
SPANN: Highly-efficient Billion-scale Approximate
Nearest Neighborhood Search

Anonymous Author(s)
Affiliation
Address
email

Abstract

The in-memory algorithms for approximate nearest neighbor search (ANNS) have1

achieved great success for fast high-recall search, but are extremely expensive2

when handling very large scale database. Thus, there is an increasing request for3

the hybrid ANNS solutions with small memory and inexpensive solid-state drive4

(SSD). In this paper, we present a simple but efficient memory-disk hybrid indexing5

and search system, named SPANN, that follows the inverted index methodology. It6

stores the centroid points of the posting lists in the memory and the large posting7

lists in the disk. We guarantee both disk-access efficiency (low latency) and8

high recall by effectively reducing the disk-access number and retrieving high-9

quality posting lists. In the index-building stage, we adopt a hierarchical balanced10

clustering algorithm to balance the length of posting lists and augment the posting11

list by adding the points in the closure of the corresponding clusters. In the search12

stage, we use a query-aware scheme to dynamically prune the access of unnecessary13

posting lists. Experiment results demonstrate that SPANN is 2× faster than the14

state-of-the-art ANNS solution DiskANN to reach the same recall quality 90%15

with same memory cost in two billion-scale datasets. It can reach 90% recall@116

and recall@10 in just around one millisecond with only 32GB memory cost.17

1 Introduction18

Vector nearest neighborhood search has played an important role in information retrieval area, such19

as multimedia search and web search, which provides relevant results by searching vectors with20

minimum distance to the query vector. Exact solutions for K-nearest neighborhood search [41, 36]21

are not applicable in big data scenario due to substantial computation cost and high query latency.22

Therefore, researchers have proposed many kinds of approximate nearest neighborhood search23

(ANNS) algorithms in the literature [9, 15, 35, 8, 12, 28, 32, 11, 26, 18, 13, 23, 39, 38, 31, 40, 34,24

29, 16, 24, 7, 10, 21, 42, 17, 33]. However, most of the algorithms mainly focus on how to do low25

latency and high recall search all in memory with offline pre-built indexes. When targeting to the26

super large scale vector search scenarios, such as web search, the memory cost will become extremely27

expensive. There is an increasing request for the hybrid ANNS solutions that use small memory and28

inexpensive disk to serve the large scale datasets.29

There are only a few approaches working on the hybrid ANNS solutions, including DiskANN [21]30

and HM-ANN [33]. Both of them are graph based solutions. DiskANN uses Product Quantization31

(PQ) [22] to compress the vectors stored in the memory while putting the navigating spread-out32

graph along with the full-precision vectors on the disk. When a query comes, it traverses the graph33

according to the distance of quantized vectors and then reranks the candidates according to distance34

of the full-precision vectors. HM-ANN leverages the heterogeneous memory by placing pivot points35

in the fast memory and navigable small world graph in the slow memory without data compression.36

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.



However, it consumes more than 1.5 times larger fast memory than DiskANN. Moreover, the slow37

memory is still much expensive than disk. Therefore, due to the cheap serving cost, high recall and38

low latency advantages of DiskANN, it has become the start-of-the-art for indexing billion-scale39

datasets.40

In this paper, we argue that the simple inverted index approach can also achieve state-of-the-art41

performance for large scale datasets in terms of recall, latency and memory cost. We propose SPANN,42

a simple but surprising efficient memory-disk hybrid vector indexing and search system, that follows43

the inverted index methodology. SPANN only stores the centroid points of the posting lists in the44

memory while putting the large posting lists in the disk. We guarantee both low latency and high45

recall by greatly reducing the number of disk accesses and improving the quality of posting lists.46

In the index-building stage, we use a hierarchical balanced clustering method to balance the length47

of posting lists and expand the posting list by adding the points in the closure of the corresponding48

clusters. In the search stage, we use a query-aware scheme to dynamically prune the access of49

unnecessary posting lists. Experiment results demonstrate that SPANN is more than two times faster50

than the state-of-the-art disk-based ANNS algorithm DiskANN to reach the same recall quality 90%51

with same memory cost in two billion-scale datasets. It can reach 90% recall@1 and recall@10 in52

just around one millisecond with only 32GB memory cost.53

2 Background and Related Work54

Given a set of data vectors X ∈ Rn×m (the data set contains n vectors with m-dimensional features)55

and a query vector q ∈ Rm, the goal of vector search is to find a vector p∗ from X, called nearest56

neighbor, such that p∗ = argminp∈X Dist(p,q). Similarly, we can define K-nearest neighbors.57

Due to the substantial computation cost and high query latency of the exhaustive search, ANNS58

algorithms are designed to speedup the search for the approximiate K-nearest neighbors in a large59

dataset in an acceptable amount of time. Most of the ANNS algorithms in the literature mainly focus60

on the fast high-recall search in the memory. However, with the explosive growth of the vector scale,61

the memory has become the bottleneck to support large scale vector search. There are only a few62

approaches working on the ANNS solutions for billon-scale datasets to minimize the memory cost.63

They can be divided into two categories: inverted index based and graph based methods.64

The inverted index based methods, such as IVFADC [23], FAISS [24] and IVFOADC+G+P [7],65

split the vector space into K Voronoi regions by KMeans clustering and only do search in a few66

regions that are closed to the query. To reduce the memory cost, they use vector quantization, e.g.67

Product Quantization (PQ) [22], to compress the vectors and store them in the memory. The inverted68

multi-index (IMI) [5] also uses PQ to compress vectors. It splits the feature space into multiple69

orthogonal subspaces and constructs a separate codebook for each subspace. The full feature space70

is produced as a Cartesian product of the corresponding subspaces. Multi-LOPQ[25] uses locally71

optimized PQ codebook to encode the displacements in the IMI structure. GNO-IMI [6] optimizes72

the IMI by using non-orthogonal codebooks to produce the centroids. Although they can cut down73

the memory usage to less than 64GB for one billion 128 dimensional vectors, the recall@1 is very74

low (only around 60%) due to lossy data compression. Although they can achieve better recall by75

returning 10 to 100 times more candidates for further reranking, it is often not acceptable in many76

scenarios.77

The graph based methods include DiskANN [21] and HM-ANN [33]. Both of them adopt the hybrid78

solution. DiskANN also stores the PQ compressed vectors in the memory while storing the navigating79

spread-out graph along with the full-precision vectors on the disk. When a query comes, it traverses80

the graph using best-first manner according to the distance of quantized vectors and then reranks81

the candidates according to distance of the full-precision vectors. Similarly, it uses the lossy data82

compression which will influence the recall quality even though full-precision vector reranking can83

help retrieve some missing candidates back. The high-cost random disk accesses limit the number of84

graph traverse and candidate reranking. HM-ANN leverages the heterogeneous memory by placing85

pivot points promoted by the bottom-up phase in the fast memory and navigable small world graph in86

the slow memory without data compression. However, it will lead to more than 1.5 times larger fast87

memory consumption. Moreover, the slow memory is still much expensive than disk and may be not88

available in some platforms.89

2



Figure 1: Example of boundary vector miss-
ing due to partial search. If we search yel-
low point, we will search green posting list
first since the centroid of green posting list
is closer to the yellow point although there
are some boundary points (colored red) in the
blue posting list that are much closer.

0 20 40 60 80 100 120 140
#visited postings

50

60

70

80

90

100

Qu
er

ie
s (

%
) (6, 81.78%)

(12, 90.48%)

(114, 99.02%)

recall@1 = 100%

Figure 2: Different queries require different num-
ber of posting lists for search. To recall top one
result on SIFT1M dataset, we find 80% of queries
only need to search 6 posting lists, while 99% of
queries need to search 114 posting lists.

3 SPANN90

In this paper, we propose SPANN, a simple but efficient vector indexing and search system, that91

follows the inverted index methodology. Different from previous inverted index based methods that92

leverage the lossy data compression to reduce the memory cost, SPANN adopts a simple memory-disk93

hybrid solution.94

Index structure: The data vectors X are divided into N posting lists {X1,X2, · · · ,XN}, X1 ∪95

X2 ∪ ... ∪XN = X1. The centroids of these posting lists, c1, c2, · · · , cN , are stored in the memory96

as the fast coarse-grained index that point to the location of the corresponding posting lists in the97

disk.98

Partial search: When a query q comes, we find the K closest centroids, {ci1, ci2, . . . , ciK}, K �99

N , and load the vectors in the posting lists Xi1 ,Xi2 , · · · ,XiK that correspond to the closest K100

centroids into memory for further fine-grained search.101

3.1 Challenges102

Posting length limitation: Since all the posting lists are stored in the disk, in order to reduce the103

disk accesses, we need to bound the length of each posting list so that it can be loaded into memory104

in only a few disk reads. This requires us to not only partition the data into a large number of posting105

lists but also balance the length of posting lists. This is very difficult due to the substantial high106

clustering cost and the balance partition problem itself. The imbalanced posting lists will lead to high107

variance of query latency especially when posting lists are stored in the disk.108

Boundary issue: The nearest neighbor vectors of a query q may locate in the boundary of multiple109

posting lists. Since we only search a small number of relevant posting lists, some true neighbors of110

q that located in other posting lists will be missing (Illustrated in Figure 1). If red points are only111

represented by the centroid of blue posting list, they will be missing in the nearest neighborhood112

search of yellow point.113

Diverse search difficulty: We find that different queries may have different search difficulty. Some114

queries only need to be searched in one or two posting lists while some queries require to be searched115

in a large number of posting lists (Illustrated in Figure 2). If we search the same number of posting116

lists for all queries, it will result in either low recall or long latency.117

All of the above challenges are the reasons why all of previous inverted index approaches adopt lossy118

data compression solution that stores all the compressed vectors and the posting lists in the memory.119

3.2 Key techniques to address the challenges120

In this paper, we introduce three key techniques to enable the memory-disk hybrid solution that solve121

the above challenges. In the index-building stage, we firstly limit the length of the posting lists to122

1For convenience, we use X to denote both the matrix and the vector set.

3



Figure 3: Hierarchical balanced
clustering: iteratively balanced
partition the vectors in a large
cluster (yellow cluster) into a
small number of small clusters
(green clusters) until each clus-
ter only contains limit number
of vectors (blue clusters).

Figure 4: Closure clustering as-
signment: assign boundary vec-
tors (green points) to multiple
closest clusters if its distances
to these clusters are nearly the
same (blue and yellow clusters).

Figure 5: Representative replica-
tion: use RNG rule to reduce the
similarity of two close posting
lists. The orange point will be
assigned to blue and grey post-
ing lists although it is closer to
yellow list than grey list.

effectively reduce the number of disk accesses for each posting list in the online search. Then we123

improves the quality of the posting list by expanding the points in the closure of the corresponding124

posting lists. This increases the recall probability of the vectors located on the boundary of the125

posting lists. In the search stage, we propose a query-aware scheme to dynamically prune the access126

of unnecessary posting lists to ensure both high recall and low latency. The detail design of each127

technique will be introduced in the following sections.128

3.2.1 Posting length limitation129

Limiting the length of posting lists means we need to partition the data vectors X into a large number130

of posting lists X1,X2, · · · ,XN . Balancing the length of posting lists means we need to minimize131

the variance of the posting length
∑N

i=1(|Xi| − |X|/N)2.132

To address the posting length balance problem, we can leverage the multi-constraint balanced133

clustering algorithm [27] to partition the vectors evenly into multiple posting lists:134

min
H,C
||X−HC||2F + λ

N∑
i=1

(

|X|∑
l=1

hli − |X|/N)2, s.t.
N∑
i=1

hli = 1. (1)

where C ∈ RN×m is the centroids, H ∈ {0, 1}|X|×N represents the cluster assignment,
∑|X|

l=1 hli135

is the number of vectors assigned to the i-th cluster (i.e. |Xi|) and λ is a trade-off hyper parameter136

between clustering and balance constraints.137

However, we find that when the vector number |X| and the partition number N are very large,138

directly using multi-constraint balanced clustering algorithm cannot work due to the difficulty of139

large N -partition balanced clustering problem and the extremely high clustering cost. Therefore, we140

introduce a hierarchical multi-constraint balanced clustering technique (Figure 3) to not only reduce141

the clustering time complexity from O(|X| ∗m ∗ N) to O(|X| ∗m ∗ k ∗ logk(N)) (k is a small142

constant) but also balance the length of posting lists. We cluster the vectors into a small number143

(i.e. k) of clusters iteratively until each posting list contains limit number of vectors. By using this144

technique, we can greatly reduce not only the length of each posting list (disk accesses) but also the145

index build cost.146

Moreover, since the number of centroids is very large, finding the nearest posting lists for a query147

needs to consume large computation cost. In order to make the navigating computation more148

meaningful, we replace the centroid with the vector that is closest to the centroid to represent each149

posting list. Then the wasted navigating computation is transformed to the distance computation for a150

subset of real candidates.151

What’s more, in order to quickly find a small number of nearest posting lists for a query, we create152

a memory SPTAG [10] (MIT license) index for all the vectors that represent the centorids of the153

posting lists. SPTAG constructs space partition trees and a relative neighborhood graph as the vector154

index which can speedup the nearest centroids search to sub-millisecond response time.155

4



3.2.2 Posting list expansion156

To deal with boundary issue, we need to increase the visibility for those vectors that are located in157

the boundary of the posting lists. One simple way is to assign each vector to multiple close clusters.158

However, it will increase the posting size significantly leading to the heavy disk reads. Therefore, we159

introduce a closure multi-cluster assignment solution for boundary vectors on the final clustering step160

– assign a vector to multiple closest clusters instead of only the closest one if the distance between the161

vector and these clusters are nearly the same (Figure 4 gives an example):162

x ∈ Xij ⇐⇒ Dist(x, cij) ≤ (1 + ε)×Dist(x, ci1),

Dist(x, ci1) ≤ Dist(x, ci2) ≤ · · · ≤ Dist(x, ciK)
(2)

This means we only duplicate the boundary vectors. For those vectors which are very close to the163

centroid of a cluster, they still keep one copy. By doing so, we can effectively limit the capacity164

increase due to closure cluster assignment while increasing the recall probability of these boundary165

vectors: they will be recalled if any of their closest posting lists is searched.166

Since each posting list is small and we use closure assignment which will result in some posting lists167

that are very close to each other contain the same duplicated vectors (For example, the green vectors168

belong to both yellow and blue clusters). Too many duplicated vectors in the close posting lists will169

also waste the high-cost disk reads. Therefore, we further optimize the closure clustering assignment170

by using RNG rule [37] to choose multiple representative clusters for the assignment of an boundary171

vector in order to reduce the similarity of two close posting lists (Figure 5). RNG rule can be simply172

defined as we will skip the cluster ij for vector x if Dist(cij ,x) > Dist(cij−1, cij). The insight173

is two close posting lists are more likely to be both recalled by the navigating index. Instead of174

storing similar vectors in close posting lists, it would be better to store different vectors to increase175

the number of seen vectors in the online search. From the vector side, it is better to be represented by176

posting lists located in different directions (blue and grey posting lists in the example) than just being177

represented by posting lists located in the same direction (blue and yellow posting lists).178

3.2.3 Query-aware dynamic pruning179

In the index-search stage, to process different queries effectively with different resource budget, we180

introduce the query-aware dynamic pruning technique to reduce the number of posting lists to be181

searched according to the distance between query and centroids. Instead of searching closest K182

posting lists for all queries, we dynamically decide a posting list to be searched only if the distance183

between its centroid and query is almost the same as the distance between query and the closest184

centroid:185

q
search−→ Xij ⇐⇒ Dist(q, cij) ≤ (1 + ε)×Dist(q, ci1),

Dist(q, ci1) ≤ Dist(q, ci2) ≤ · · · ≤ Dist(q, ciK)
(3)

By further reducing those unnecessary posting lists in the closest K posting lists, we can significantly186

reduce the query latency while still preserving the high recall by leveraging the resource more187

reasonably and effectively.188

4 Experiment189

In this section we first present the experimental comparison of SPANN with the current state-of-the-art190

ANNS algorithms. Then we conduct the ablation studies to further analyze the contribution of each191

technique. Finally, we setup an experiment to demonstrate the scalability of SPANN solution in the192

distributed search scenario.193

4.1 Experiment setup194

We conduct all the experiments on a workstation machine with Ubuntu 16.04.6 LTS, which is195

equipped with two Intel Xeon 8171M CPU (2600 MHz frequency and 52 CPU cores), 128GB196

memory and 2.6TB SSD organized in RAID-0. The datasets we use are as follows:197

5



0 1 2 3 4 5 6
latency (ms)

88

90

92

94

96

98

100

re
ca

ll@
1 

(%
)

SPANN
DiskANN

0 1 2 3 4 5 6
latency (ms)

88

90

92

94

96

98

100

re
ca

ll@
10

 (%
)

SPANN
DiskANN

Figure 6: SPANN vs. DiskANN on SIFT1B
dataset

0 1 2 3 4 5 6
latency (ms)

86

88

90

92

94

96

98

100

re
ca

ll@
1 

(%
)

SPANN
DiskANN

0 1 2 3 4 5 6
latency (ms)

86

88

90

92

94

96

98

100

re
ca

ll@
10

 (%
)

SPANN
DiskANN

Figure 7: SPANN vs. DiskANN on SPACEV1B
dataset

1. SIFT1M dataset [2] is the most commonly used dataset generated from images for evaluating198

the performance of memory-based ANNS algorithms, which contains one million of 128-199

dimensional float SIFT descriptors as the base set and 10,00 query descriptors as the test200

set.201

2. SIFT1B dataset [2] is a classical dataset for evaluating the performance of ANNS algorithms202

that support large scale vector search, which contains one billion of 128-dimensional byte203

vectors as the base set and 10,000 query vectors as the test set.204

3. SPACEV1B dataset [4](O-UDA license) is a dataset from commercial search engine which205

derives from production data. It represents another different content encoding – deep natural206

language encoding. It contains one billion of 100-dimensional byte vectors as a base set and207

29,316 query vectors as the test set.208

The comparison metrics to demonstrate the performance are:209

1. Recall: We compare the R vector ids returned by ANNS with the R ground truth vector ids210

to calculate the recall@R. Since there exist multiple data vectors sharing the same distance211

with the query vector, we also replace some of the ground truth vector ids with the vector212

ids that sharing the same distance to the query vector in the recall calculation.213

2. Latency: We use the query response time in milliseconds as the query latency.214

3. VQ (Vector-Query): The product of the number of vectors and the number of queries215

per second a machine can serve (which is introduced in GRIP [42]). It demonstrates the216

serving capacity of the search engine which takes both query latency and memory cost into217

consideration. The higher VQ the system has, the less resource cost it consumes. Here we218

use the number of vectors per KB × the number of queries per second as the VQ capacity.219

4.2 SPANN on single machine220

In this section, we demonstrate that inverted index based SPANN solution can also achieve the221

state-of-the-art performance in terms of recall, latency and memory cost. We first compare SPANN222

with the state-of-the-art billion-scale disk-based ANNS algorithms on two billion-scale datasets. Then223

we conduct an experiment on SIFT1M dataset to compare the VQ capacity with the start-of-the-art224

all-in-memory ANNS algorithms. For all the experiments in this section, we use the following hyper-225

parameters for SPANN: 1) use at most 8 closure replicas for each vector in the closure clustering226

assignment; 2) limit the max posting list size to 12KB for byte vectors and 48KB for float vectors.227

We increase the maximum number of posting lists to be searched in order to get the different recall228

quality.229

4.2.1 Comparison with state-of-the-art billion-scale disk-based ANNS algorithms230

We choose the state-of-the-art disk-based ANNS algorithms that can support billion-scale datasets as231

our comparison targets. we do not compare with HM-ANN [33] since it is not open sourced and the232

required PMM hardware may not be available in some platforms. Therefore, we compare SPANN233

only with the state-of-the-art billion-scale disk-based ANNS algorithm DiskANN. We use the default234

hyper parameters for DiskANN (same as the paper [21] described).235

We carefully adjust the navigating memory index size of SPANN by choosing suitable number of236

posting lists (about 10-12% of total vector number) to ensure both algorithms consume the same237

amount of memory (about 32GB). Figure 6 demonstrates the performance for SIFT1B dataset. From238

6



90 92 94 96 98 100
recall@1 (%)

0

10000

20000

30000

40000

VQ

SPANN
SCANN
NSG
 

HNSW
NGT-ONNG
NGT-PANNG
N2

88 90 92 94 96 98 100
recall@10 (%)

0

5000

10000

15000

20000

25000

30000

35000

VQ

SPANN
SCANN
NSG
 

HNSW
NGT-ONNG
NGT-PANNG
N2

Figure 8: VQ of different ANNS indices

0.4 0.6 0.8 1.0 1.2 1.4 1.6
latency (ms)

94

95

96

97

98

99

100

re
ca

ll@
1 

(%
)

HBC centroids
Random centroids

0.5 1.0 1.5 2.0 2.5 3.0
latency (ms)

94

95

96

97

98

99

100

re
ca

ll@
10

 (%
)

HBC centroids
Random centroids

Figure 9: Random VS HBC centroids

the results, we find SPANN significantly outperforms DiskANN in both recall@1 and recall@10239

especially in the low query latency budget (less than 5ms). Especially, SPANN is more than two240

times faster than DiskANN to reach the 95% recall@1 and recall@10.241

The performance result for SPACEV1B dataset is shown in figure 7. It also demonstrates that SPANN242

outperforms DiskANN in both recall@1 and recall@10 when query latency budget is small (less243

than 5ms). Especially, DiskANN cannot achieve good recall quality (90%) in less than 4ms, while244

SPANN can obtain a recall of 90% in just around 1ms.245

4.2.2 Comparison with state-of-the-art all-in-memory ANNS algorithms246

Then we conduct an experiment on SIFT1M dataset to compare the VQ capacity with the start-of-247

the-art all-in-memory ANNS algorithms, NSG [16], HNSW [29], SCANN [17], NGT-ONNG [20],248

NGT-PANNG [19] and N2 [30]. These algorithms have presented state-of-the-art performance249

in the ann-benchmarks [1]. We choose VQ capacity instead of latency as the comparison metric250

since these algorithms use much more memory to trade for low latency. However, memory is an251

expensive resource which has become the bottleneck for those algorithms to support large scale252

datasets. Therefore, we should take both memory and latency into consideration in the performance253

comparison.254

Most of these algorithms are graph based algorithms. For NSG, we get the pre-built index from [3]255

and run the performance test with varying SEARCH_L from 1 to 256 which controls the quality of256

the search results. For HNSW (nmslib), SCANN, NGT-ONNG, NGT-PANNG and N2 we use the257

hyper parameters they provided in the ann-benchmarks [1] that achieve the best performance for the258

SIFT1M dataset.259

Figure 8 demonstrates the VQ capacity of all the algorithms on recall@1 and recall@10. We can see260

from the result that SPANN achieves the best VQ capacity consistently across almost all the recall261

levels. This means although SPANN cannot achieve as low latency as the all-in-memory ANNS262

algorithms due to the high-cost disk accesses during the search, it can obtain the best serving capacity263

in the large scale vector search scenario.264

4.2.3 Ablation studies265

In this section, we conduct a set of experiments to do the ablation studies on each of our techniques266

in the SIFT1M dataset.267

Hierarchical balanced clustering There are two fast ways to partition the vectors on a single268

machine into a large number of posting lists: 1) random choose a set of points as the posting list269

centroids; 2) using hierarchical balanced clustering (HBC) to generate a set of centroids. We compare270

the index quality by generating 16% points as the centroids using these two ways.271

Figure 9 shows the recall and latency performance of these two centroids choosing algorithms. For272

both recall@1 and recall@10, we can see HBC centroid selection is better than random selection.273

Moreover, HBC is very fast which clusters one million points into 160K clusters in only around 50274

seconds with 64 threads. The whole SPANN index can be built in around 2 minutes.275

Moreover, how many centroids we need to generate? Small number of centroids can reduce the276

navigating memory index size. However, large number of centroids usually means better performance.277

Therefore, we need to make reasonable trade-off between the memory usage and the performance.278

Figure 10 compares the performance of different number of centroids. From the result, we can see279

that the performance will increase significantly with the number of centroids increase when the280

number of centroids is small. However, when the number of centroids becomes large enough (16%),281

7



1 2 3 4 5
latency (ms)

85.0

87.5

90.0

92.5

95.0

97.5

100.0

re
ca

ll@
1 

(%
)

4 % centroids
8 % centroids
16% centroids
20 % centroids

1 2 3 4 5
latency (ms)

85.0

87.5

90.0

92.5

95.0

97.5

100.0

re
ca

ll@
10

 (%
)

4% centroids
8% centroids
16% centroids
20% centroids

Figure 10: Different number of centroids

1 2 3 4
latency (ms)

70

80

90

100

re
ca

ll@
1 

(%
)

1 replica
4 replicas
8 replicas
10 replicas

0.5 1.0 1.5 2.0 2.5 3.0 3.5
latency (ms)

70

80

90

100

re
ca

ll@
10

 (%
)

1 replica
4 replicas
8 replicas
10 replicas

Figure 11: Different number of closure replicas

0.5 1.0 1.5 2.0
latency (ms)

94

95

96

97

98

99

100

re
ca

ll@
1 

(%
)

With dynamic cutting
Without dynamic cutting

0.5 1.0 1.5 2.0 2.5
latency (ms)

94

95

96

97

98

99

100

re
ca

ll@
10

 (%
)

With dynamic cutting
Without dynamic cutting

Figure 12: With and without query-awre dy-
namic pruning

0 5 10 15 20 25 30 35 40
machine ID

0.0

0.5

1.0

1.5

2.0

2.5

#v
ec

to
rs

1e8
SPANN 8 partitions
SPANN 16 partitions
SPANN 32 partitions
Random partition

0 5 10 15 20 25 30 35 40
machine ID

20

40

60

80

100

qu
er

y 
di

sp
at

ch
ed

(%
)

SPANN 8 partitions
SPANN 16 partitions
SPANN 32 partitions
Random partition

Figure 13: Data size and query access distribu-
tion across different machines

the performance will not increase any more. Therefore, we can choose 16% of points as the centroids282

to achieve both good search performance and small memory usage.283

Closure clustering assignment To use closure clustering assignment, we need to assign a vector to284

multiple closed clusters to increase its recall probability during the search. Then at most how many285

closure replicas we need to duplicate for a vector to ensure the performance? Too small replicas286

cannot help to retrieve those boundary vectors back. However, too many replicas will increase the287

posting size greatly which will also affect the performance. Figure 11 demonstrates the performance288

of different number of replicas for closure clustering assignment. From the result, we can see that289

using more than one replicas improves the performance significantly. However, when the number290

of replicas is larger than 8, the performance cannot be improved any more. Therefore, we choose 8291

replicas for all of our experiments.292

Query-aware dynamic pruning In order to process different queries effectively during the online293

search, we introduce the query-aware dynamic pruning technique to further reduce the number of294

posting lists to be searched by pruning those unnecessary posting lists in the closest K posting lists.295

We compare the performance with and without query-aware dynamic pruning in the figure 12. From296

the result, we can see that with query-aware dynamic pruning, we can further reduce the query latency297

without recall drop especially when the latency budget is small. Note that, this technique can reduce298

not only the query latency but also the resource usage for a query.299

4.3 Extension of SPANN to distributed search scenario300

Compared to the graph base approaches, the additional advantage for inverted index based SPANN301

approach is that the partial search on the nearest posting lists idea can be easily extended to the302

distributed search scenario, which can handle super large scale vector search with high efficiency and303

low serving cost. To demonstrate the scalability of SPANN in distributed search scenario, we partition304

the data vectors X evenly into M partitions {X1,X2, · · · ,XM} by using the multi-constraint305

balanced clustering and closure clustering assignment techniques in the distributed index build stage,306

where M is the number of machines. In the online search stage, we also adopt the query-aware307

dynamic pruning technique to reduce the number of dispatched machines, which effectively limits308

the total cpu and IO cost for a query.309

The only challenge for us is that there may have some hot-spot machines. Therefore, we need to310

balance not only the data size but also the query access in each machine to avoid the hot spots. To311

address the hot-spot challenge, we partition the vectors into multiple small partitions (larger than312

machine number) and then use best-fit bin-packing algorithm [14] to pack the small partitions into313

large bins (the number of bins equals to the number of machines) according to the history query314

access distribution. By doing so, we can effectively balance not only the data size but also the queries315

processed on each machine.316

8



Random partition Balanced clustering Balanced clustering + closure assignment SPANN
0

5

10

15

20

25

30

35

#m
ac

hi
ne

s d
isp

at
ch

ed

32.0

9.0 8.0 6.3

Figure 14: Comparison of #machines dispatched when aggregated recall@10 meets 99%

We compare the optimized SPANN solution with traditional random partition and all dispatch solution317

to demonstrate the effectiveness of workload reduction and scalability of SPANN in distributed search318

scenario. In order to make the result reproducible, we conduct the experiments below based on the319

SPACEV1B dataset. In order to focus on the distributed search effectiveness and remove the influence320

of ANNS on a single machine, here we use brute-force single machine search results to calculate the321

aggregated recall. We use one million queries sampled from the query set as the query access history322

and evenly split it into three sets: train, valid and test. The train set is used in offline distributed index323

build, and the test set is used in the online search evaluation.324

4.3.1 Workload reduction and scalability325

Figure 13 shows the number of vectors and the number of test query accesses in each machine when326

partitioning all the base vectors into 8, 16, and 32 partitions. From the result, we can see that SPANN327

distributes all the data and query accesses evenly into different machines. Although it increases328

the number of vectors in each machine by 20% due to closure assignment, it significantly reduces329

the query accesses in each machine compared to the random partition solution. Moreover, SPANN330

can continually reduce the query accesses in each machine by using more machines while random331

partition cannot. This means we can always add more machines to support more queries per second,332

which demonstrates good scalability of our system. The reason why we can achieve good scalability333

is that we effectively bound the number of machines to do the search for each query.334

4.3.2 Analysis335

Then we analyze how each technique affects the performance. We use 32 partitions case to do the336

ablation study. Figure 14 demonstrate the number of machines to search when we require the final337

aggregated recall@10 above 99%. For random partition solution, it needs to dispatch the query338

to all 32 machines for search. Only use multi-constraints balanced clustering technique, we can339

significantly reduce the number of dispatched machines to 9. By adding closure assignment, we can340

further reduce the number of dispatched machines to 8. When all the techniques applied (including341

query-aware dynamic pruning in the online search), we can finally reduce the number of dispatched342

machines to 6.3. This means we can save about 80.3% of computation and IO cost for a query.343

Meanwhile, by reducing the number of machines to search for a query, we can further reduce the344

query latency since we reduce the number of candidates for final aggregation.345

5 Conclusion346

In this paper, we introduce SPANN, a simple but surprising efficient inverted index based ANNS347

system, which achieves state-of-the-art performance for large scale datasets in terms of recall,348

latency and memory cost. Different from previous inverted index based methods that use lossy data349

compression to address the memory bottleneck, SPANN adopts a simple memory-disk hybrid solution350

which only stores the centroids of the posting lists in the memory. We guarantee both low latency351

and high recall by greatly reducing the number of disk accesses and improving the quality of posting352

lists. Experiment results show SPANN can not only establish the new state-of-the-art performance for353

billion scale datasets but also achieve good scalability when extended to distributed search scenario.354

This demonstrates the ability of hierarchical SPANN to support super large scale vector search with355

high efficiency and low serving cost.356

9



References357

[1] [n.d.]. Benchmarking nearest neighbors. http://ann-benchmarks.com/.358

[2] [n.d.]. Datasets for approximate nearest neighbor search. http://corpus-texmex.irisa.359

fr/.360

[3] [n.d.]. NSG : Navigating Spread-out Graph For Approximate Nearest Neighbor Search. https:361

//github.com/ZJULearning/nsg.362

[4] [n.d.]. SPACEV1B: A billion-Scale vector dataset for text descriptors. https://github.com/363

microsoft/SPTAG/tree/master/datasets/SPACEV1B.364

[5] Artem Babenko and Victor Lempitsky. 2014. The inverted multi-index. IEEE transactions on365

pattern analysis and machine intelligence 37, 6 (2014), 1247–1260.366

[6] Artem Babenko and Victor Lempitsky. 2016. Efficient indexing of billion-scale datasets of367

deep descriptors. In Proceedings of the IEEE Conference on Computer Vision and Pattern368

Recognition. 2055–2063.369

[7] Dmitry Baranchuk, Artem Babenko, and Yury Malkov. 2018. Revisiting the inverted indices for370

billion-scale approximate nearest neighbors. In Proceedings of the European Conference on371

Computer Vision (ECCV). 202–216.372

[8] J.S. Beis and D.G. Lowe. 1997. Shape indexing using approximate nearest-neighbour search373

in high-dimensional spaces. In 1997 Conference on Computer Vision and Pattern Recognition374

{CVPR}’97, June 17-19, 1997, San Juan, Puerto Rico. 1000–1006.375

[9] Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative searching.376

Commun. ACM 18, 9 (1975), 509–517.377

[10] Qi Chen, Haidong Wang, Mingqin Li, Gang Ren, Scarlett Li, Jeffery Zhu, Jason Li, Chuanjie378

Liu, Lintao Zhang, and Jingdong Wang. 2018. SPTAG: A library for fast approximate nearest379

neighbor search. https://github.com/Microsoft/SPTAG380

[11] Sanjoy Dasgupta and Yoav Freund. 2008. Random projection trees and low dimensional381

manifolds. Proceedings of the 40th Annual {ACM} Symposium on Theory of Computing,382

Victoria, British Columbia, Canada, May 17-20, 2008 (2008), 537–546. https://doi.org/383

10.1145/1374376.1374452384

[12] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. 2004. Locality-sensitive385

Hashing Scheme Based on P-stable Distributions. In Proceedings of the Twentieth Annual386

Symposium on Computational Geometry (Brooklyn, New York, USA) (SCG ’04). 253–262.387

[13] Wei Dong, Moses Charikar, and Kai Li. 2011. Efficient k-nearest neighbor graph construction388

for generic similarity measures. In Proceedings of the 20th International Conference on World389

Wide Web, WWW 2011, Hyderabad, India, March 28 - April 1, 2011. 577–586. https:390

//doi.org/10.1145/1963405.1963487391

[14] György Dósa and Jiří Sgall. 2014. Optimal analysis of Best Fit bin packing. In International392

Colloquium on Automata, Languages, and Programming. 429–441.393

[15] Jerome H. Freidman, Jon Louis Bentley, and Raphael Ari Finkel. 1977. An Algorithm for394

Finding Best Matches in Logarithmic Expected Time. ACM Trans. Math. Software 3, 3 (1977),395

209–226.396

[16] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate Nearest397

Neighbor Search With The Navigating Spreading-out Graphs. PVLDB 12, 5 (2019), 461 – 474.398

[17] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv399

Kumar. 2020. Accelerating Large-Scale Inference with Anisotropic Vector Quantization. In400

International Conference on Machine Learning. https://arxiv.org/abs/1908.10396401

10

http://ann-benchmarks.com/
http://corpus-texmex.irisa.fr/
http://corpus-texmex.irisa.fr/
http://corpus-texmex.irisa.fr/
https://github.com/ZJULearning/nsg
https://github.com/ZJULearning/nsg
https://github.com/ZJULearning/nsg
https://github.com/microsoft/SPTAG/tree/master/datasets/SPACEV1B
https://github.com/microsoft/SPTAG/tree/master/datasets/SPACEV1B
https://github.com/microsoft/SPTAG/tree/master/datasets/SPACEV1B
https://github.com/Microsoft/SPTAG
https://doi.org/10.1145/1374376.1374452
https://doi.org/10.1145/1374376.1374452
https://doi.org/10.1145/1374376.1374452
https://doi.org/10.1145/1963405.1963487
https://doi.org/10.1145/1963405.1963487
https://doi.org/10.1145/1963405.1963487
https://arxiv.org/abs/1908.10396


[18] Kiana Hajebi, Yasin Abbasi-Yadkori, Hossein Shahbazi, and Hong Zhang. 2011. Fast Approxi-402

mate Nearest-Neighbor Search with k-Nearest Neighbor Graph. In IJCAI 2011, Proceedings403

of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Catalonia,404

Spain, July 16-22, 2011. 1312–1317. https://doi.org/10.5591/978-1-57735-516-8/405

IJCAI11-222406

[19] Masajiro Iwasaki. 2016. Pruned bi-directed k-nearest neighbor graph for proximity search. In407

International Conference on Similarity Search and Applications. Springer, 20–33.408

[20] Masajiro Iwasaki and Daisuke Miyazaki. 2018. Optimization of indexing based on k-nearest409

neighbor graph for proximity search in high-dimensional data. arXiv preprint arXiv:1810.07355410

(2018).411

[21] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar Krishnawamy,412

and Rohan Kadekodi. 2019. Rand-nsg: Fast accurate billion-point nearest neighbor search on a413

single node. Advances in Neural Information Processing Systems 32 (2019), 13771–13781.414

[22] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization for nearest415

neighbor search. IEEE transactions on pattern analysis and machine intelligence 33, 1 (2010),416

117–128.417

[23] Hervé Jégou, Romain Tavenard, Matthijs Douze, and Laurent Amsaleg. 2011. Searching in418

one billion vectors: re-rank with source coding. In 2011 IEEE International Conference on419

Acoustics, Speech and Signal Processing (ICASSP). IEEE, 861–864.420

[24] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale similarity search with421

GPUs. arXiv preprint arXiv:1702.08734 (2017).422

[25] Yannis Kalantidis and Yannis Avrithis. 2014. Locally optimized product quantization for423

approximate nearest neighbor search. In Proceedings of the IEEE Conference on Computer424

Vision and Pattern Recognition. 2321–2328.425

[26] Brian Kulis and Trevor Darrell. 2009. Learning to Hash with Binary Reconstructive Embed-426

dings.. In NIPS, Vol. 22. Citeseer, 1042–1050.427

[27] Hongfu Liu, Ziming Huang, Qi Chen, Mingqin Li, Yun Fu, and Lintao Zhang. 2018. Fast428

Clustering with Flexible Balance Constraints. In 2018 IEEE International Conference on Big429

Data (Big Data). IEEE, 743–750.430

[28] Ting Liu, Andrew W Moore, Alexander Gray, and Ke Yang. 2004. An investigation of431

practical approximate nearest neighbor algorithms. Advances in Neural Information Processing432

Systems 17 [Neural Information Processing Systems, {NIPS} 2004, December 13-18, 2004,433

Vancouver, British Columbia, Canada] (2004), 825–832. http://papers.nips.cc/paper/434

2666-an-investigation-of-practical-approximate-nearest-neighbor-algorithms435

[29] Yu A Malkov and Dmitry A Yashunin. 2016. Efficient and robust approximate nearest neighbor436

search using Hierarchical Navigable Small World graphs. arXiv preprint arXiv:1603.09320437

(2016).438

[30] Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate nearest neighbor439

search using hierarchical navigable small world graphs. IEEE transactions on pattern analysis440

and machine intelligence 42, 4 (2018), 824–836.441

[31] Marius Muja and David G. Lowe. 2014. Scalable Nearest Neighbour Algorithms for High442

Dimensional Data. IEEE Transactions on Pattern Analysis and Machine Intelligence 36, 11443

(2014), 2227–2240. https://doi.org/10.1109/TPAMI.2014.2321376444

[32] David Nistér and Henrik Stewénius. 2006. Scalable recognition with a vocabulary tree. 2006445

{IEEE} Computer Society Conference on Computer Vision and Pattern Recognition {(CVPR}446

2006), 17-22 June 2006, New York, NY, {USA} 2 (2006), 2161–2168. https://doi.org/10.447

1109/CVPR.2006.264448

11

https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-222
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-222
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-222
http://papers.nips.cc/paper/2666-an-investigation-of-practical-approximate-nearest-neighbor-algorithms
http://papers.nips.cc/paper/2666-an-investigation-of-practical-approximate-nearest-neighbor-algorithms
http://papers.nips.cc/paper/2666-an-investigation-of-practical-approximate-nearest-neighbor-algorithms
https://doi.org/10.1109/TPAMI.2014.2321376
https://doi.org/10.1109/CVPR.2006.264
https://doi.org/10.1109/CVPR.2006.264
https://doi.org/10.1109/CVPR.2006.264


[33] Jie Ren, Minjia Zhang, and Dong Li. 2020. HM-ANN: Efficient Billion-Point Nearest Neighbor449

Search on Heterogeneous Memory. Advances in Neural Information Processing Systems 33450

(2020).451

[34] Anshumali Shrivastava and Ping Li. 2014. Asymmetric LSH (ALSH) for Sublinear Time452

Maximum Inner Product Search (MIPS). In NIPS.453

[35] Robert F. Sproull. 1991. Refinements to nearest-neighbor searching in k-dimensional trees.454

Algorithmica 6, 1-6 (1991), 579–589.455

[36] Eric Sadit Tellez, Guillermo Ruiz, and Edgar Chavez. 2016. Singleton indexes for nearest456

neighbor search. Information Systems 60 (2016), 50–68.457

[37] Godfried T Toussaint. 1980. The relative neighbourhood graph of a finite planar set. Pattern458

recognition 12, 4 (1980), 261–268.459

[38] Jingdong Wang and Shipeng Li. 2012. Query-driven iterated neighborhood graph search for460

large scale indexing. In Proceedings of the 20th ACM international conference on Multimedia.461

ACM, 179–188.462

[39] Jing Wang, Jingdong Wang, Gang Zeng, Zhuowen Tu, Rui Gan, and Shipeng Li. 2012. Scalable463

k-nn graph construction for visual descriptors. In Computer Vision and Pattern Recognition464

(CVPR), 2012 IEEE Conference on. IEEE, 1106–1113.465

[40] Jingdong Wang, Naiyan Wang, You Jia, Jian Li, Gang Zeng, Hongbin Zha, and Xian Sheng Hua.466

2014. Trinary-projection trees for approximate nearest neighbor search. IEEE Transactions467

on Pattern Analysis and Machine Intelligence 36, 2 (2014), 388–403. https://doi.org/10.468

1109/TPAMI.2013.125469

[41] Peter N Yianilos. 1993. Data Structures and Algorithms for Nearest Neighbor Search in General470

Metric Spaces. Proceedings of the Fourth Annual {ACM/SIGACT-SIAM} Symposium on Discrete471

Algorithms, 25-27 January 1993, Austin, Texas. (1993), 311–321.472

[42] Minjia Zhang and Yuxiong He. 2019. Grip: Multi-store capacity-optimized high-performance473

nearest neighbor search for vector search engine. In Proceedings of the 28th ACM International474

Conference on Information and Knowledge Management. 1673–1682.475

Checklist476

1. For all authors...477

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s478

contributions and scope? [Yes]479

(b) Did you describe the limitations of your work? [Yes]480

(c) Did you discuss any potential negative societal impacts of your work? [N/A]481

(d) Have you read the ethics review guidelines and ensured that your paper conforms to482

them? [Yes]483

2. If you are including theoretical results...484

(a) Did you state the full set of assumptions of all theoretical results? [N/A]485

(b) Did you include complete proofs of all theoretical results? [N/A]486

3. If you ran experiments...487

(a) Did you include the code, data, and instructions needed to reproduce the main ex-488

perimental results (either in the supplemental material or as a URL)? We include the489

data and instructions needed for reproducing our experiments. For code, we will open490

source the code soon after our internal review.491

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they492

were chosen)? [Yes]493

(c) Did you report error bars (e.g., with respect to the random seed after running experi-494

ments multiple times)? [No]495

12

https://doi.org/10.1109/TPAMI.2013.125
https://doi.org/10.1109/TPAMI.2013.125
https://doi.org/10.1109/TPAMI.2013.125


(d) Did you include the total amount of compute and the type of resources used (e.g., type496

of GPUs, internal cluster, or cloud provider)? [Yes]497

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...498

(a) If your work uses existing assets, did you cite the creators? [Yes]499

(b) Did you mention the license of the assets? [Yes]500

(c) Did you include any new assets either in the supplemental material or as a URL? [No]501

(d) Did you discuss whether and how consent was obtained from people whose data you’re502

using/curating? [Yes]503

(e) Did you discuss whether the data you are using/curating contains personally identifiable504

information or offensive content? [N/A]505

5. If you used crowdsourcing or conducted research with human subjects...506

(a) Did you include the full text of instructions given to participants and screenshots, if507

applicable? [N/A]508

(b) Did you describe any potential participant risks, with links to Institutional Review509

Board (IRB) approvals, if applicable? [N/A]510

(c) Did you include the estimated hourly wage paid to participants and the total amount511

spent on participant compensation? [N/A]512

13


	Introduction
	Background and Related Work
	SPANN
	Challenges
	Key techniques to address the challenges
	Posting length limitation
	Posting list expansion
	Query-aware dynamic pruning


	Experiment
	Experiment setup
	SPANN on single machine
	Comparison with state-of-the-art billion-scale disk-based ANNS algorithms
	Comparison with state-of-the-art all-in-memory ANNS algorithms
	Ablation studies

	Extension of SPANN to distributed search scenario
	Workload reduction and scalability
	Analysis


	Conclusion

