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Abstract

Explainable AI has the potential to support more interactive and fluid co-creative1

AI systems which can creatively collaborate with people. To do this, creative2

AI models need to be amenable to debugging by offering eXplainable AI (XAI)3

features which are inspectable, understandable, and modifiable. However, currently4

there is very little XAI for the arts. In this work, we demonstrate how a latent5

variable model for music generation can be made more explainable; specifically6

we extend MeasureVAE which generates measures of music. We increase the7

explainability of the model by: i) using latent space regularisation to force some8

specific dimensions of the latent space to map to meaningful musical attributes, ii)9

providing a user interface feedback loop to allow people to adjust dimensions of10

the latent space and observe the results of these changes in real-time, iii) providing11

a visualisation of the musical attributes in the latent space to help people predict12

the effect of changes to latent space dimensions. We thus bridge the gap between13

the latent space and the generated musical outcomes in a meaningful way which14

makes the model and its outputs more explainable and more debuggable.15

1 Introduction16

Creating computing systems which can generate music has arguably been both a dream and a goal17

of researchers since the 1800s when Ada Lovelace noted that machines would one day generate18

“elaborate and scientific pieces of music of any degree of complexity and extent” [1]. Recently,19

advances in the field of generative music have relied on increasingly complex Machine Learning20

models [2–4] – such as neural networks [5, 6] and deep learning techniques [7–10] – to create21

convincing musical outputs. However, the complex nature of these models means that people often22

require some knowledge of these techniques and algorithms in order to use or adapt them effectively,23

making them difficult for people, especially non-experts, to understand and debug. The presentation24

of these models in current interactive musical systems also means that much of the generation process25

is invisible to the user; very few musical applications provide an interface which allows the user to26

visualise how a piece has been created or explain how their interaction affected the musical content.27

This means many generative systems, and digital musical instruments in general, leave artists feeling28

disconnected from their work, or worse, are generally inaccessible to musicians or anyone besides29

the creator [11–13].30

In this paper, we explore how eXplainable Artificial Intelligence (XAI) can be applied to generative31

music systems to both aid with human understanding of the model, and support inspection and32

debugging of the model and its outputs. First, we outline an overview of XAI and current applications33

within the arts, followed by a summary of a systematic literature review of the explainability of 8734

creative AI papers. Then we introduce our implementation of XAI for the arts by demonstrating how35

the latent space of a generative music model can be made more explainable – we contribute a novel36

user interface which supports real-time navigation of the latent space of a generative music model and37

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.



includes the generation of a set of piano rolls, colour plots, and audio files, for a trained MeasureVAE38

[14] model. This is achieved by sampling the latent space from MeasureVAE and regularising the39

dimensions for a set of musical metrics [15] [16]. We conclude by reflecting on the implementation,40

and we suggest future directions for research on XAI for music and the arts.41

2 Related Work42

The field of eXplainable AI examines how machine learning models can be made more understandable43

to people, thus increasing their usability and making it possible for non-experts to utilise them in44

a variety of contexts. In particular, XAI researchers explore how non-intuitive and difficult-to-45

understand models – such as neural networks and deep learning techniques – can be explained46

[17, 18]. For example, XAI projects have focused on creating human-understandable explanations of47

why an AI system made a particular medical diagnosis [19], how the AI models in an autonomous48

vehicle work [20, 21], and what data an AI system uses to generate insights about consumer behaviour49

[22]. These XAI applications improve human-in-the loop use, making it easier to integrate AI into50

every day tasks and improve the accuracy of systems in combination with the expertise and human51

intelligence of the user.52

Having more explainable AI for the arts is important for AI arts systems that we co-create with,53

referred to as creative AI models, as both artists and audiences would benefit from a better under-54

standing of i) what an AI model is doing to generate artistic content and ii) why this artistic content55

was generated in response to their own artistic input. This frames the AI as a tool for creating56

and co-creating content, rather than a mysterious and opaque box of tricks, uncontrollable by the57

artist. Indeed, having more transparent and understandable AI models is essential for creative AI as58

co-creation implicitly requires some level of mutual understanding and engagement both with the59

artistic output and with each other [23]. Co-creating with an AI requires us to be able to inspect,60

understand, modify and debug both the AI model and the output it creates in response to an artist’s61

input. In this way, the artist can understand their impact on the system and experience feelings of62

ownership over their artwork. Designing for this level of understanding of what an AI system is doing63

is a key focus of the field of XAI. More broadly, this relates to the notion of framing information64

presented in [24] and surveyed in [25], whereby a generative AI system describes its creations with65

additional text or other stimuli. This has been taken further in [26], with the suggestion that a creative66

AI system should engage in dialogue with users to convince them of the value of its output.67

The arts, and especially music, also provide a complex domain in which to test and research new AI68

models and approaches to explainability. Compared to domains such as healthcare and automotive69

industries, the arts require similar levels of robustness and reliability from their AI models, but70

have significantly fewer ethical and life-critical implications, making the arts a great test-bed for AI71

innovation. In other words, exploring approaches to XAI for the arts could both inform the design of72

XAI for more safety-critical systems and lead to more intuitive and engaging co-creative AI systems.73

For example, music interaction provides an opportunity to study a system’s sensitivity to time-critical74

parameters since real-time, understandable feedback is critical for musicians in co-creating with75

digital instruments [27, 28].76

As current XAI research is predominantly focused on functional and task-oriented domains, such as77

financial modelling, it is difficult to directly apply XAI techniques to creative AI models. Moreover,78

the majority of papers about XAI beyond simple explanations do not focus on the implementation of79

XAI, but instead offer design guidelines for explainability [29] or theories of how such explainability80

might work [30]. This means that there are few explainable AI systems to build from. To compound81

this problem, there are few creative AI models which provide any explanation of how the model82

works or expose any elements of the creative AI model in any meaningful way, which we demonstrate83

for the domain of generative music in the following section.84

2.1 XAI and Generative Music85

Taking music generation as a key example of creative AI models, we surveyed 87 recent AI Music86

papers from venues including the New Instruments for Musical Expression Conference (NIME)87

series and the Computer Music Journal to examine what role the AI had in the creative process88

and how much of the AI in these interactive systems is actually explained or exposed to humans in89

the system itself (rather than being explained in the paper). Our review sample started with the 9490
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papers reviewed in [3]; 19 papers which were purely related to cognitive theory or not accessible to91

the authors were removed. We also added 12 more recent creative AI papers to represent current92

practice, including the use of in XAI in other HCI fields [31, 32, 30, 33–41] making a total of 8793

papers reviewed. We analysed the papers using three existing frameworks to capture the key features94

of XAI for the arts. Specifically, we examined the following for AI in the interactive arts: the role of95

the AI in co-creation, possible interaction with the AI, and how much common ground humans can96

establish with the AI, as follows.97

The role of the AI – we used Lubart’s classification of the role of AI as a creative partner [42] and98

classified the role of the AI from models which take care of generative tasks without interacting with99

humans through to AI models which take on the role of a colleague in creative collaborations.100

Interaction with the AI – we used Cornock and Edmonds’ classification of interaction styles with101

interactive art from static to dynamic-interactive [43] as the more interactive and responsive an AI is,102

the more chance there is for people to understand what the AI is doing and might do in the future.103

The common ground with the AI – we drew on Clark and Brennan’s work on grounding in human104

communication [44] to classify what a person might be able infer about an AI’s output state from a105

low stage of grounding where a person is only aware that some output has been made through to a106

high stage of grounding where they have an understanding of its meaning and can make an informed107

reaction to the output.108

Our perspective is that the explainability of creative AI is a combination of the role the AI takes, the109

interaction it offers, and the grounding that can be established with the AI. The more collaborative the110

role is, the more explanation is required which in turn necessitates more interaction and grounding.111

Increased opportunities for interaction help people to learn about and infer an understanding of the112

AI and its behaviour. Increased levels of grounding offer more chances for people to understand what113

a creative AI did, and why. Increased interaction and grounding offer more changes for people to114

inspect, understand, and debug AI models and their creative output.115

In our review, we found some excellent examples of creative AI which take the role of a colleague. For116

example, Shimon the robotic marimba player [45] listens to live human players, analyses perceptual117

aspects of their playing in real-time and plays along in a collaborative and improvisatory manner. In118

terms of interaction, Shimon provides a real-time feedback loop within the art work itself, making119

the collaboration highly dynamic and interactive. However, Shimon offers only mid stage grounding120

as there is no explanation of what it did, nor how or why Shimon made particular musical responses121

in the improvisation.122

Other generative tools, such as Hyperscore [46], demonstrate higher levels of common ground with123

the user. In Hyperscore’s interface, the reactive change to input is displayed in a piano-roll notation.124

This allows the user to observe the effects of their input and develop an understanding of the system’s125

response. The interactive controls in the interface provide a way for the user to experiment with126

melody creation, while the system preserves their original melodic curve ideas and allows them to127

make incremental and reversible changes. In this way, the user can see how their input changes the128

output; however, the internal model and the reasons why the system reacts are still largely obscured.129

In our review, we found that 73 of the 87 papers took the role of generating music without any human130

collaboration. There was also little interaction offered by the AI Music systems we reviewed: 41131

papers did not not offer any real-time interaction with humans at all, but rather generated melodies132

from training data, without any user input or decisions. Additionally, 76 papers were at the lowest133

stage of grounding meaning that although the AI makes a musical contribution, a person would not134

reliably be able to discern what the AI system did based on their input, and would simply be aware135

that some musical output was generated somehow. These kinds of creative AI are difficult to debug as136

their implementations are not meaningfully exposed, and the technical complexity of their interfaces137

prevents musicians from using them.138

To summarise, while there are compelling examples of creative AI that collaborates with musicians,139

few creative AI systems explain what their models are doing, how they do it, and why. This makes140

debugging of such models and their output problematic. The rest of this paper addresses this gap141

through our approach to explainable latent spaces in music generation.142
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3 Explaining Latent Spaces143

As our first step in investigating more explainable AI for the arts we have been researching how to144

make latent spaces in AI Music models more understandable. Recently, some systems developed145

for human-AI co-creation have exposed the latent space of generative music models [23, 14, 47–49],146

meaning that users can create their own music by navigating a possibility space, typically represented147

on a blank 2D grid. For example, latent space models have been successfully used for creative148

applications such as music generation [50, 51], music inpainting [14], and music interpolation [52].149

However, to date, these systems have been opaque AI models and do not offer the higher-level XAI150

properties of interaction and grounding we discussed in Section 2.1. For example, Murray-Browne151

and Tigas [48] trained a latent space on a set of dance postures which was then mapped to various152

musical outputs; although dancers found distinctive ways of performing with the system, how their153

movements directly influenced the music was unclear. If we can offer more explainable approaches154

to exposing latent spaces then there is more chance for people to be able to debug the AI model, its155

training, and the output it generates.156

For our system, we built on the popular MeasureVAE system1, which Pati et al. [14] describe as157

being “successful in modeling individual measures of music”. In response to an input extract of158

music, the model generates a similar measure of music by: i) encoding the input measure into a latent159

space via bi-directional recurrent neural network (RNN), ii) sampling the encoder’s latent space (z),160

and iii) decoding z via a combination of RNNs and linear stacks. Notably, the decoder uses two161

uni-directional RNNs: one is responsible for beats (four beats in a measure), and the other one is for162

ticks (six ticks/symbols per beat) [14]. For a full description, we point the reader towards [14].163

We trained MeasureVAE using 20,000 publicly available monophonic Irish folk melodies [53]; the164

data is partly anonymous, showing contributor’s names from a community website dedicated to Irish165

traditional music, and contains no offensive content. This produces a latent vector of 256 dimensions,166

as illustrated in Figure 1. Once trained, inputting a melody into the encoder will generate a new167

melody through the decoder. The features of the new melodies can be varied by modifying the168

values of the dimensions in the latent vector. However, there is no way for a person to know what169

effect changing these dimensions would have on the generated music. In addition, the 256 entangled170

dimensions make it difficult to perceive a difference in output from a change in any single dimension,171

making our Irish folk song generator opaque and unexplained.172

Figure 1: The simplified MeasureVAE

However, if we use latent space regularisation (LSR) [54] in training the VAE – which has been173

widely used in the study of controlled generation of images [55] and music [15, 56] – we can make174

this creative AI approach more understandable and explainable. We use LSR to force some specific175

dimensions of the latent space to represent specific musical attributes similar to the method in Pati176

and Lerch [15] [16]. Specifically, dimensions 0, 1, 2 and 3 are assigned to rhythmic complexity, note177

range, note density, and average interval jump respectively (see Figure 2). We selected these metrics178

as typical examples of meaningful musical features in order to demonstrate our approach.179

In this way, specific dimensions in our latent space correspond to meaningful musical attributes in180

AI-generated outputs. Since these attributes are manipulable, they can form the basis for a real-time181

user interface illustrated later in this paper, thereby creating a feedback loop between input music,182

human modifiable dimensions, and AI-generated music. We suggest that this feedback loop can183

support the debugging of the creative AI and its output. Furthermore, we suggest that this support can184

be offered in a form that is commensurate with musician’s existing skills and usability expectations.185

1[14] and [15], which we build upon in our work, are licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.
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Figure 2: The simplified MeasureVAE with LSR

3.1 Implementation186

To utilise the MeasureVAE architecture with the latent space regularisation technique, we build on187

the implementation of [15]2. The training data of 20,000 monophonic Irish folk melodies [53] are188

converted into a measure-based data representation. Each measure is represented with 24 characters,189

where each character corresponds to one of the sixteenth note triplets in a 4/4 measure, with a total of190

24 characters per measure [14] [16]. These characters include note names (A3, G5, ...), continuation191

tokens (_) and special rest tokens.192

We use four musical attributes in our model following [15, 16]; Toussaint’s rhythmic complexity [57],193

note or chromatic range (max pitch - min pitch), note density (number of notes in a measure) and194

average interval jump. Average interval jump represents the average of the absolute values of the195

interval between adjacent notes in a single measure melody.196

We jointly train our MeasureVAE model with latent space regularisation on all four attributes, to force197

four specific dimensions of the latent space to represent given musical attributes [15, 16]. We apply198

these constraints to the first four dimensions of the 256-dimensional latent vector, and assign them to199

rhythmic complexity, note range, note density and average interval jump, and add an attribute-specific200

regularisation loss to the training objective of the VAE. Specifically, for each attribute, a musical201

metric value (e.g. average interval jump) is calculated for each item in a mini-batch. Then, a distance202

matrix (Dattribute) is created by calculating the distance between each item’s metric value and all203

the other items’ metric values resulting in an N x N matrix (N examples in a mini-batch). Similarly,204

another distance matrix (Ddimension) is created for the values of the regularised latent dimension,205

again resulting in an N x N matrix. Subsequently, the mean squared error of (tanh(Ddimension) -206

sgn(Dattribute)) is added to the VAE objective. Finally, after training the model with LSR, the values207

of these dimensions become monotonically tied to the corresponding music attributes. Therefore,208

when we change the values, the corresponding attributes of the generated music change accordingly.209

We use Adam [58] as the optimizer of the model with learning rate = 1e-4, β1 = 0.9, β1 = 0.999210

and ε = 1e-8. The model is trained on a single GeForce RTX 2080 Ti GPU for a total of 30 epochs211

following the same setting of [15], taking an average of 2.5 hours per epoch. After training, the212

reconstruction accuracy of the LSR model achieves 99.87% on the training set and 99.68% accuracy213

on the validation set, and the non-LSR model achieves are 99.84% and 99.77% respectively3). As214

calculated in [15] [16], we have an interpretability metric, which is from [59] and measures how215

well we can predict an attribute using only one dimension in the latent space. For the LSR model,216

interpretability scores for rhythmic complexity, note range, note density and average interval jump are217

0.80, 0.99, 0.99 and 0.91 (average 0.92) for their corresponding dimensions, respectively (the higher218

the better). For the non-LSR model, interpretability scores are 1.5e-4, 9.1e-6, 1.7e-5 and 1.2e-6 in the219

same order.220

Two user interfaces (UIs) were built using React.js and deployed as web applications online to221

demonstrate interaction with LSR4 and without LSR5. In each demonstration, we encode an input222

MIDI measure using the trained encoder and obtain its latent vector. Then, to generate musically223

controlled variations of it, we manipulate the values of the first four dimensions and decode these224

manipulated latent vectors to obtain output music sequences. To demonstrate the explainable latent225

space, we sweep the regularised latent dimensions discretely and sample values. For each dimension,226

we take 10 equally spaced samples, creating every possible latent vector combination using these 10227

2https://github.com/ashispati/AttributeModelling
3The non-LSR model is trained for 11 epochs as this gave the best accuracy.
4https://xai-lsr-ui.vercel.app/
5https://xai-no-lsr-ui.vercel.app/
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Figure 3: Screenshot of the user interface with LSR

samples per regularised dimension, in total 10,000 latent vectors for four dimensions / attributes. In228

these latent vectors, values for non-regularised dimensions are kept as they are in the latent vector229

of the encoded input sequence. To determine the sampling limits, we store the latent vectors of the230

training set and generate histograms of the regularised dimension values. The limits are then set231

according to the histograms (with slight modifications to allow wider ranges in terms of the musical232

metrics). Once we have these 10,000 latent vectors, they are decoded into output music sequences233

and we generate MIDI files of them. For the sake of practicality, we generate piano-rolls and MP3234

files for each MIDI output in advance, and host them online for the web demos. The generated MIDI,235

piano-roll and audio files are available at our GitHub repository6.236

3.2 Interaction237

Both demos feature UIs that provide real-time interaction with our creative AI system. For example238

Figure 3 shows the UI for the demo with LSR. In both UIs the input MIDI measure is shown and can239

be listened to on the left-hand side of the UI in piano-roll format, and the generated output MIDI240

measure is shown and can be listened to on the right-hand side of the UI also in a piano-roll format.241

The main points of interaction are two 2D-pads in the centre of the UI; when clicked on, the user can242

navigate the pads by dragging their mouse, which controls the red dot. The left-hand pad controls243

the rhythmic complexity and note range dimensions, whereas the right-hand pad controls the note244

density and average interval jump dimensions (see the axis labels on the LSR version in Figure245

3). The white dots on these pads refer to the corresponding latent vector dimension values of the246

input sequence, given as reference points. As users hover over these pads – selecting different latent247

dimension values – the output MIDI is updated in real-time and played back to people. Musically,248

these outputs correspond to variations of the input sequence which vary as we manipulate its latent249

vector for generation; for example, we will have a higher range of notes in the generated musical250

sequence when the note range dimension is high.251

In our demo with LSR we increase the explainability of the AI in two ways: i) key parts of the AI252

model are exposed to the user in the interface and meaningfully labelled (in this case, with musical253

features), and ii) the real-time interaction and feedback in the UI allows people to explore the effects254

of these features on the generative music and thereby implicitly learn how the model works.255

Referring to the three properties of XAI for the arts described in Section 2.1, in our implementation256

the AI acts somewhat like a colleague [42] – the response to the user is given in real-time, as would257

be done in a human-to-human musical interaction. This drives a feedback loop between a user and258

the AI, whereby a person’s reaction to the AI’s response informs the subsequent interaction. Thinking259

musically, this resembles a duet in creative improvisation, where the players make real-time decisions260

based on their colleague’s performance.261

6https://anonymous.4open.science/r/Exploring_XAI_in_GenMus_via_LSR-2561/
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In terms of grounding between the AI and the user, the system displays the possible user input param-262

eters to the model through the labeled pads, 2D displays, and movable cursors, and moreover, the263

visualisation changes in response to these control actions. As the UI provides musically meaningful264

labels and an interaction feedback loop (which allows for exploratory user learning to predict how265

user input might change the AI’s output), we see this system as being towards the highest level of266

grounding [44], where a person is provided with cues to the AI model’s current state and can predict267

possible next steps. Furthermore, the real-time interaction creates a sensation of “playing” the model268

and helps to recreate other familiar musical interfaces through the use of the piano-roll notation.269

Real-time feedback provides musicians with an assurance that their input is being received, increases270

accuracy in timing during use, and positively influences their perceptions of the quality and usability271

of a system [27]. Comparing this to other generative music systems which often take input at the272

command line, the use of pads and sliders and note visualisation on a piano-roll (commonplace in273

digital musical interfaces) is more intuitive and typical of musical interaction. In this sense, the274

system provides an interaction which is both dynamic and understandable in terms of the generative275

system itself and also tailored around the specific context of music creation.276

3.3 Visualisation277

To provide further insight into our AI model, we display three 2D plots within each of the pads278

based on the visualisations in [15] as illustrated in Figure 4. Firstly, training data contribution plots279

(4a and 4d) for the left and right-hand pads respectively represent how many items in the training280

data set have contributed to a specific location in the latent space. Statistically, this provides an281

idea of how unlikely the output will be for any location, given the musical structure of the dataset.282

In each of the pads we also have two surface map figures as used in [15, 16] and illustrated in 4b283

and 4c for the left-hand pad and 4e and 4f for the right-hand pad. We create these surface maps by284

decoding corresponding latent vectors for each point (non-LSR dimensions are kept the same as the285

encoded input vector, and the other two LSR dimensions are taken from the latent vector of the input286

music) and calculating the musical attribute values for each decoded sequence. Since we have two287

attributes per 2D pad, we have two surface maps for each pad. These surface maps illustrate how the288

LSR technique works since the metric values increase (yellow regions) for the higher parts of the289

corresponding axis. These surface maps also offer detailed information about regions to hover over,290

and allow inference of the potential kinds of outputs resulting from different points in the latent space291

dimensions. In doing so we offer a different kind of explainable interaction than other creative AI292

systems which allow interaction with latent space such as [49, 47, 48]. In other words, we increase293

the explainability of the UI by providing a rich visualisation from which people can infer, with some294

meaning, the gist of what the AI model might generate for particular latent dimension values as they295

interact with it.296

(a) TDRCNR (b) RC (c) NR (d) TDNDAP (e) ND (f) AIJ

Figure 4: Visualisations: a) Training Data visualised in terms of rhythmic complexity and note
range (TDRCNR); b) Rhythmic Complexity surface map (RC); c) Note Range surface map (NR);
d) Training Data visualised in terms of note density and average interval jump (TDNDAIJ); e) Note
Density surface map (ND); f) Average Interval Jump surface map (AIJ)

The non-LSR demo UI surface maps are different to the LSR version and show the same musical297

attribute value for any point in the latent space. This is because there is nothing meaningful about298

these dimensions as LSR has not been applied and changing the value of these individual dimensions299

in a 1 x 256 vector does not have any significant effect on the decoded sequence (which is to be300

expected behaviour for this non-LSR case). In other words, simply visualising the surface maps in301

the non-LSR version does not increase the explainability of the AI.302
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3.4 Debugging303

By using latent space regularisation to force a small set of dimensions to be mapped to semantically304

meaningful musical features, we hope to better support artists using MeasureVAE in key debugging305

activities of inspecting the model, understanding how the model works, and changing the model to306

create the desired output.307

We suggest that the real-time nature of the feedback provided by our demo would make it easier308

to inspect and develop an understanding of the AI model. The user is immediately able to see the309

results of their actions, which informs any follow-up from the user needed to debug the system or310

their previous input. While this is an important feature for debugging in general, it is especially the311

case in a music context: musical interaction is time-dependent, meaning an artist must quickly be312

able to make an informed reaction or otherwise risk derailing a performance or composition process.313

By supporting real-time feedback, we increase the common ground between the AI and the human.314

This elevates the creative process from a situation where we know that the AI has done something in315

response to our input, but we are not sure what (e.g. Shimon [45]), to a level where we can directly316

see and start to understand what the AI has done in response to our input. We suggest that users317

would thus be able to predict (with some learning on the human side) how changes to the regularised318

dimensions of the latent space change the generative output in a way which can better fulfil their319

musical intentions. It is worth noting that there are many other time-sensitive applications where such320

XAI features would greatly benefit the user, including the more functional and task-oriented tools321

described earlier in medical care and transportation.322

Importantly, our demo retains its original input whilst other parameters are changed. This allows323

users to compare the current AI output with their original contribution, contributing to debugging324

of expected outcomes. This is similar to the design of Hyperscore [46], where a melodic curve is325

always retained as reference, whilst other parameters are changed. Moreover, in our demonstration,326

users are able easily revert back to previous settings by moving the red dots in the UI (Figure 3)327

between different positions in the latent space. User are also able to quickly observe the results328

of their tinkering in real-time, and so may develop a better understanding of the mapping between329

changes in latent space dimension values and the resultant generated output. This form of interaction330

allows for trial-and-error debugging of the creative output as well as supporting users in exploratory331

learning of dimension mappings. In this way we support creativity support tool design principles332

such as Shneiderman et al.’s [60] principles of supporting exploration (as people can quickly trial333

different ideas), and offering a ‘high ceiling’ of tools (as people can tinker with a wide range of334

different options).335

In summary, combining support for inspecting and understanding of the AI model with being able336

to interactively manipulate the model offers us opportunities to debug the model. In other words,337

by providing more grounded and interactive explanations of what the AI is doing we offer greater338

opportunities for creative exploration of the musical space, and importantly, increased support for339

debugging of both the creative output and the AI model itself.340

4 Limitations and Societal Impact341

There are currently several limitations to our demo which need to be addressed in further work.342

Firstly, the musical parameters chosen for interaction with the system present only a small subset of343

the variables in music creation. Secondly, the system and interaction focus on manipulating the pitch344

and rhythmic aspects of a single measure of music. This ignores timbre and higher-level structure in345

music, operating with only a fraction of the variables musicians have control over on a traditional346

instrument or composition tool. Thirdly, for a non-musical user, the system may still present some347

explainability barriers. The chosen parameters, although labelled and visualised, require the user348

to have some prior understanding of music. Other control mechanics, such as the semantic sliders349

used in [23], may be more appropriate, although they currently do not give explanations for the350

link between interaction and output. Fourth, we only focus on explainability of the latent space351

forming at the bottleneck of the MeasureVAE architecture, in-between the encoder and decoder352

blocks. To extend explainability to the layers of encoder and decoder blocks, one technique we are353

interested in applying is Concept Whitening (CW) [61]. CW can be practically applied to any layer354

of a network and could be used to demystify how the network learns concepts through those layers355

without harming the main training objective. This technique aligns concepts, which in our case might356
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be musical attributes or more high level concepts such as genres or moods, with latent space axes of a357

given layer by doing de-correlation, standardisation and orthogonal transformation [61].358

Our current system suffers from a problem commonly found with AI music models: the dataset used359

to train the model is limited within the Western music canon, and even more so to a specific genre360

of folk songs. This limits the output to specific tonal and rhythmic features. It is possible that the361

compositions created using a tool like ours will sound similar to the songs of the dataset we use,362

which decreases the diversity of music created.363

The system presented in this paper needs in-depth study and validation by users with a range of364

musical knowledge. Explorations of use cases by artists will further suggest interaction mechanics365

and changes to the user interface, and provide insight into how the system might assist in creative and366

debugging processes. Moreover, further development of such a system must include working directly367

with potential users on how such a system may benefit their composition or performance practice,368

and how their own artistic identity can be better incorporated and expressed.369

As we outlined earlier in this paper, undertaking AI research in the arts provides a demanding370

real-world and real-time context in which approaches such as XAI can be explored, without the risk371

of substantial negative societal impact in life-critical domains such as healthcare and automotive372

industries. However, there are potential negative societal impacts on artistic practice and livelihoods373

of our work and creative AI research in general which must be considered. Most importantly, some374

argue that co-creative AI would diminish human creativity, remove the human from the creative375

process, and devalue human creativity itself. There is also concern that the use of generative models376

would lead to a homogenisation of music and a marginalisation of musical skills and traditions which377

are not amendable to reproduction by AI. In our view, through human-centred XAI and the design378

of UIs which embrace the user’s role and interaction with the AI model, as presented here, we can379

proactively work to ensure that the artist remains key to the the creative process. Indeed, our view380

is that working with artists to design and implement explainable AI systems will help to mitigate381

concerns about the impact of AI on creativity.382

5 Conclusions383

Explainable AI is a growing research field which has the potential to contribute to making AI systems384

more co-creative. Taking AI music as a key example of AI for the arts, it is clear that there is huge385

potential for more explainable AI models, given the limited explainability of current creative AI386

models. Typically, these offer limited interaction and low levels of grounding between AI and human387

– a situation where we notice that the AI has created something, but are not sure how the AI output388

relates to our input. In this paper, we demonstrated how latent spaces can be made more explainable,389

and in doing so showed how they could support debugging as part of creative practice.390

We suggest that future work in XAI for the arts should move away from the functional explanations391

explored by current XAI research and focus instead on conveying the gist of what AI models are392

doing. Much like the third wave of Human-Computer Interaction (HCI) [62] which shifted HCI393

research to focus on experience and meaning making, conveying gist will be a paradigm shift in394

how we design and use AI in creative settings. By following an interdisciplinary approach, where395

creative AI presents information that is meaningful to people – such as by presenting visual cues396

between mappings [49], or visualising levels of mutual trust with emoticons [63] – we can better397

support human-AI collaboration. Once we create AI systems that convey the gist of what they are398

doing creatively, we will have the chance to mutually engage with AI in co-creation.399

Finally, we believe that when we think of “explainable” AI, we should consider how the design of400

our systems embrace the existing knowledge, experience, and practices that users will bring to the401

interaction cf. [29]. A critical question designers can ask is whether the AI is explained in the context402

in which it will be used. In this paper, we present an interactive music generation system which works403

with interface elements familiar to musicians, and focuses around the real-time feedback relationship404

between musician and instrument. In presenting the AI within the existing musical context, we can405

increase the grounding between user and AI as tool and even collaborator. In similar applications of406

XAI and the arts, and indeed in all applications, this attention to context and using what is already407

understandable to users will aid the explanation of the underlying systems.408
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