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Abstract

Existing work in continual learning (CL) focuses on mitigating catastrophic for-1

getting, i.e., model performance deterioration on past tasks when learning a new2

task. However, the training efficiency of a CL system is under-investigated, which3

limits the real-world application of CL systems under resource-limited scenarios.4

In this work, we propose a novel framework called Sparse Continual Learning5

(SparCL), which is the first study that leverages sparsity to enable cost-effective6

continual learning on edge devices. SparCL achieves both training acceleration7

and accuracy preservation through the synergy of three aspects: weight sparsity,8

data efficiency, and gradient sparsity. Specifically, we propose task-aware dynamic9

masking (TDM) to learn a sparse network throughout the entire CL process, dy-10

namic data removal (DDR) to remove less informative training data, and dynamic11

gradient masking (DGM) to sparsify the gradient updates. Each of them not only12

improves efficiency, but also further mitigates catastrophic forgetting. SparCL13

consistently improves the training efficiency of existing state-of-the-art (SOTA) CL14

methods by at most 23⇥ less training FLOPs, and, surprisingly, further improves15

the SOTA accuracy by at most 1.7%. SparCL also outperforms competitive base-16

lines obtained from adapting SOTA sparse training methods to the CL setting in17

both efficiency and accuracy. We also evaluate the effectiveness of SparCL on a18

real mobile phone, further indicating the practical potential of our method. Source19

code will be released.20

1 Introduction21

The objective of Continual Learning (CL) is to enable an intelligent system to accumulate knowledge22

from a sequence of tasks, such that it exhibits satisfying performance on both old and new tasks [28].23

Recent methods mostly focus on addressing the catastrophic forgetting [39] problem – learning24

model tends to suffer performance deterioration on previously seen tasks. However, in the real world,25

when the CL applications are deployed in resource-limited platforms [44] such as edge devices,26

the learning efficiency, w.r.t. both training speed and memory footprint, are also crucial metrics of27

interest, yet they are rarely explored in prior CL works.28

Existing CL methods can be categorized into regularization-based [2, 28, 33, 62], rehearsal-based [8,29

12, 46, 56], and architecture-based [27, 38, 48, 53, 54]. Both regularization- and rehearsal-based30

methods directly train a dense model, which might even be over-parametrized for the union of all31

tasks [18, 35]; Though several architecture-based methods [47, 53, 58] start with a sparse sub-network32

from the dense model, they still grow the model size progressively to learn emerging tasks. The33

aforementioned methods, although striving for greater performance with less forgetting, still introduce34

significant memory and computation overhead during the whole CL process.35

Recently, another stream of work, sparse training [4, 19, 31] has emerged as a new training trend to36

achieve training acceleration, which embraces the promising training-on-the-edge paradigm. With37

sparse training, each iteration takes less time with the reduction in computation achieved by sparsity,38
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Figure 1: Left: Overview of SparCL. SparCL consists of three complementary components: task-aware dynamic
masking (TDM) for weight sparsity, dynamic data removal (DDR) for data efficiency, and dynamic gradient
masking (DGM) for gradient sparsity. Right: SparCL successfully preserves the accuracy and significantly
improves efficiency over DER++ [8], one of the SOTA CL methods, with different sparsity ratios on the Split
Tiny-ImageNet [16] dataset.

under the traditional i.i.d. learning setting. Inspired by these sparse training methods, we naturally39

think about introducing sparse training to the field of CL. A straightforward idea is to directly combine40

existing sparse training methods, such as SNIP [31], RigL [19], with a rehearsal buffer under the41

CL setting. However, these methods fail to consider key challenges in CL to mitigate catastrophic42

forgetting, for example, properly handling transition between tasks. As a result, these sparse training43

methods, though enhancing training efficiency, cause significant accuracy drop (see Section 5.2).44

Thus, we would like to explore a general strategy, which is orthogonal to existing CL methods, that45

not only leverages the idea of sparse training for efficiency, but also addresses key challenges in CL46

to preserve (or even improve) accuracy.47

In this work, we propose Sparse Continual Learning (SparCL), a general framework for cost-effective48

continual learning, aiming at enabling practical CL on edge devices. As shown in Figure 1 (left),49

SparCL achieves both learning acceleration and accuracy preservation through the synergy of three50

aspects: weight sparsity, data efficiency, and gradient sparsity. Specifically, to maintain a small51

dynamic sparse network during the whole CL process, we develop a novel task-aware dynamic52

masking (TDM) strategy to keep only important weights for both the current and past tasks, with53

special consideration during task transitions. Moreover, we propose a dynamic data removal (DDR)54

scheme, which progressively removes “easy-to-learn” examples from training iterations, which55

further accelerates the training process and also improves accuracy of CL by balancing current and56

past data and keeping more informative samples in the buffer. Finally, we provide an additional57

dynamic gradient masking (DGM) strategy to leverage gradient sparsity for even better efficiency58

and knowledge preservation of learned tasks, such that only a subset of sparse weights are updated.59

Figure 1 (right) demonstrates that SparCL successfully preserves the accuracy and significantly60

improves efficiency over DER++ [8], one of the SOTA CL methods, under different sparsity ratios.61

SparCL is simple in concept, compatible with various existing rehearsal-based CL methods, and62

efficient under practical scenarios. We conduct comprehensive experiments on multiple CL bench-63

marks to evaluate the effectiveness of our method. We show that SparCL works collaboratively with64

existing CL methods, greatly accelerates the learning process under different sparsity ratios, and65

even sometimes improves upon the state-of-the-art accuracy. We also establish competing baselines66

by combining representative sparse training methods with advanced rehearsal-based CL methods.67

SparCL again outperforms these baselines in terms of both efficiency and accuracy. Most importantly,68

we evaluate our SparCL framework on real edge devices to demonstrate the practical potential of69

our method. We are not aware of any prior CL works that explored this area and considered the70

constraints of limited resources during training.71

In summary, our work makes the following contributions:72

• We propose Sparse Continual Learning (SparCL), a general framework for cost-effective continual73

learning, which achieves learning acceleration through the synergy of weight sparsity, data effi-74

ciency, and gradient sparsity. To the best of our knowledge, our work is the first to introduce the75

idea of sparse training to enable efficient CL on edge devices.76

• SparCL shows superior performance compared to both conventional CL methods and CL-adapted77

sparse training methods on all benchmark datasets, leading to at most 23⇥ less training FLOPs78

and, surprisingly, 1.7% improvement over SOTA accuracy.79
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• We evaluate SparCL on a real mobile edge device, demonstrating the practical potential of our80

method and also encouraging future research on CL on-the-edge. The results indicate that our81

framework can achieve at most 3.1⇥ training acceleration.82

2 Related work83

2.1 Continual Learning84

The main focus in continual learning (CL) has been mitigating catastrophic forgetting. Existing85

methods can be classified into three major categories. Regularization-based methods [2, 28, 33, 62]86

limit updates of important parameters for the prior tasks by adding corresponding regularization terms.87

While these methods reduce catastrophic forgetting to some extent, their performance deteriorates88

under challenging settings [36], and on more complex benchmarks [46, 56]. Rehearsal-based89

methods [13, 14, 22] save examples from previous tasks into a small-sized buffer to train the model90

jointly with the current task. Though simple in concept, the idea of rehearsal is very effective in91

practice and has been adopted by many state-of-the-art methods [8, 11, 45]. Architecture-based92

methods [38, 47, 53, 54, 57] isolate existing model parameters or assign additional parameters for93

each task to reduce interference among tasks. As mentioned in Section 1, most of these methods use94

a dense model without consideration of efficiency and memory footprint, thus are not applicable to95

resource-limited settings. Our work, orthogonal to these methods, serves as a general framework for96

making these existing methods efficient and enabling a broader deployment, e.g., CL on edge devices.97

A limited number of works explore sparsity in CL, however, for different purposes. Several methods98

[37, 38, 49, 53] incorporate the idea of weight pruning [21] to allocate a sparse sub-network for99

each task to reduce inter-task interference. Nevertheless, these methods still reduce the full model100

sparsity progressively for every task and finally end up with a much denser model. On the contrary,101

SparCL maintains a sparse network throughout the whole CL process, introducing great efficiency102

and memory benefits both during training and at the output model. A recent work [15] aims at103

discovering lottery tickets [20] under CL, but still does not address efficiency. However, the existence104

of lottery tickets in CL serves as a strong justification for the outstanding performance of our SparCL.105

2.2 Sparse Training106

There are two main approaches for sparse training: fixed-mask sparse training and dynamic sparse107

training. Fixed-mask sparse training methods [31, 50, 52, 55] first apply pruning, then execute108

traditional training on the sparse model with the obtained fixed mask. The pre-fixed structure limits109

the accuracy performance, and the first stage still causes huge computation and memory consumption.110

To overcome these drawbacks, dynamic mask methods [4, 17, 19, 41, 42] adjust the sparsity topology111

during training while maintaining low memory footprint. These methods start with a sparse model112

structure from an untrained dense model, then combine sparse topology exploration at the given113

sparsity ratio with the sparse model training. Recent work [61] further considers to incorporate data114

efficiency into sparse training for better training accelerations. However, all prior sparse training115

works are focused on the traditional training setting, while CL is a more complicated and difficult116

scenario with inherent characteristics not explored by these works. In contrast to prior sparse training117

methods, our work explores a new learning paradigm that introduces sparse training into CL for118

efficiency and also addresses key challenges in CL, mitigating catastrophic forgetting.119

3 Continual Learning Problem Setup120

In supervised CL, a model f✓ learns from a sequence of tasks D = {D1, . . . ,DT }, where each task121

Dt = {(xt,i, yt,i)}nt
i=1 consists of input-label pairs, and each task has a disjoint set of classes. Tasks122

arrive sequentially, and the model must adapt to them. At the t-th step, the model gains access to123

data from the t-th task. However, a small fix-sized rehearsal buffer M is allowed to save data from124

prior tasks. At test time, the easiest setting is to assume task identity is known for each coming test125

example, named task-incremental learning (Task-IL). If this assumption does not hold, we have the126

more difficult class-incremental learning (Class-IL) setting. In this work, we mainly focus on the127

more challenging Class-IL setting, and only report Task-IL performance for reference.128
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Figure 2: Illustration of the SparCL workflow. Three components work synergistically to improve training
efficiency and further mitigate catastrophic forgetting for preserving accuracy.

The goal of conventional CL is to train a model sequentially that performs well on all tasks at test129

time. The main evaluation metric is average test accuracy on all tasks. In real-world resource-130

limited scenarios, we should further consider training efficiency of the model. Thus, we measure the131

performance of the model more comprehensively by including training FLOPs and memory footprint.132

4 Sparse Continual Learning (SparCL)133

Our method, Sparse Continual Learning, is a unified framework composed of three complementary134

components: task-aware dynamic masking for weight sparsity, dynamic data removal for data135

efficiency, and dynamic gradient masking for gradient sparsity. The entire framework is shown in136

Figure 2. We will illustrate each component in detail in this section.137

4.1 Task-aware Dynamic Masking138

To enable cost-effective CL in resource limited scenarios, SparCL is designed to maintain a dynamic139

structure when learning a sequence of tasks, such that it not only achieves high efficiency, but also140

intelligently adapts to the data stream for better performance. Specifically, we propose a strategy141

named task-aware dynamic masking (TDM), which dynamically removes less important weights142

and grows back unused weights for stronger representation power periodically by maintaining a143

single binary weight mask throughout the CL process. Different from typical sparse training work,144

which only leverages the weight magnitude [41] or the gradient w.r.t. data from a single training145

task [19, 61], TDM considers also the importance of weights w.r.t. data saved in the rehearsal buffer,146

as well as the switch between CL tasks.147

Specifically, TDM strategy starts from a randomly initialized binary mask M✓ = M0, with a given148

sparsity constraint kM✓k0/k✓k0 = 1� s, where s 2 [0, 1] is the sparsity ratio. Moreover, it makes149

different intra- and inter-task adjustments to keep a dynamic sparse set of weights based on their150

continual weight importance (CWI). We summarize the process of task-aware dynamic masking in151

Algorithm 1 and elaborate its key components in detail below.152

Continual weight importance (CWI). For a model f✓ parameterized by ✓, the CWI of weight w ⇢ ✓153

is defined as follows:154

CWI(w) = kwk1 + ↵k@L̃(Dt; ✓)

@w
k1 + �k@L(M; ✓)

@w
k1, (1)

where Dt denotes the training data from the t-th task, M is the current rehearsal buffer, and ↵, � are155

coefficients to control the influence of current and buffered data, respectively. Moreover, L represents156

the cross-entropy loss for classification, while L̃ is the single-head [1] version of the cross-entropy157

loss, which only considers classes from the current task by masking out the logits of other classes.158

Intuitively, CWI ensures we keep (1) weights of larger magnitude for output stability, (2) weights159

important for the current task for learning capacity, and (3) weights important for past data to mitigate160

catastrophic forgetting. Moreover, inspired by the classification bias in CL [1], we use the single-head161

cross-entropy loss when calculating importance score w.r.t. the current task to make the importance162

estimation more accurate.163
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Algorithm 1: Task-aware Dynamic Masking (TDM)
Input: Model weight ✓, number of tasks T , training epochs of the t-th task Kt, binary sparse

mask M✓, sparsity ratio s, intra-task adjustment ratio pintra, inter-task adjustment ratio
pinter, update interval �k

Initialize: ✓, M✓, s.t. kM✓k0/k✓k0 = 1� s
for t = 1, . . . , T do

for e = 1, . . . ,KT do
if t > 1 then

/* Inter-task adjustment */
Expand M✓ by randomly adding unused weights,

s.t. kM✓k0/k✓k0 = 1� (s� pinter)
if e = �k then

Shrink M✓ by removing the least important weights according to equation 1,
s.t. kM✓k0/k✓k0 = 1� s

end
end
if e mod �k = 0 then

/* Intra-task adjustment */
Shrink M✓ by removing the least important weights according to equation 1,

s.t. kM✓k0/k✓k0 = 1� (s+ pintra)
Expand M✓ by randomly adding unused weights,

s.t. kM✓k0/k✓k0 = 1� s
end
Update ✓ �M✓ via backpropagation

end
end

Intra-task adjustment. When training the t-th task, a natural assumption is that the data distribution164

is consistent inside the task, thus we would like to update the sparse model in a relatively stable way165

while keeping its flexibility. Thus, in Algorithm 1, we choose to update the sparsity mask M✓ in a166

shrink-and-expand way every �k epochs. We first remove pintra of the weights of least CWI to retain167

learned knowledge so far. Then we randomly select unused weights to recover the learning capacity168

for the model and keep the sparsity ratio s unchanged.169

Inter-task adjustment. When tasks switches, on the contrary, we assume data distribution shifts170

immediately. Ideally, we would like the model to keep the knowledge learned from old tasks as much171

as possible, and to have enough learning capacity to accommodate the new task. Thus, instead of172

the shrink-and-expand strategy for intra-task adjustment, we follow an expand-and-shrink scheme.173

Specifically, at the beginning of the (t+ 1)-th task, we expand the sparse model by randomly adding174

a proportion of pinter unused weights. Intuitively, the additional learning capacity facilitates fast175

adoption of new knowledge and reduces interference with learned knowledge. We allow our model to176

have smaller sparsity (i.e., larger learning capacity) temporarily for the first �k epochs as a warm-177

up period, and then remove the pinter weights with least CWI, following the same process in the178

intra-task case, to satisfy the sparsity constraint.179

4.2 Dynamic Data Removal180

In addition to weight sparsity, decreasing the amount of training data can be directly translated into181

the saving of training time without any requirements for hardware support. Thus, we would also like182

to explore data efficiency to reduce the training workload. Some prior CL works select informative183

examples to construct the rehearsal buffer [3, 6, 59]. However, the main purpose of them is not184

training acceleration, thus they either introduce excessive computational cost or consider different185

problem settings. By considering the features of CL, we present a simple yet effective strategy,186

dynamic data removal (DDR), to reduce training data for further acceleration.187

We measure the importance of each training example by the occurrence of misclassification [51, 61]188

during CL. In TDM, the sparse structure of our model updates periodically every �k epochs, so we189

align our data removal process with the update of weight mask for further efficiency and training190
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stability. In Section 4.1, we have partitioned the training process for the t-th task into Nt = Kt/�k191

stages based on the dynamic mask update. Therefore, we gradually remove training data at the end of192

i-th stage, based on the following policy: 1) Calculate the total number of misclassifications fi(xj)193

for each training example during the i-th stage. 2) Remove a proportion of ⇢i training samples with194

the least number of misclassifications. Although our main purpose is to keep the “harder” examples195

to learn to consolidate the sparse model, we can get further benefits for better CL result. First, the196

removal of “easier” examples increases the probability that “harder” examples to be saved to the197

rehearsal buffer, given the common strategy, e.g. reservoir sampling [14], to buffer examples. Thus,198

we construct a more informative buffer in a implicit way without heavy computation. Moreover, since199

the buffer size is much smaller than the training set size of each task, the data from the buffer and the200

new task is highly imbalanced, dynamic data removal also relieves the data imbalance issue.201

Formally, we set the data removal proportion for each task as ⇢ 2 [0, 1], and a cutoff stage, such that:202

cutoffX

i=1

⇢i = ⇢,
NkX

i=cutoff+1

⇢i = 0 (2)

The cutoff stage controls the trade-off between efficiency and accuracy: When we set the cutoff stage203

earlier, we reduce the training time for all the following stages; however, when the cutoff stage is set204

too early, the model might underfit the removed training data. Note that when we set ⇢i = 0 for all205

i = 1, 2, . . . , Nt and cutoff = Nt, we simply recover the vanilla setting without any data efficiency206

considerations. In our experiments, we assume ⇢i = ⇢/cutoff, i.e., removing equal proportion of207

data at the end of every stage, for simplicity. We also conduct comprehensive exploration study for ⇢208

and the selection of the cutoff stage in Section 5.3 and Appendix D.3.209

4.3 Dynamic Gradient Masking210

With TDM and DDR, we can already achieve bi-level efficiency during training. To further boost211

training efficiency, we explore sparsity in gradient and propose dynamic gradient masking (DGM)212

for CL. Our method focuses on reducing computational cost by only applying the most important213

gradients onto the corresponding unpruned model parameters via a gradient mask. The gradient mask214

is also dynamically updated along with the weight mask defined in Section 4.1. Intuitively, while215

targeting for better training efficiency, DGM also promotes the preservation of past knowledge by216

preventing a fraction of weights from update.217

Formally, our goal here is to find a subset of unpruned parameters (or, equivalently, a gradient mask218

MG) to update over multiple training iterations. For a model f✓ parameterized by ✓, we have the219

corresponding gradient matrix G calculated during each iteration. To prevent the pruned weights220

from updating, the weight mask M✓ will be applied onto the gradient matrix G as G�M✓ during221

backpropagation. Besides the gradients of pruned weights, we in addition consider to remove less222

important gradients for faster training. To achieve this, we introduce the continual gradient importance223

(CGI) based on the CWI to measure the importance of weight gradients.224

CGI(w) = ↵k@L̃(Dt; ✓)

@w
k1 + �k@L(M; ✓)

@w
k1. (3)

We remove a proportion q of non-zero gradients from G with less importance measured by CGI225

and we have kMGk0/k✓k0 = 1� (s+ q). The gradient mask MG is then applied onto the gradient226

matrix G. During the entire training process, the gradient mask MG is updated with a fixed interval.227

5 Experiment228

5.1 Experiment Setting229

Datasets. We evaluate our SparCL on two representative CL benchmarks, Split CIFAR-10 [29]230

and Split Tiny-ImageNet [16] to verify the efficacy of SparCL. In particular, we follow [8, 62] by231

splitting CIFAR-10 and Tiny-ImageNet into 5 and 10 tasks, each of which consists of 2 and 20 classes232

respectively. Dataset licensing information can be found in Appendix C.233

Comparing methods. In particular, we select CL methods of all kinds including regularization-234

based (EWC [28], LwF [33]), architecture-based (PackNet [38], LPS [53]), and rehearsal-based235
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Table 1: Comparison with CL methods. SparCL consistently improves training efficiency of the corresponding
CL methods while preserves (or even improves) accuracy on both class- and task-incremental settings.

Method Sparsity Buffer size
Split CIFAR-10 Split Tiny-ImageNet

Class-IL (") Task-IL (") FLOPs Train
⇥1015 (#) Class-IL (") Task-IL (") FLOPs Train

⇥1016 (#)

EWC [28] 0.00 – 19.49±0.12 68.29±3.92 8.3 7.58±0.10 19.20±0.31 13.3
LwF [33] 19.61±0.05 63.29±2.35 8.3 8.46±0.22 15.85±0.58 13.3

PackNet [38] 0.50† – - 93.73±0.55 5.0 – 61.88±1.01 7.3
LPS [53] - 94.50±0.47 5.0 – 63.37±0.83 7.3

A-GEM [13]

0.00 200

20.04±0.34 83.88±1.49 11.1 8.07±0.08 22.77±0.03 17.8
iCaRL [46] 49.02±3.20 88.99±2.13 11.1 7.53±0.79 28.19±1.47 17.8
FDR [5] 30.91±2.74 91.01±0.68 13.9 8.70±0.19 40.36±0.68 22.2
ER [14] 44.79±1.86 91.19±0.94 11.1 8.49±0.16 38.17±2.00 17.8
DER++ [8] 64.88±1.17 91.92±0.60 13.9 10.96±1.17 40.87±1.16 22.2

SparCL-ER75 46.89±0.68 92.02±0.72 2.0 8.98±0.38 39.14±0.85 3.2
SparCL-DER++75

0.75 66.30±0.98 94.06±0.45 2.5 12.73±0.40 42.06±0.73 4.0
SparCL-ER90 45.81±1.05 91.49±0.47 0.9 8.67±0.41 38.79±0.39 1.4
SparCL-DER++90

0.90 200 65.79±1.33 93.73±0.24 1.1 12.27±1.06 41.17±1.31 1.8
SparCL-ER95 44.59±0.23 91.07±0.64 0.5 8.43±0.09 38.20±0.46 0.8
SparCL-DER++95

0.95 65.18±1.25 92.97±0.37 0.6 10.76±0.62 40.54±0.98 1.0

A-GEM [13]

0.00 500

22.67±0.57 89.48±1.45 11.1 8.06±0.04 25.33±0.49 17.8
iCaRL [46] 47.55±3.95 88.22±2.62 11.1 9.38±1.53 31.55±3.27 17.8
FDR [5] 28.71±3.23 93.29±0.59 13.9 10.54±0.21 49.88±0.71 22.2
ER [14] 57.74±0.27 93.61±0.27 11.1 9.99±0.29 48.64±0.46 17.8
DER++ [8] 72.70±1.36 93.88±0.50 13.9 19.38±1.41 51.91±0.68 22.2

SparCL-ER75 60.80±0.22 93.82±0.32 2.0 10.48±0.29 50.83±0.69 3.2
SparCL-DER++75

0.75 74.09±0.84 95.19±0.34 2.5 20.75±0.88 52.19±0.43 4.0
SparCL-ER90 59.34±0.97 93.33±0.10 0.9 10.12±0.53 49.46±1.22 1.4
SparCL-DER++90

0.90 500 73.42±0.95 94.82±0.23 1.1 19.62±0.67 51.93±0.36 1.8
SparCL-ER95 57.75±0.45 92.73±0.34 0.5 9.91±0.17 48.57±0.50 0.8
SparCL-DER++95

0.95 72.14±0.78 94.39±0.15 0.6 19.01±1.32 51.26±0.78 1.0
†PackNet and LPS actually have a decreased sparsity after learning every task, we use 0.50 to roughly represent the average sparsity.

(A-GEM [13], iCaRL [40], FDR [5], ER [14], DER++ [8]) methods. Note that PackNet and LPS236

are only compatible with task-incremental learning. We also adapt representative sparse training237

methods (SNIP [31], RigL [19]) to the CL setting by combining them with DER++ (SNIP-DER++,238

RigL-DER++).239

Variants of our method. To show the generality of SparCL, we combine it with DER++ (one of240

the SOTA CL methods), and ER (simple and widely-used) as SparCL-DER++ and SparCL-ER,241

respectively. We also vary the weight sparsity ratio (0.75, 0.90, 0.95) of SparCL for a comprehensive242

evaluation.243

Evaluation metrics. We use the average accuracy on all tasks to evaluate the performance of the final244

model. Moreover, we evaluate the training FLOPs [19], and memory footprint [61] (including feature245

map pixels and model parameters during training) to demonstrate the efficiency of each method.246

Please see Appendix D.1 for detailed definitions of these metrics.247

Experiment details. For fair comparison, we strictly follow the settings in prior CL work [8, 26]. We248

sets the per task training epochs to 50 and 100 for Split CIFAR-10 and Tiny-ImageNet, respectively,249

with a batch size of 32. For the model architecture, We follow [8, 46] and adopt the ResNet-18 [23]250

without any pre-training. We also use the best hyperparameter setting reported in [8, 53] for CL251

methods, and in [19, 31] for CL-adapted sparse training methods. For SparCL and its competing252

CL-adapted sparse training methods, we adopt a uniform sparsity ratio for all convolutional layers.253

Please see Appendix D for other details.254

5.2 Main Results255

Comparison with CL methods. Table 1 summarizes the results on Split CIFAR-10 and Tiny-256

ImageNet, under both class-incremental (Class-IL) and task-incremental (Task-IL) settings. From257

Table 1, we can clearly tell that SparCL significantly improves ER and DER++, while also outperforms258

other CL baselines, in terms of training efficiency (measured in FLOPs). With higher sparsity ratio,259

SparCL leads to less training FLOPs. Notably, SparCL achieves 23⇥ training efficiency improvement260

upon DER++ with a sparsity ratio of 0.95. On the other hand, our framework also improves the261

average accuracy of ER and DER++ consistently under all cases with a sparsity ratio of 0.75 and 0.90,262
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Table 2: Comparison with CL-adapted sparse training methods. All methods are combined with DER++ with a
500 buffer size. SparCL outperforms all methods in both accuracy and training efficiency, under all sparsity
ratios. All three methods here can save 20% ⇠ 51% memory footprint, please see Appendix D.2 for details.

Method Spasity
Split CIFAR-10 Split Tiny-ImageNet

Class-IL (") FLOPs Train
⇥1015 (#) Class-IL (") FLOPs Train

⇥1016 (#)

DER++ [8] 0.00 72.70±1.36 13.9 19.38±1.41 22.2

SNIP-DER++ [31] 69.82±0.72 1.6 16.13±0.61 2.5
RigL-DER++ [19] 0.90 69.86±0.59 1.6 18.36±0.49 2.5
SparCL-DER++90 73.42±0.95 1.1 19.62±0.67 1.8

SNIP-DER++ [31] 66.07±0.91 0.9 14.76±0.52 1.5
RigL-DER++ [19] 0.95 66.53±1.13 0.9 15.88±0.63 1.5
SparCL-DER++95 72.14±0.78 0.6 19.01±1.32 1.0

Table 3: Ablation study on Split-CIFAR10 with 0.75 sparsity ratio. All components contributes to the overall
performance, in terms of both accuracy and efficiency (training FLOPs and memory footprint).

TDM DDR DGM Class-IL (") FLOPs Train
⇥1015 (#)

Memory
Footprint (#)

7 7 7 72.70 13.9 169MB
3 7 7 73.37 3.6 101MB
3 3 7 73.80 2.8 101MB
3 7 3 73.97 3.3 98MB
3 3 3 74.09 2.5 98MB

and only slight performance drop when sparsity gets larger as 0.95. In particular, SparCL-DER++263

with 0.75 sparsity ratio sets new SOTA accuracy, with all buffer sizes under both benchmarks. The264

outstanding performance of SparCL indicates that our proposed strategies successfully preserve265

accuracy by further mitigating catastrophic forgetting with a much sparser model. Moreover, the266

improvement that SparCL brings to two different existing CL methods shows the generalizability of267

SparCL as a unified framework, i.e., it has the potential to be combined with a wide array of existing268

methods.269

We would also like to take a closer look at PackNet and LPS, which also leverage the idea of sparsity270

to split the model by different tasks, a different motivation from training efficiency. Firstly, they are271

only compatible with the Task-IL setting, since they leverage task identity at both training and test272

time. Moreover, the model sparsity of these methods reduces with the increasing number of tasks,273

which still leads to much larger overall training FLOPs than that of SparCL. This further demonstrates274

the importance of keeping a sparse model without permanent expansion throughout the CL process.275

Comparison with CL-adapted sparse training methods. Table 2 shows the result under the276

more difficult Class-IL setting. SparCL outperforms all CL-adapted sparse training methods in both277

accuracy and training FLOPs. The performance gap between SparCL-DER++ and other methods278

gets larger with a higher sparsity. SNIP- and RigL-DER++ achieve training acceleration at the cost of279

compromised accuracy, which suggests that keeping accuracy is a non-trivial challenge for existing280

sparse training methods under the CL setting. SNIP generates the static initial mask after network281

initialization which does not consider the structure suitability among tasks. Though RigL adopts a282

dynamic mask, the lack of task-aware strategy prevents it from generalizing well to the CL setting.283

5.3 Effectiveness of Key Components284

Ablation study. We provide a comprehensive ablation study in Table 3 using SparCL-DER++ with285

0.75 sparsity on Split CIFAR10. Table 3 demonstrates that all components of our method contribute286

to both efficiency and accuracy improvements. Comparing row 1 and 2, we can see that the majority287

of FLOPs decrease results from TDM. Interestingly, TDM leads to an increase in accuracy, indicating288

TDM generates a sparse model that is even more suitable for learning all tasks than then full dense289

model. Comparing row 2 and 3, we can see that DDR indeed further accelerates training by removing290

less informative examples. As discussed in Section 4.2, when we remove a certain number of samples291

(30% here), we achieve a point where we keep as much informative samples as we need, and also292

balance the current and buffered data. Comparing row 2 and 4, DGM reduce both training FLOPs and293

memory footprint while improve the performance of the network. Finally, the last row demonstrates294

the collaborative performance of all components. We also show the same ablation study with 0.90295

sparsity in Appendix D.4 for reference. Detail can be found in Appendix D.1.296
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Figure 3: Comparison between DDR and One-
shot [61] data removal strategy w.r.t. different data
removal proportion ⇢. DDR outperforms One-shot
and also achieves better accuracy when ⇢  30%.

Figure 4: Comparison with CL-adapted sparse
training methods in training acceleration rate
and accuracy results. The radius of circles are
measured by memory footprint.

Exploration on DDR. To understand the influence of the data removal proportion ⇢, and the cutoff297

stage for each task, we show corresponding experiment results in Figure 3 and Appendix D.3,298

respectively. In Figure 3, we fix cutoff = 4, i.e., gradually removing equal number of examples299

every 5 epochs until epoch 20, and vary ⇢ from 10% to 90%. We also compare DDR with One-shot300

removal strategy [61], which removes all examples at once at cutoff. DDR outperforms One-shot301

consistently with different ⇢ in average accuracy. Also note that since DDR removes the examples302

gradually before the cutoff stage, DDR is more efficient than One-shot. When ⇢  30%, we also303

observe increased accuracy of DDR compared with the baseline without removing any data. When304

⇢ � 40%, the accuracy gets increasingly lower for both strategies. The intuition is that when DDR305

removes a proper amount of data, it removes redundant information while keeps the most informative306

examples. Moreover, as discussed in Section 4.2, it balances the current and buffered data, while307

also leave informative samples in the buffer. When DDR removes too much data, it will also lose308

informative examples, thus the model has not learned these examples well before removal.309

Exploration on DGM. We test the efficacy of DGM at different sparsity levels. Detailed exploratory310

experiments are shown in Appendix D.5 for reference. The results indicate that by setting the311

proportion q within an appropriate range, DGM can consistently improve the accuracy performance312

regardless of the change of weight sparsity.313

5.4 Mobile Device Results314

The training acceleration results are measured on the CPU of an off-the-shelf Samsung Galaxy S20315

smartphone, which has the Qualcomm Snapdragon 865 mobile platform with a Qualcomm Kryo 585316

Octa-core CPU. We run each test on a batch of 32 images to denote the training speed. The detail of317

on-mobile compiler-level optimizations for training acceleration can be found in Appendix E.1.318

The acceleration results are shown in Figure 4. SparCL can achieve approximately 3.1⇥ and 2.3⇥319

training acceleration with 0.95 sparsity and 0.90 sparsity, respectively. Besides, our framework can320

also save 51% and 48% memory footprint when the sparsity is 0.95 and 0.90. Furthermore, the321

obtained sparse models save the storage consumption by using compressed sparse row (CSR) storage322

and can be accelerated to speed up the inference on-the-edge. We provide on-mobile inference323

acceleration results in Appendix E.2.324

6 Conclusion325

This paper presents a unified framework named SparCL for efficient CL that achieves both learning326

acceleration and accuracy preservation. It comprises three complementary strategies: task-aware327

dynamic masking for weight sparsity, dynamic data removal for data efficiency, and dynamic gradient328

masking for gradient sparsity. Extensive experiments on standard CL benchmarks and real-world edge329

device evaluations demonstrate that our method significantly improves upon existing CL methods and330

outperforms CL-adapted sparse training methods. We discuss the limitations and potential negative331

social impacts of our method in Appendix A and B, respectively.332
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