the EU Al Act) to label au-
tomaticall generated works as such, e.g. to avoid
unintentional spreading of misinformation. To this
end, we make sure to always label all our generated
poems as automatically generated.

12 Limitations

As any transformer model, our solution grap-
ples with substantial computational complexity
(Vaswani et al., 2017), necessitating the use of pow-
erful GPUs (A40 40GB, A100 40GB, H100 80GB)
for effective training.

An inherent challenge arises from the use of mul-
tiple tokenization techniques, potentially impacting
the scalability of next strophe generation. Notably,
the UNICODE tokenizer struggles to retain context
across two verses, posing a risk of losing crucial
information.

Another issue stems from data distributions, as
illustrated in Figures 1a and 1b. If not prompted ap-
propriately, the model defaults to a rhyme scheme
of ABAB and a meter of iamb. This default behav-
ior is problematic, particularly considering that the
model is likely incapable of generating most of the
218 rhyme schemes appearing in the dataset. Re-
garding meter, only iamb, trochee, and free-verse
are reliably generated, with the remaining 6 typi-
cally defaulting to iamb.

With our inability to observe if year of pub-
lishing is followed (Table 5), it remains uncertain
whether the model gains any meaningful informa-
tion from this parameter.

Lastly, we intentionally disregarded the mean-
ing in poems and significantly simplified our mea-
sures around strophe uniqueness. As demonstrated
in Figure 11, generated verses tend to repeat en-
tire words and syllables to create the illusion of
rhyming, whereas a more preferable approach
would involve generating syllables with close pho-
netics.
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A Generated Strophes

We wanted to showcase some of the generated stro-
phes with stress annotation.

SYLLABLE tokenizer Model

### Forced Generation! ###

# AXAX #1900

J# 11 #ni # 6, jaka radost! jaké potéseni!
J# 10 # §1 # jaky to jasot v dusi nejvyssi,
J# 11 # ni # a kazdé slovo jako poZzehnani
J # 8 # ti # se v srdci lidském zachyti.

0, ja-kd ra-dost! ja-ké po-té-Se-ni! A iamb
jva—iq’/ :o j_é—s;t v (iu—;i n-ej—:/yév—él’,v X  iamb
;l kavi—(ié s_lo—vvo j;l—kovpo-—iejhnz’:—ni A iamb
;e \; src;—ci_lidjsk_émvza_-chvy—tlj. ) X iamb

- - (- — - - -

Figure 10: Strophe with non-rhyming verses.

In Figure 10 we can see, that the model tries to
fulling the meter iamb (J) by utilizing prepositions
0, a, se, which don’t carry stress. Stress is then
shifted to even syllables.

Figure 11 is an example of the model trying to
generate meter trochee (T). To achieve this model
disregards prepositions as verse starter, which
would shift the stress one syllable back. Also to al-
low single syllable word cti, it’s followed by prepo-
sition to properly align stress. But the resulting
strophe seems off, as the repetition in first verse is
too much.
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OUR tokenizer Model

### Forced Generation! ###

# AABB # 1840

T # 8 # sti # v kazdé ctnosti, v ctnosti ctnosti
T # 8 # sti # dojdes cti a chvély dosti,

T # 7 # mQj # Ze jsy pravy pritel mij

T # 7 # mdj # pane boZe, otCe mg;!

v kaz-dé ctnos-ti, v ctnos-ti ctnos-ti A trochee

- — - ~ - — - -

doj-des cti a chva-ly dos-ti, A trochee
Ze jsy pra-vy pri-tel mij B trochee
pa-ne bo-Ze, ot-Ce mj! B trochee

- - - v - v ~

Figure 11: Example of trochee

OUR tokenizer Model

#i## Basic Generation! ###
# ABAXBX # 1880

J# 11 #ni # a v chvili t€ jsem citil, jak se sklani
J# 10 # hlas # ma duSe k tobé, a jak slySim hlas,
J# 9 # ni # jenz vola mne pojd’, pojd’ ke mn¢,

zvedni!

J # 6 # zas # ja zachvél se a zas

J # 8 # tfas # jsem rozechvén se, chvél a tféds
J#2 #slysS # 6 slys!

a v chvi-li té jsem ci-til, jak se skld-ni

~ - - v ~ - v v — - -

ma du-Se k to-bé, a jak sly-$im hlas,

~ - ~ - v v v - ~ -

jenz vo-14 mne pojd’, pojd’ ke mné, zve-dni!

~ - - ~ - - ~ -~ - ~

ja za-chvél se a zas

[ ~ - v -

jsem ro-ze-chvén se, chvél a tfés

6 slys!

~ -

Figure 12: Example of strophe of six verses

Figure 12 shows example of Basic genera-
tion. The combination of longer strophe and non-
rhyming verse proves a little difficult for the model.
The meter iamb (J) is achieved by using conjunc-

tions, prepositions and single syllable words.
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