
Reinforcement Learning Enhanced Explainer for
Graph Neural Networks

Anonymous Author(s)
Affiliation
Address
email

Abstract

Graph neural networks (GNNs) have recently emerged as revolutionary technolo-1

gies for machine learning tasks on graphs. In GNNs, the graph structure is generally2

incorporated with node representation via the message passing scheme, making the3

explanation much more challenging. Given a trained GNN model, a GNN explainer4

aims to identify a most influential subgraph to interpret the prediction of an instance5

(e.g., a node or a graph), which is essentially a combinatorial optimization prob-6

lem over graph. The existing works solve this problem by continuous relaxation7

or search-based heuristics. But they suffer from key issues such as violation of8

message passing and hand-crafted heuristics, leading to inferior interpretability. To9

address these issues, we propose a RL-enhanced GNN explainer, RG-Explainer,10

which consists of three main components: starting point selection, iterative graph11

generation and stopping criteria learning. RG-Explainer could construct a con-12

nected explanatory subgraph by sequentially adding nodes from the boundary of13

the current generated graph, which is consistent with the message passing scheme.14

Further, we design an effective seed locator to select the starting point, and learn15

stopping criteria to generate superior explanations. Extensive experiments on both16

synthetic and real datasets show that RG-Explainer outperforms state-of-the-art17

GNN explainers. Moreover, RG-Explainer can be applied in the inductive setting,18

demonstrating its better generalization ability.19

1 Introduction20

Graph Neural Networks (GNNs) extend neural network models on ubiquitous graph data via utilizing21

the message passing scheme to incorporate graph structures with node features. They have achieved22

state-of-the-art performance not only in classic machine learning tasks on graphs, e.g., node classifi-23

cation [10, 25], link prediction [35], and graph classification [30], but also in reasoning tasks, e.g.,24

intuitive physics [4], mathematical reasoning [23], and IQ tests [3]. Similar to most deep learning25

methods, one major limitation of GNNs is the lack of the interpretability for the predicted results; a26

post-hoc analysis is usually needed to explain the results.27

To enhance the interpretability of GNNs, a line of works [31, 16, 27, 34, 28] focused on developing28

GNN explainers. The goal of GNN explainers is to identify a most influential subgraph structure to29

interpret the predicted label of an instance (e.g., a node or a graph). It can be generally formulated as30

an optimization problem that maximizes the mutual information between the predicted results and31

the distribution of relevant subgraphs under some size constraints.32

The pioneering works, e.g., GNNExplainer [31] and PGExplainer [16], attempt to solve the opti-33

mization problem with continuous relaxation. These methods optimize a soft mask matrix for edges,34

and select the important nodes/edges by the threshold. However, they cannot guarantee that nodes35

and edges in the output subgraph are connected. Thus, their explanatory subgraphs cannot explicitly36
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visualize the message passing paths. Besides, they consider the importance of each edge indepen-37

dently, and ignore the interactions among selected nodes and edges. Some recent works, such as38

SubgraphX [34] and Causal Screening [28], design the search criteria and use search-based methods39

to solve the optimization problem. Due to the combinatorial property of searching explanatory graph40

structures, it is difficult to design a general hand-crafted search criterion. These criteria are limited on41

specific situations and thus not widely applicable.42

To address these issues, we propose RG-Explainer, which adopts reinforcement learning to explain43

GNNs’ predictions. Our framework is inspired by classic combinatorial optimization solvers, which44

consists of three crucial steps: starting point selection, iterative graph generation and stopping45

criteria learning. These three components work together to generate an explanatory graph that46

interprets the predicted label of a given node/graph instance, as we elaborate next.47

Firstly, starting point selection selects the most important node as the seed node in the instance. If the48

task is to interpret the prediction of a specific node label, then the most important node refers to the49

node itself. To explain a graph label, we design a seed locator to learn the node that influences the50

graph label the most. Iterative graph generation is the key module in our method, which generates the51

nodes in the explanatory graph sequentially. Specifically, we add an influential node (action) from52

the neighbors based on the current generated graph (state) at each step. It explicitly guarantees the53

connectivity of the generated graph. The generation process is controlled by the reward, i.e., the54

mutual information between the original predicted label and the label made by the generated graph.55

To ensure a compact and meaningful explanatory graph, we also involve some constraints into the56

reward, such as size loss, radius penalty and similarity loss. Finally, stopping criteria are learned to57

further avoid generating very large explanatory graphs.58

Furthermore, our method has better generalization ability and can be applied in both transductive59

and inductive setting. Different from the search-based methods, we learn the heuristics from the data60

automatically. A well-trained RG-Explainer can infer the explanations of instances which are not61

involved in the training phase.62

We conduct extensive experiments on both synthetic and real-world datasets to show that the proposed63

RG-Explainer can achieve superior performance compared to state-of-the-art GNN explainers. In64

particular, our visualization results further demonstrate the better intepretability of our method.65

2 Related Work66

Graph Neural Networks. Graph neural networks (GNNs) have achieved great success on non-67

Euclidean data, e.g., graphs. The majority of GNNs used today follow the message passing68

scheme [8], which aggregate information from neighbors with different aggregation functions,69

like mean/max/LSTM-pooling in GCN [12] and GraphSAGE [10], sum-pooling in GIN [30], at-70

tention mechanisms in GAT [25], etc. SGC [29] observes that the superior performance of GNNs71

is mainly due to the neighbor aggregation rather than feature transformation and nonlinearity, and72

proposed a simple and fast GNN model. APPNP [13] shares the similar idea by decoupling feature73

transformation and neighbor aggregation.74

Graph Generation. There have been a variety of methods for graph generation. RVAE [19]75

is a variational auto-encoder (VAE) based method with a regularizer to ensure semantic validity.76

Normalizing flow based methods including GraphNVP [20], GraphAF [24], and GraphDF [17] utilize77

invertible neural networks to define mappings between latent variables and data points. Generative78

adversarial networks (GANs) [9] based methods like MolGAN [7] and GCPN [32] involve a generator79

and a discriminator, where the generator is adversarially trained to fool the discriminator.80

From the perspective of graph generation process, they can be classified into one-shot generation81

and iterative generation. RVAE and MolGAN directly generate adjacency matrices, while GraphAF,82

GraphDF and GCPN generate graphs by sequentially adding new nodes and edges. Though our83

proposed RG-Explainer is an iterative generation method, RG-Explainer is different from the graph84

generation methods in that the above methods generate graph out of the air, while RG-Explainer85

needs to dynamically select suitable subgraphs to explain the predictions.86

Graph Combinatorial Optimization with RL. With the success of deep reinforcement learning87

in games [21], researchers have attempted to utilize RL techniques for the graph combinatorial88
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Figure 1: Illustration for explaining GNNs on graph classification. In the inference part, given a
graph instance, Locator L selects the seed node and Generator G generates the explanatory graph step
by step until choosing the STOP. In the training part, L takes the representation zg and zv as input,
and coordinates a better MLP for the current generator. Given a seed node, G learns the parameters
in MLP and APPNP to maximize the reward. L and G train coordinately to optimize the objective.

optimization problems. For example, S2V-DQN [6] uses deep Q-learning with graph embedding89

to learn effective algorithms for the Minimum Vertex Cover, the Maximum Cut and the Traveling90

Salesman problems. A graph pointer network is proposed in [18] to solve the TSP efficiently.91

Further, Seal [36] learns heuristics to detect communities in the graph with policy gradient. Note that92

explaining GNNs is also a combinatorial optimization problem. Thus, in this paper, we propose a93

RL-based framework with three dedicated steps to generate explanations.94

Post-hoc Analysis in Graph Neural Networks. By extending existing image/text explanation95

techniques to the graph, some gradient-based methods [22, 1] are proposed to study the importance of96

nodes and edges in the graph. However, their performances have been proved to be sub-optimal [31]97

because they cannot incorporate the special properties of graphs.98

GNNExplainer [31] is the first specific method proposed to explain trained GNNs. It defines the99

problem as an optimization task, which maximizes the mutual information between the predicted100

labels and the distribution of possible subgraphs under some constraints. Following the problem101

setting, PGExplainer [16] leverages the representations generated by the trained GNN and adopts102

a deep neural network to learn the crucial nodes/edges. These methods both utilize the continuous103

relaxation on edges, and add size and entropy constraints to make the explanation small and sparse.104

Specifically, they optimize a soft mask matrix for edges, and select crucial nodes/edges by the105

threshold. However, they compute the importance of each edge independently, which may lead106

to a disconnected explanatory graph with information redundancies. Our model sequentially adds107

important nodes from the neighbors of the current generated graph, which considers the information108

already involved in the current graph and ensures the connectivity.109

SubgraphX [34] uses Monte Carlo tree search and Shapley value as a score function to find the110

best connected subgraphs as explanations for GNNs. Causal Screening [28] is another search-based111

method, but it uses greedy search and causality measure to generate the explanations. Different from112

the search-based methods where heuristics are usually hand-crafted, our method uses RL to learn113

heuristics from data, which can be widely applicable. Besides, our learning-based method could train114

by a small set of instances, and infer the explanations of many other similar unseen instances much115

faster than the search-based methods.116

Different from the instance-level explanation, there also exists the model-level explanation to in-117

vestigate general patterns for predictions. For example, XGNN [33] utilizes the graph generator to118

interpret GNNs at the model-level. In particular, the instance-level explainer interprets the prediction119

for a certain given instance while the model-level explainer is input-independent and less precise.120
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3 Preliminary121

In this section, we first introduce the notations used and then give the formal problem definition.122

Graph. LetG = (V, E) denote the graph with node set V = {v1, v2 · · · vN} and edge set E ∈ V×V .123

Nodes in V could be associated with d-dimensional node features X ∈ RN×d. The graph G124

is described by the adjacency matrix A such that each entry Aij = 1 if eij ∈ E ; 0, otherwise.125

Ã = A + IN denotes the adjacency matrix with added self-loops. A symmetrically normalized126

adjacency matrix with self-loops Â could be computed by D̃−1/2ÃD̃−1/2, where D̃ is the diagonal127

degree matrix of Ã.128

Message Passing. Given an input graph G and node features X , a GNN model f(G,X ) learns129

node representations. To fuse the information of both node features and graph topology in node130

representation vectors, GNN models utilize the message passing scheme to aggregate information131

from node neighbors. At each layer l, a node v aggregates all the messages in the (l−1)-th layer from132

all its neighbors to generate its embedding: hlv = update(
∑
w∈N(v) message(hl−1v , hl−1w ), hl−1v ),133

where N(v) is the neighbor set of node v. With L layers, each node v generates its embedding vector134

zv = hLv from the L-hop neighborhood. In the node classification task, we train an classifier with zv135

as input to predict the label for node v. In the graph classification task, we first use an aggregation136

function readout({zv}) to generate the graph representation, which is further fed into a classifier to137

predict the label.138

Problem Definition. Given an input graph G = (V, E) and a trained GNN model f(·), GNN139

explainers aim to generate an explanatory subgraph S = (VS , ES), where VS ∈ V and ES ∈ E . The140

goal is to maximize the mutual information between the original label prediction Y = f(G) and the141

label prediction distribution based on the generated explanatory subgraph. Formally, the objective can142

be given as maxS MI(Y, S) = H(Y )−H(Y |S), where MI(·) is the mutual information function143

and H(·) is the entropy function. Since H(Y ) is fixed in the explanation stage, the objective can be144

rewritten as minS H(Y |S).145

4 Methodology146

The objective minS H(Y |S) is intractable since there are exponential candidates for S. It can be147

considered as a combinatorial optimization problem, where we need to choose a subset of nodes in148

the graph to optimize the objective. We explore how RL can be used to iteratively understand the149

representations produced by GNNs, and generate the explanatory subgraph optimizing the objective.150

Three proposed components will be described in the following.151

4.1 Iterative Graph Generation (Graph Generator)152

Given a starting point v0, the graph generator is used to generate a connected subgraph S =153

{v0, v1 · · · vT }, where we select one node in a step and T is the total number of steps. Specifically,154

at the t-th step, we have the current partial solution St = {v0, v1 · · · vt−1}. We next select a155

new node vt from the boundary ∂St−1 and expand the solution St = St−1 ∪ {vt}. The state is156

defined as the combined representation of both v0 and St−1. The action space is the boundary157

∂St−1 = ∪v∈St−1
N(v)\St−1. We further associate the solution with a reward value.158

State. At the t-th step, we first augment each node feature vector by adding the information of the159

starting point and the current partial subgraph. For each node v in St−1 or ∂St−1, we concatenate160

two values with its original feature vector xv:161

x′v = [xv,1{v∈{v0}},1{v∈St−1}], X ′t = [x′v]∀v∈St−1∪∂St−1 , (1)

where 1 is the indicator function and 1{v∈S} = 1 if v ∈ S otherwise 0. We concatenate the162

augmented node features and obtain the initial state representation X ′t.163

Each node could further combine information from its current neighborhood. To achieve this, we164

utilize some existing GNN methods, e.g., APPNP [13], which separate the non-linear transformation165
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and information propagation. These methods have shown to be highly efficient and also effective.166

Specifically, we have the following update equation:167

H
(0)
t = Θ1X

′
t, H

(l+1)
t = (1− α)ÂH

(l)
t + αH

(0)
t , (2)

where Θ1 is the trainable weight matrix, Â is the symmetrically adjacency matrix, and α is a hyper-168

parameter used to control weight. After L-layer updates, we obtain the node representations HL
t . we169

feed them into a MLP to improve the representation ability:170

H̄t(v) = MLP(HL
t (v); Θ2), v ∈ St−1 ∪ ∂St−1, (3)

where Θ2 is the learnable parameters in the MLP. At the t-th step, we only consider the nodes in St−1171

and ∂St−1 because other nodes do not influence the state and action space.172

Action. Since the connectivity of the generated subgraph is required, we take ∂St−1 as the action173

space at the t-th step. We utilize a softmax function to calculate the probability of taking an action174

v ∈ ∂St−1:175

at(v) =
exp(θT3 H̄t(v))∑

u∈∂St−1
exp(θT3 H̄t(u))

, v ∈ ∂St−1, (4)

where θ3 is the trainable parameter vector.176

Objective. Following [16], we use the cross-entropy function to replace the conditional entropy177

function minS H(Y |S) with N given instances. We rewrite the objective as:178

Prediction Loss = − 1

N

N∑
n=1

C∑
c=1

P (Y = c) logP (f(Sn) = c), (5)

where Sn is the explanatory subgraph for the n-th instance, C is the number of possible predicted179

labels, P (Y = c) is the probability that the original output of the trained GNN f is c, and P (f(Sn) =180

c) is the probability that the label prediction of f on the subgraph Sn is c.181

We further introduce some regularization terms to restrict the characteristics of the explanatory182

subgraph. To obtain a compact and succinct explanatory subgraph S, we define a size loss and a183

radius penalty, respectively. The size loss is used to limit the number of nodes in S while the radius184

penalty can compute the longest length of the shortest path from the seed node to other nodes in S. We185

also introduce a similarity loss that measures the similarity between the original node representation186

zv0 and the new representation generated on S. Formally, these loss function are defined as:187

Size Loss = ||S||1, Radius Penalty = max
u∈S

Distance(v0, u), Similarity Loss = ||H̄T (v0)− zv0 ||2. (6)

The final objective is to minimize188

L(S) = Prediction Loss + λ1 · Size Loss + λ2 · Radius Penalty + λ3 · Similarity Loss, (7)
where λ∗ are hyper-parameters to control the term importance.189

Reward. We take the objective function loss L as the (negative) reward. However, the loss cannot190

be separated into each generation step. If we simply compute -L(St) at the t-th step and regard it as191

the reward rt for the state-action pair (st, at), it could lead to the sub-optimal results. Therefore, we192

do not compute intermediate rewards when adding a new node to the subgraph. We only return the193

reward -L(S) when we complete the generation process of S.194

Optimization with policy gradient. We learn the graph generator G = {Θ1,Θ2, θ3} via policy195

gradient. The policy πθ is learned to maximize ES|v0∼G[−L(S)], whose policy gradient is196

∇ES|v0∼G[−L(S)] = Ev1,...,vT |v0∼G

[
T∑
t=1

∇ log πθ(vt|St−1) ·Q(St−1, vt)

]
. (8)

Here, S0 is the given seed v0 and Q(St−1, vt) = Evt+1,...vT |St∼G[−L(S)] is the state-action value197

function. Specifically, we use the Monte-Carlo estimation to approximate Q values:198

Q(St−1, vt) =

{
1
M

∑M
i=1−L(S(i)) when t < T

−L(St−1 ∪ vt) when t = T
(9)

where S(i)(i = 1, ...,M) are rollouts (i.e., complete explanatory graphs) sampled from the policy199

given the partial solution St−1 and vt. In this way, we can solve the sparse reward problem and also200

distribute reward signals at all steps.201
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4.2 Stopping Criteria Learning202

We further learn the stopping criteria to judge the goodness of the current generated graph. We add a203

special STOP action into the action space to learn node selection and stopping criteria simultaneously.204

Since we have already obtained the node representation H̄t in the current state, the STOP action205

could aggregate the representations with self-attention mechanism:206

γt(v) =
exp(θT4 H̄t(v))∑

u∈{St−1∪∂St−1} exp(θT4 H̄t(u))
, H̄t(STOP) =

∑
v∈{St−1∪∂St−1}

γt(v)H̄t(v). (10)

where the parameter θ4 helps to learn the attention γt(v) for each node v in the current state.207

After having H̄t(STOP), we could put it into Eqn. 4, and compute at(STOP) and at(v)∀v∈∂St−1
208

together. In practice, we also set a maximum number of generation steps to avoid generating very209

large subgraphs.210

4.3 Starting Point Selection (Seed Locator)211

For node classification tasks, the starting point is the node instance whose predicted label needs to212

be interpreted. However, the starting point is difficult to select for a graph instance. To solve the213

problem, we need to construct a seed locator L to first identify the most influential node in the graph214

and then generate the explanatory subgraph from that node.215

Given N graph instances gn, the objective in Eqn. 5 could be rewritten with the locator L:216

min
G,L
− 1

N

N∑
n=1

C∑
c=1

P (f(gn) = c) logP (f(G(L(gn))) = c), (11)

where both the generator G and the locator L are to be learned. The regularization terms in Eqn. 6 can217

be further added to the objective for more constraints. We train G and L coordinately, i.e., we fix the218

parameters in one module and train the other module to optimize the objective in Eqn. 11 iteratively.219

When we fix L, the way to train G is the same as described in Sec. 4.1. Here we introduce how to220

construct L when G is fixed. Based on G, we can generate a subgraph S for each node in the graph221

instance and compute the corresponding reward −L(S). A straightforward way is to enumerate over222

all the nodes and select the node with the highest reward. However, such a brute-force method is223

computationally infeasible when we have many graph instances. Therefore, we adopt a learning-based224

method. Specifically, we use a three-layer MLP to model the influence of a node vi,n on the label of225

the graph instance gn:226

ωi,n = MLP([zgn , zvi,n ]), (12)
where zgn and zvi,n are the final representations of the graph instance gn and the node vi,n generated227

by the trained model f(·), respectively. Because the goal of L is to return the node vi,n with highest228

ωi,n for graph gn, we utilize the Kullback-Leibler divergence loss, KLDivLoss(ωi,n,−L(G(vi,n))),229

which aims to make the distribution between estimated values ωi,n and the actual reward of explana-230

tory subgraph produced by the current generator close. The softmax layers are used to transform ωi,n231

and −L(G(vi,n)) into two distributions over the nodes vi,n in graph gn. We sample graph instances232

to train the MLP, and let L learn what kind of seed nodes has the highest reward to minimize Eqn.11.233

4.4 Pre-training234

In this section, we show the pre-training strategies with Maximum Log-Likelihood Estimation (MLE)235

that can be used to initialize the generator G and the locator L, respectively.236

Pretrain G. The generator G produces an unordered set S but in an ordered sequence. We maximize237

over all possible generated orderings for an explanatory graph [26]:238

max
τ

T∑
i=1

logG(vτ(i)|{v0, vτ(1), ..., vτ(i−1)}), (13)

where τ is any valid permutation given S. Here, the validity means that each vτ(i) should be in the239

boundary of {v0, vτ(1), ..., vτ(i−1)}.240
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Considering there are at most T ! orderings in the worst case, we use a bootstrapped way with241

set2set [26] to approximate Eqn. 13. Specifically, we optimize Eqn. 13 by maximizing the following242

set-wise log-likelihood instead:243

T∑
i=1

logG(vτ∗(i)|{v0, vτ∗(1), ..., vτ∗(i−1)}), (14)

where τ∗(i) = arg maxG(·|{v0, vτ∗(1), ..., vτ∗(i−1)}). Here we utilize the 3-hop neighborhood of244

seed nodes as the initial explanations S (i.e., pre-training samples). After constructing the samples,245

we train G to maximize the set-wise log-likelihood in Eqn. 14. Vinyals et al. [26] also pointed out if246

we naively optimize it, the model would pick a random ordering and get stuck on it. Thus, a list-wise247

log-likelihood is also necessary to explore the space of ordering. For each pretrain sample S, we248

choose a valid permutation τ ′ with random lengths in advance, and optimize the list-wise MLE:249 ∑T
i=1 logG(vτ ′(i)|{v0, vτ ′(1), ..., vτ ′(i−1)}).250

Pretrain L. We pretrain the locator L without the generator G. Similar as in G, we utilize the251

3-hop neighborhood of a node as the initial explanatory subgraph S. We randomly sample some252

nodes in the graph instances and compute the rewards of their 3-hop neighborhoods. These samples253

are used to pretrain the parameters in L.254

5 Experiments255

In this section, we first introduce our experimental setup. Then we compare RG-Explainer with256

two state-of-the-art baselines GNNExplainer [31] and PGExplainer [16] in both qualitative and257

quantitative evaluations. Further, we evaluate the performance of our method in the inductive setting.258

Due to the space limitation, we move the pseudocode, implementation details and ablation study to259

the supplementary materials. We also attach our codes in the supplementary materials.260

5.1 Setup261

For fairness, we follow the experimental setup in [16, 11], i.e., the same datasets, trained GNN262

model and evaluation metrics. Besides, we also utilize the same fine-tuned parameters in [11] for our263

competitors, GNNExplainer and PGExplainer.264

Datasets. We use six datasets, in which four synthetic datasets (BA-shapes, BA-Community, Tree-265

Cycles and Tree-Grid) are used for the node classification task and two datasets (BA-2motifs and266

Mutagenicity) are used for the graph classificition task. These datasets are composed of motifs and267

bases. The motif is a small but important substructure in a graph, which has been shown to play a268

crucial role in predicting the label of node/graph instances [5, 14, 15]. The base is the remaining269

part of a graph which is randomly generated. Motifs are taken as the ground-truth and the goal of270

explainers is to find them. Details of these datasets are described as follows.271

(a) The BA-shapes dataset consists of one Barabasi-Albert(BA) graph [2] as the base and 80 house-272

structure motifs. Each motif is randomly attached to a node in BA graph and extra edges are added as273

noises. (b) The BA-community dataset is comprised of two BA-shapes with different node features274

generated by Gaussian distributions. The extra edges are also added to connect two BA-shapes. (c)275

The Tree-cycles dataset includes a multi-level binary tree as the base and 80 six-node cycle motifs.276

The cycle motifs are randomly attached to the tree. (d) The Tree-grid dataset is similar to Tree-cycles,277

which uses the 3 × 3 grid motifs instead. (e) The BA-motifs dataset has 1000 graphs where half of278

them are a BA graph attached with a house-structure motif, while the rest are a BA graph attached279

with a five-node cycle motif. (f) The Mutagenicity dataset is a real dataset, which includes 4337280

molecule graphs. They can be classified as mutagenic or nonmutagenic depending on whether having281

NH2 or NO2 motifs.282

Model. We use the trained GNN model in [11], whose architecture is given in [16, 31]. Specifi-283

cally, the model that consists of three consecutive Graph Convolution layers connected with a fully284

connected layer is used for node classification. For graph classification, the model includes three285

consecutive Graph Convolution layers fed into two max and mean pooling layers, respectively. The286

two pooling layer output embeddings are then concatenated to generate the input for a fully connected287

layer for graph classification.288
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Table 1: Visualization (Qualitative Evaluation)

Node Classification Graph Classification
BA-Shapes BA-Community Tree-Cycles Tree-Grid BA-2motifs MUTAG

Explanations
by GNN-
Explainer

Explanations
by PG-

Explainer

Explanations
by RG-

Explainer
(ours)

Ground-
Truth
Motif

Metrics. The motifs in each dataset are the ground-truth explanations. The edges in the motif289

are positive and other edges are negative. GNNExplainer and PGExplainer return a mask matrix290

to represent the importance of each edge in the instance. Our method generates a subgraph. Based291

on the generation order of edges, we could also assign different weights to edges. Therefore, the292

explanation problem can be formalized as a binary classification task, where edges in the ground-truth293

motif are taken as prediction labels and the weights of edges are viewed as prediction scores. With294

the explanatory subgraph provided by explainers, the AUC score can be computed to measure the295

accuracy for quantitative evaluation.296

5.2 Qualitative evaluation297

Table 1 visualizes some examples of explanatory graphs on all the datasets. For node classification,298

we amplify the center node instance and generate the subgraph from it. For graph classification, the299

graph represents the whole graph instance. We use different colors to denote node labels.300

Intuitively, a superior explainer should include more edges in the ground-truth motif and less irrelevant301

nodes and edges in the explanatory subgraph. To show whether explainers assign larger weights to302

edges in the motif, we use the bold black edges to represent the top-k edges, where k is the number303

of edges inside the ground-truth motif.304

For easy cases, all the methods could find the ground-truth motif. Thus, we choose some difficult305

instances to show advantages of our method. From the table, we see that all the three methods306

can generate subgraphs that contain the ground-truth “house” motif on both BA-Shapes and BA-307

Community datasets. However, both GNNExplainer and PGExplainer include many irrelevant nodes308

and edges, while our method adopts the stopping criteria to generate more concise subgraphs. On309

both Tree-Cycles and Tree-Grid datasets, since we select the connection node between the base and310

the motif as the node instance, it is hard to identify the ground-truth motif (cycle or grid) exactly.311

This is because the explanatory subgraphs could easily include the base. Compared with competitors,312

our method can generate the explanatory subgraphs that contain the complete ground-truth motifs,313

i.e., edges in the motifs are all marked as black.314

For graph classification, explainers should identify the ground-truth motif that decides the label of315

graph instances. For the instance in BA-2motifs, the ground-truth “house” motif is located at the right316

bottom. Both GNNExplainer and PGExplainer involve accurate and wrong edges in the explanations,317

while our method only adds edges in the ground-truth “house” motif to the generated subgraph. For318

the MUTAG dataset, both PGExplainer and our method identify the correct motif. In particular, our319

method correctly locates the O atom and obtains the ground-truth motif NO2.320
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Table 2: Explanation AUC (Quantitative Evaluation).
Node Classification Graph Classification

BA-Shapes BA-Community Tree-Cycles Tree-Grid BA-2motifs MUTAG

GNNExplainer 0.742 ± 0.006 0.708 ± 0.004 0.540 ± 0.017 0.714 ± 0.002 0.499 ± 0.004 0.606 ± 0.003
PGExplainer 0.999 ± 0.000 0.825 ± 0.040 0.760 ± 0.014 0.679 ± 0.008 0.133 ± 0.046 0.847 ± 0.081

RG-Explainer (ours) 0.985 ± 0.013 0.919 ± 0.017 0.787 ± 0.099 0.927 ± 0.031 0.657 ± 0.107 0.873 ± 0.028
Improve -1.5% 11.4% 3.6% 29.8% 31.7% 2.8%
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Figure 2: Comparison between RG-Explainer and PGExplainer in the inductive setting.

5.3 Quantitative evaluation321

We next show the quantitative results in Table 2. For each method, we compute the average AUC322

scores and standard deviations over 10 runs. Note that the AUC scores reported here are a bit different323

from that in the original papers due to the unstable convergences [11].324

From the table, we see that our method RG-Explainer achieves the best results on 5 out of 6 datasets.325

For example, the AUC score of RG-Explainer on Tree-Grid is 0.927 while that of the runner-up326

is only 0.714, leading to an improvement of 29.8%. On the BA-Shapes dataset, RG-Explainer327

achieves comparable results with the winner’s and significantly outperforms GNNExplainer. These328

results show the advantage of applying reinforcement learning techniques in constructing explanatory329

subgraphs. Further, since the constructed subgraphs are connected, they could better characterize330

motifs in the graph. Note that in the graph classification task, our method uses a locator to first select331

the seed nodes. We also test the performance of the locator and find that the locator selects ∼ 66%332

and ∼ 84% accurate seed nodes (i.e., nodes in the ground-truth motif) for BA-2Motifs and MUTAG,333

respectively. This further explains the good performance of RG-Explainer for graph classification.334

5.4 Inductive setting335

We further test the performance of RG-Explainer in the inductive setting. We compare it with336

PGExplainer, which are both learning-based methods. Specifically, we vary the training set sizes337

from {10%, 30%, 50%, 70%, 90%} and take the remaining instances for testing. For each dataset,338

we run the experiments 10 times and compute the average AUC scores.339

Due to the limited space, Fig 2 only shows the results on BA-Community, Tree-Grid and MUTAG340

datasets. For other datasets, see the supplementary material. The figure also includes the results of341

both methods in the transductive setting (i.e., use all the instances) for reference. From the figure,342

RG-Explainer generally outperforms PGExplainer as the training set size increases. For example,343

with only 10% training instances in the Tree-Grid dataset, RG-Explainer significantly outperforms344

PGExplainer by a large margin. This shows that RG-Explainer generalizes better than PGExplainer.345

6 Conclusion346

We present RG-Explainer to generate the instance-level explanations for GNNs in this paper. The347

RL-based generator is proposed to ensure the message passing nature of GNNs. Besides, we design348

the seed locator and stopping criteria to find the most influential node in a graph instance and check349

whether the generated explanatory graph is good enough, respectively. Though our method increases350

the transparency of GNN predictions, it may put GNN models at a high risk of being attacked. How351

to utilize the GNN explanations to make GNN models more robust is a future research direction.352
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