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Abstract

Secure multi-party computation (MPC) allows parties to perform computations1

on data while keeping that data private. This capability has great potential for2

machine-learning applications: it facilitates training of machine-learning models3

on private data sets owned by different parties, evaluation of one party’s private4

model using another party’s private data, etc. Although a range of studies imple-5

ment machine-learning models via secure MPC, such implementations are not6

yet mainstream. Adoption of secure MPC is hampered by the absence of flexible7

software frameworks that “speak the language” of machine-learning researchers8

and engineers. To foster adoption of secure MPC in machine learning, we present9

CRYPTEN: a software framework that exposes popular secure MPC primitives via10

abstractions that are common in modern machine-learning frameworks, such as11

tensor computations, automatic differentiation, and modular neural networks. This12

paper describes the design of CRYPTEN and measure its performance on state-of-13

the-art models for text classification, speech recognition, and image classification.14

Our benchmarks show that CRYPTEN’s GPU support and high-performance com-15

munication between (an arbitrary number of) parties allows it to perform efficient16

private evaluation of modern machine-learning models under a semi-honest threat17

model. For example, two parties using CRYPTEN can securely predict phonemes18

in speech recordings using Wav2Letter [17] faster than real-time. We hope that19

CRYPTEN will spur adoption of secure MPC in the machine-learning community.20

1 Introduction21

Secure multi-party computation (MPC; [29, 68]) allows parties to collaboratively perform computa-22

tions on their combined data sets without revealing the data they possess to each other. This capability23

of secure MPC has the potential to unlock a variety of machine-learning applications that are currently24

infeasible because of data privacy concerns. For example, secure MPC can allow medical research25

institutions to jointly train better diagnostic models without having to share their sensitive patient26

data [26] or allow social scientists to analyze gender wage gap statistics without companies having27

to share sensitive salary data [41]. The prospect of such applications of machine learning with28

rigorous privacy and security guarantees has spurred a number of studies on machine learning via29

secure MPC [37, 40, 47, 57, 62, 65, 66]. However, at present, adoption of secure MPC in machine30

learning is still relatively limited considering its wide-ranging potential. One of the main obstacles to31

widespread adoption is that the complexity of secure MPC techniques puts them out of reach for most32

machine-learning researchers, who frequently lack in-depth knowledge of cryptographic techniques.33

To foster the adoption of secure MPC techniques in machine learning, we present CRYPTEN: a34

flexible software framework that aims to make modern secure MPC techniques accessible to machine-35

learning researchers and developers without a background in cryptography. Specifically, CRYPTEN36
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provides a comprehensive tensor-computation library in which all computations are performed via37

secure MPC. CRYPTEN’s API closely follows the API of the popular PyTorch framework for machine38

learning [53, 54], which makes it easy to use for machine-learning practitioners. For example,39

it provides automatic differentiation and a modular neural-network package. CRYPTEN assumes40

an semi-honest threat model [29, §2.3.2] and works for an arbitrary number of parties. To make41

private training and inference efficient, CRYPTEN off-loads computations to the GPU and uses42

high-performance communication libraries to implement interactions between parties.43

The paper presents: (1) an overview of CRYPTEN’s design principles; (2) a description of the44

design of CRYPTEN and of the secure MPC protocols implemented; (3) a collection of benchmark45

experiments using CRYPTEN to run private versions of state-of-the-art models for text classification,46

speech recognition, and image classification; and (4) a discussion of open problems and a roadmap47

for the further development of CRYPTEN. Altogether, the paper demonstrates that CRYPTEN’s48

flexible, PyTorch-like API makes private inference and training of modern machine-learning models49

easy to implement and efficient. For example, CRYPTEN allows two parties to privately classify50

an image [25, 34] in 2-3 seconds, or to securely make phoneme predictions for 16kHz speech51

recordings [17] faster than real-time. We hope that CRYPTEN’s promising performance and ease-of-52

use will foster the adoption of secure MPC by the machine-learning community, and pave the way53

for a new generation of secure and private machine-learning systems.54

2 Related Work55

This work is part of a larger body of work that develops secure MPC systems for machine learning.56

Most closely related to our work is CryptGPU [62], which implements an 2-out-of-3 replicated secret57

sharing protocol [4, 36] on top of CRYPTEN. This protocol provides security against semi-honest58

corruption, but also limits it to the three-party setting. CryptGPU is part of a larger family of three-59

party protocols that provides malicious security. For example, Falcon [66] implements a maliciously60

secure MPC protocol for the three-party setting, combining techniques from SecureNN [65] and61

ABY3 [47]. Falcon allows evaluation and training of convolutional networks such as AlexNet [39] and62

VGG [61]. Other systems that work in this setting include Astra [16], Blaze [55], and CrypTFlow [40].63

There also exists a family of two-party systems that, like CRYPTEN, assume a semi-honest threat64

model. These systems include Gazelle [37], Chameleon [57], EzPC [15], MiniONN [44], Se-65

cureML [48], PySyft [59], and Delphi [46]. XONN [58] also works in the two-party setting but66

provides malicious security. Compared to these systems, CRYPTEN provides a more flexible machine-67

learning focused API1 that supports reverse-mode automatic differentiation, implements a rich set of68

functions, and natively runs on GPUs. Moreover, CRYPTEN supports a wider range of use cases by69

working with an arbitrary number of parties, and make communication between parties efficient via70

communication primitives that were optimized for high-performance distributed computing.71

3 Design Principles72

In the development of CRYPTEN, we adopted the following two main design principles:73

Machine-learning first API. CRYPTEN has a general purpose, machine-learning first API design.74

Most other secure MPC frameworks [33] adopt an API that stays close to the underlying MPC75

protocols. This hampers adoption of these frameworks in machine learning, for example, because76

they do not natively support tensor operations (but only scalar operations) and because they lack77

features that machine-learning researchers have come to expect, such as automatic differentiation.78

Instead, CRYPTEN implements the tensor-computation API of the popular PyTorch machine-learning79

framework [53], implements reverse-mode automatic differentiation, provides a modular neural-80

network package with corresponding learning routines, and supports GPU computations. We aim to81

allow developers to transition code from PyTorch to CRYPTEN by changing a single Python import.82

Eager execution. CRYPTEN adopts an imperative programming model. This is different from83

existing MPC frameworks, which generally implement compilers for their own domain-specific84

languages [33]. While compiler approaches have potential performance benefits, they slow down the85

1CrypTFlow [40] also provides such an API by integrating deeply with TensorFlow [1], but unlike CRYPTEN,
it does not support PyTorch’s eager execution model [54] or GPU support.
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Figure 1: High-level overview of the design of CRYPTEN. See text in Section 4 for details.

development cycle, make debugging harder, and prevent users from using arbitrary host-language86

constructs [3]. Instead, CRYPTEN follows the recent trend in machine learning away from graph87

compilers [1] to frameworks that eagerly execute computations [3, 54], providing a better developer88

experience. Yet, CRYPTEN is performant because it implements state-of-the-art secure MPC protocols89

(for settings with arbitrary number of parties), because it uses PyTorch’s highly optimized tensor90

library for most computations, because computations can be off-loaded to the GPU, and because it91

uses communication libraries that were optimized for high-performance distributed computing.92

4 Design Overview93

import crypten, torch

# set up communication and sync random seeds:
crypten.init()

# secret share tensor:
x = torch.tensor([1.0, 2.0, 3.0])
x_enc = crypten.cryptensor(x, src=0)

# reveal secret shared tensor:
x_dec = x_enc.get_plain_text()
assert torch.all_close(x_dec, x)

# add secret shared tensors:
y = torch.tensor([2.0, 3.0, 4.0])
y_enc = crypten.cryptensor(y, src=0)
xy_enc = x_enc + y_enc
xy_dec = xy_enc.get_plain_text()
assert torch.all_close(xy_dec, x + y)

Figure 2: Example of secret-sharing tensors, re-
vealing tensors, and private addition in CRYPTEN.

Figure 1 gives an overview of CRYPTEN’s de-94

sign. Parties perform computations using effi-95

cient PyTorch tensor operations. Because se-96

cure MPC computations are integer computa-97

tions that are not natively supported on GPUs,98

CRYPTEN maps between integer and floating-99

point computations on GPUs; see Section 5.3.100

The multi-party computations are implemented101

on arithmetic and binary secret shares [22, 31];102

see Section 5.1. Whereas many computations103

can be performed directly on arithmetic se-104

cret shares, others require conversion between105

arithmetic and binary secret shares (A2B) and106

back (B2A); see Section 5.2. Some multi-107

party computations require interaction between108

parties via a communicator that employs the109

high-performance communication primitives in110

Gloo [30] and NCCL [50]. Some multi-party111

computations require Beaver triples [7], which112

are supplied by a trusted third party (TTP).2113

All secure computations are wrapped in a CrypTensor object that implements the PyTorch tensor114

API and that provides reverse-mode automatic differentiation (autograd) to enable gradient-based115

training of arbitrary (deep) learning models. Figure 2 illustrates CrypTensor creation, i.e., how116

tensors are secret-shared and revealed, as well as a simple computation (addition). Note that each117

party involved in the multi-party computation executes the same code. Whenever communication118

between the parties is required (e.g., as part of private multiplications), the communication acts as119

a synchronization point between the parties. The crypt.init() call is required once to establish120

the communication channel. In the example, the input tensor for the creation of the arithmetic secret121

share is provided party src=0, which indicates the rank3 of the party that supplies the data to be122

secret-shared (the other parties executing this code may provide None as input).123

2CRYPTEN adopts a trusted third party for generating Beaver triples for efficiency reasons, but we are
planning to add TTP-free solutions based on additive homomorphic encryption [51] or oblivious transfer [38].

3CRYPTEN relies on MPI primitives for communication: each party knows their rank and the world size.
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import crypten.optimizer as optimizer
import crypten.nn as nn

# create model, criterion , and optimizer:
model_enc = nn.Sequential(

nn.Linear(sample_dim , hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim , num_classes),

).encrypt()
criterion = nn.CrossEntropyLoss()
optimizer = optimizer.SGD(

model_enc.parameters(), lr=0.1, momentum=0.9,
)

# perform prediction on sample:
target_enc = crypten.cryptensor(target, src=0)
sample_enc = crypten.cryptensor(sample, src=0)
output_enc = model_enc(sample_enc)

# perform backward pass and update parameters:
model_enc.zero_grad()
loss_enc = criterion(output_enc , target_enc)
loss_enc.backward()
optimizer.step()

Figure 3: Example using neural networks and au-
tomatic differentiation in CRYPTEN.

import torchvision.datasets as datasets
import torchvision.models as models
import torchvision.transforms as transforms

# download and set up ImageNet dataset:
transform = transforms.ToTensor()
dataset = datasets.ImageNet(

imagenet_folder , transform=transform ,
)

# secret share pre−trained ResNet−18 on GPU:
model = models.resnet18(pretrained=True)
model_enc = crypten.nn.from_pytorch(

model, dataset[0],
).encrypt().cuda()

# perform inference on secret−shared images:
for image in dataset:

image_enc = crypten.cryptensor(image).cuda()
output_enc = model_enc(image_enc)
output = output_enc.get_plain_text()

Figure 4: Private inference on secret-shared images
using a secret-shared ResNet-18 model on GPU.

To enable deep-learning use cases, CRYPTEN124

allows implementing neural networks following125

PyTorch’s API. Figure 3 shows how to create126

and encrypt neural networks and how to use127

automatic differentiation in CRYPTEN. The ex-128

ample assumes that some training sample and129

the associated target label are provided by the130

party with rank 0 (note the value of src). As131

illustrated by the example, CRYPTEN’s API132

closely follows that of PyTorch. Indeed, it is133

possible to write a single training loop that can134

be used to train models using CRYPTEN or Py-135

Torch without code changes. This makes it easy136

to adapt PyTorch code to use secure MPC for137

its computations, and it also makes debugging138

easier. The appendix presents a table listing all139

tensor functions that CrypTensor implements.140

To enable interoperability with existing machine-141

learning platforms, neural networks can be im-142

ported into CRYPTEN via ONNX. Figure 4143

shows how a PyTorch model is imported144

into CRYPTEN. The example illustrates how145

CRYPTEN makes private inference with a146

ResNet-18 easy. The example in the figure also147

demonstrates CRYPTEN’s GPU support. One148

caveat is that all parties must use the same type149

of device (i.e., CPU or GPU) for computations.150

5 Secure Computations151

To facilitate secure computations, CRYPTEN152

implements arithmetic secret sharing [22] and153

binary secret sharing [31], as well as conver-154

sions between these two types of sharing [23].155

Arithmetic secret sharing is particularly well-156

suited for operations that are common in mod-157

ern machine-learning models, such as matrix158

multiplications and convolutions. Binary se-159

cret sharing is required for evaluating certain160

other common functions, such as rectified lin-161

ear units. We provide a high-level overview of162

CRYPTEN’s secure computation protocol here; a163

detailed description is presented in the appendix.164

5.1 Secret Sharing165

Arithmetic secret sharing shares a scalar value x ∈ Z/QZ, where Z/QZ denotes a ring with Q166

elements, across parties p ∈ P . We denote the sharing of x by [x] = {[x]p}p∈P , where [x]p ∈ Z/QZ167

indicates party p’s share of x. The shares are constructed such that their sum reconstructs the original168

value x, that is, x =
∑

p∈P [x]p mod Q. To share a value x, the parties generate a pseudorandom169

zero-share [18] with |P| random numbers that sum to 0. The party that possesses the value x adds x to170

their share and discards x. We use a fixed-point encoding to obtain x from a floating-point value, xR.171

To do so, we multiply xR with a large scaling factor B and round to the nearest integer: x = bBxRe,172

where B = 2L for some precision of L bits. To decode a value, x, we compute xR ≈ x/B.173

Binary secret sharing is a special case of arithmetic secret sharing that operates within the binary174

field Z/2Z. A binary secret share, 〈x〉, of a value x is formed by arithmetic secret shares of the bits175

of x, setting Q=2. Each party p ∈ P holds a share, 〈x〉p, such that x =
⊕

p∈P〈x〉p is satisfied.176
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Conversion from [x] to 〈x〉 is implemented by having the parties create a binary secret share of177

their [x]p shares, and summing the resulting binary shares. Specifically, the parties create a binary178

secret share, 〈[x]p〉, of all the bits in [x]p. Subsequently, the parties compute 〈x〉 =
∑

p∈P〈[x]p〉179

using a Ripple-carry adder in log2(|P|) log2(L) communication rounds [14, 21].180

Conversion from 〈x〉 to [x] is achieved by computing [x] =
∑B

b=1 2
b
[
〈x〉(b)

]
, where 〈x〉(b) denotes181

the b-th bit of the binary share 〈x〉 and B is the total number of bits in the shared secret, 〈x〉. To182

create an arithmetic share of a bit, the parties use secret shares,
(
[r(b)], 〈r(b)〉

)
, of random bits r(b).183

The random bits are provided by the TTP, but we plan to add an implementation that generates them184

off-line via oblivious transfer [38]. The parties use 〈r(b)〉 to mask 〈x〉(b) and reveal the resulting185

masked bit z(b). Subsequently, they compute
[
〈x〉(b)

]
=
[
r(b)
]
+ z(b) − 2

[
r(b)
]
z(b).186

5.2 Secure Computation187

Arithmetic and binary secret shares have homomorphic properties that can be used to implement188

secure computations. All computations in CRYPTEN are based on private addition and multiplication.189

Private addition of two arithmetically secret shared values, [z] = [x] + [y], is implemented by190

having each party p sum their shares of [x] and [y]: each party p ∈ P computes [z]p = [x]p + [y]p.191

Private multiplication is implemented using random Beaver triples [7], ([a], [b], [c]) with c=ab, that192

are provided by the TTP. The parties compute [ε] = [x]− [a] and [δ] = [y]− [b], and decrypt ε and δ193

without information leakage due to the masking. They compute the result [x][y] = [c]+ε[b]+[a]δ+εδ,194

using trivial implementations of addition and multiplication of secret shares with public values.195

Linear functions are trivially implemented as combinations of private addition and multiplication.196

This allows CRYPTEN to compute dot products, outer products, matrix products, and convolutions.197

Non-linear functions are implemented using standard approximations that only require private addi-198

tion and multiplication. Specifically, CRYPTEN evaluates exponentials using a limit approximation,199

logarithms using Householder iterations [35], and reciprocals using Newton-Rhapson iterations.200

This allows CRYPTEN to implement functions that are commonly used in machine-learning models,201

including the sigmoid, softmax, and logistic-loss functions, as well as their gradients.202

Comparators are implemented using a function that evaluates [z < 0] by: (1) converting [z] to a203

binary secret-share 〈z〉; (2) computing its sign bit, 〈b〉 = 〈z〉 >> (L − 1); and (3) converting the204

resulting bit to an arithmetic sharing [b]. This function allows CRYPTEN to implement arbitrary205

comparators. For example, it evaluates [x < y] by computing [z] = [x]− [y] and evaluating [z < 0].206

Similarly, CRYPTEN can evaluate: (1) the sign function via sign([x]) = 2[x > 0]−1; (2) the absolute207

value function via |[x]| = [x] sign([x]); and (3) rectified linear units via ReLU([x]) = [x][x > 0].208

CRYPTEN also supports multiplexing; to do so, it evaluates [c ? x : y] = [c][x] + (1− [c])[y].209

Lemma 1. The CRYPTEN secure-computation protocol is secure against information leakage against210

any static passive adversary corrupting up to |P| − 1 of the |P| parties involved in the computation.211

The proof of this lemma follows trivially from [9, 11, 21, 23], and is given in the appendix. We adopt212

a protocol that provides security under a semi-honest threat model because it enables a wide range of213

use cases of secure machine learning, whilst being more efficient than maliciously secure protocols.214

5.3 Off-loading Computations to the GPU215

Hardware acceleration via GPUs is a critical component for training and inference in modern machine-216

learning models. Akin to frameworks such as PyTorch [54] and TensorFlow [1], CRYPTEN can217

off-load computations to the GPU. On the GPU, it uses highly-optimized implementations for a range218

of functions that are provided by CUDA libraries such as cuBLAS [19] and cuDNN [20].219

Unfortunately, these libraries are designed for computations on floating-point numbers and do not220

support the integer types required to perform computations on L-bit fixed-point numbers. Akin221

to [62], we circumvent this problem by observing that for all integers a, b ∈ Z ∩ [−226, 226], we222

can compute the product ab using 64-bit floating-point representations and still recover the correct223

value over the integers. Specifically, CRYPTEN splits each 64-bit variable into four components,224

a = a0 + 216a1 + 232a2 + 248a3, where each ai represents a 16-bit integer component. We225

compute a product ab of 64-bit integers by summing 10 pairwise products of their 16-bit components.226
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Figure 5: Benchmarks for inference with text-sentiment classification model on GPUs in CRYPTEN
and PyTorch. Left: Average wall-clock time per sample (in seconds). Middle: Number of bytes
communicated per sample, per party (in GB). Right: Number of communication rounds per sample.

The pairwise products of the 16-bit components are computed in parallel using highly optimized227

floating-point CUDA kernels. The same approach is used for matrix multiplications and convolutions.228

CRYPTEN further optimizes this approach by splitting into only 3 components of 22-bits each when229

possible, which reduces the number of pairwise products required to 6 (see [62, Remark II.1]).230

6 Benchmarks231

To measure the performance of CRYPTEN, we performed experiments on three tasks: (1) text232

classification using a linear model that learns word embeddings; (2) speech recognition using233

the Wav2Letter model [17]; and (3) image classification using residual networks [34] and vision234

transformers [25]. Because of space constraints, we focus on private inference using a secret-shared235

model on secret-shared data here, but our benchmark results with private training are very similar.236

We performed benchmark experiments on a proprietary cluster, testing inference on both CPUs (Intel237

Skylake 18-core 1.6GHz) and GPUs (nVidia P100). We set the number of OpenMP threads to 1 in all238

benchmarks. All experiments were performed with the parties running in separate processes on a239

single machine. For GPU experiments, each party was assigned its own GPU. Although this setup is240

faster than a scenario in which each party operates its own machine,4 we believe our benchmark results241

provide a good sense of CRYPTEN’s performance. We average computation times over 30 batches,242

excluding the computation on the first batch as that computation may include CuDNN benchmarking.243

Code reproducing the results of our experiments is available on https://anonymized.ai.244

In our benchmarks, we focus on comparing (ciphertext) CRYPTEN computation with (plaintext)245

PyTorch computation. We refer the reader to [32, 62] for benchmarks that compare CRYPTEN to246

other secure MPC frameworks. Specifically, [32] finds CRYPTEN is 11-18× faster than PySyft [59]247

and approximately 3× faster than TF-Trusted [13] in MNIST classification [42] on CPU.248

6.1 Text Classification249

We performed text-sentiment classification experiments on the Yelp review dataset [69] using a model250

that consists of a linear layer operating on word embeddings. The embedding layer contains 32-251

dimensional embeddings of 519, 820 words, and the linear layer produces a binary output indicating252

the sentiment of the review. We evaluated the model on GPUs, varying the batch size and the number253

of parties participating. The normalized mean squared error (‖x−y‖2/‖x‖2) between the output of the254

CRYPTEN model and that of its PyTorch counterpart was smaller than 4 · 10−4 in all experiments.255

Figure 5 presents the results of our experiments. The figure shows inference time per sample (in256

seconds) as a function of the number of parties involved in the computation for varying batch sizes257

(left); the amount of communication required per sample, per party (in GB); and the number of258

communication rounds required per sample. We include results in which the number of parties is 1:259

herein, we run the CRYPTEN protocol but involve no other parties, which implies that the single party260

is running the protocol on unencrypted data. One-party results allow us to bisect different sources of261

computational overhead: specifically, they separate overhead due to communication from overhead262

due to fixed-point encoding, function approximations, and (lack of) sparse-matrix operations.263

4Communication between GPUs in two machines connected via InfiniBand has approximately 20× lower
throughput than communication between two GPUs in the same machine via NVLink (25GB/s versus 600GB/s).
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Figure 6: Benchmarks for inference with Wav2Letter model on GPUs in CRYPTEN and PyTorch.
Left: Average wall-clock time per sample (in seconds). Middle: Number of bytes communicated
per sample, per party (in GB). Right: Number of communication rounds per sample.
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The results in Figure 5 show that CRYPTEN is about 2.5–3 orders of magnitude slower than PyTorch264

in text-sentiment classification, depending on the number of parties involved. Most computational265

overhead is the word embedding layer: whereas PyTorch can evaluate this layer efficiently via a266

sparse matrix multiplication, CRYPTEN cannot do sparse lookups as they would reveal information267

on the encrypted input. Instead, CRYPTEN performs a full matrix multiplication between the word-268

count vector and the embedding matrix. Yet, text sentiment predictions are quite fast in CRYPTEN:269

inference takes only 0.03 seconds per sample in the two-party setting with a batch size of 32.270

The results also show that increasing the batch size is an effective way to reduce inference time271

and communication per sample. The number of communication rounds is independent of the batch272

size, which means communication rounds can be amortized by using larger batch sizes. The number273

of bytes communicated is partly amortized as well because the size of weight tensors (e.g., in274

linear layers) does not depend on batch size. The results also show that whereas the number of275

communication rounds increases when moving from two-party to three-party computation, it remains276

constant afterwards. The larger number of communication rounds for three-party computation stems277

from the public division protocol, which requires additional communication rounds when more than278

two parties are involved to prevent wrap-around errors (see the appendix for details).279

6.2 Speech Recognition280

We performed speech-recognition experiments using Wav2Letter [17] on the LibriSpeech dataset [52].281

The LibriSpeech dataset contains 16 kHz audio clips represented as a waveform (16, 000 samples per282

second). Because the audio clips vary in length, we clip all of them to 1 second for the benchmark.283

Wav2Letter is a network with 13 convolutional layers using rectified linear unit (ReLU; [49]) activa-284

tions.5 The network operates directly on the waveform input, predicting one of 29 labels (26 letters285

plus 3 special characters). The first two layers use a filter size of 250 (with stride 160) and 48 (stride286

2). The next seven layers use filter size 7, followed by two layers with filter size 32 and 1 (all with287

stride 1). All layers except the last two have 250 channels. The last two layers have 2, 000 channels.288

The results in Figure 6 show that CRYPTEN is about 2.5–3 orders of magnitude slower than PyTorch289

depending on the number of parties involved. For Wav2Letter, the overhead is largely due to the290

ReLU layers in the network: evaluating a ReLU function requires a comparison, which involves a291

5We used the reference implementation of Wav2Letter in torchaudio.
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Figure 9: Benchmarks for inference with image-classification models on GPUs in CRYPTEN and
PyTorch. Top: Results for ResNet-18 model. Bottom: Results for ViT-B/16 vision transformer.
Left: Average wall-clock time per sample (in seconds). Middle: Number of bytes communicated
per sample, per party (in GB). Right: Number of communication rounds per sample.

conversion between arithmetic and binary secret sharing and back (see the appendix). The number292

of communication rounds increases when the number of parties grows beyond 4: CRYPTEN uses293

a tree reduction for the summation in the comparator protocol, which implies that the number of294

communication rounds grows whenever the number of parties increases from 2k to 2k+1.295

Figure 7 also presents results comparing Wav2Letter inference time between CPUs and GPUs.296

The results in the figure show that CRYPTEN is 1-2 orders of magnitude faster on GPUs than on297

CPUs. In real-world settings, this speedup can make the difference between a secure MPC use case298

being practical or not. Figure 8 shows how much wall-clock time is spent on communication and299

computation, respectively, when performing inference with Wav2Letter (using batch size 32). The300

results suggest that, whereas multi-party evaluation is compute-bound on CPU, it is communication-301

bound on GPU. On GPUs, 63% of the time is spent on communication in eight-party computation.302

6.3 Image Classification303

We performed image-classification experiments on the ImageNet dataset using residual networks304

(ResNets; [34]) and vision transformers (ViT; [25]).6 We experimented with a ResNet-18 with 18305

convolutional layers and with a ViT-B/16 model that has 12 multi-head self-attention layers with306

12 heads each, operating on image patches of 16× 16 pixels. Following common practice [34], we307

preprocess images by rescaling them to size 256× 256 and taking a center crop of size 224× 224.308

Figure 9 presents the results of our image-classification benchmarks, which show that two parties309

can securely evaluate a ResNet-18 model in 2.49 seconds and a ViT-B/16 model in 8.47 seconds.310

A notable difference compared to the prior results is that the number of bytes communicated per311

sample is no longer reduced by increasing the batch size. The reason for this is that the vast majority312

of communication involves tensors that have the same size as intermediate activation functions:313

activation tensors are much larger than weight tensors in image-classification models. The amount314

of communication required to evaluate the ViT-B/16 model is particularly high due to the repeated315

evaluation of the softmax function in the attention layer of Transformers [64], which involves a limit316

approximation for the exponential and a Newton-Rhapson approximation for the normalization. We317

also observe that in ResNet-18, the number of communication rounds grows faster than expected for318

larger batch sizes. The reason for this is that the Ripple-carry adder used in the conversion from [x]319

to 〈x〉 is very memory-intensive. When CRYPTEN runs out of GPU memory, it replaces the adder320

by an implementation that requires O(|P|) communication rounds (compared to (log2 |P|) for the321

Ripple-carry adder) but that requires less memory (see appendix).322

6We adopted the ResNet implementation from torchvision and the ViT implementation from https:
//github.com/rwightman/pytorch-image-models.
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7 Conclusion and Future Work323

In this paper, we have introduced and benchmarked CRYPTEN. We hope that CRYPTEN’s flexible,324

machine-learning first API design and performance can help foster adoption of secure MPC in325

machine learning. We see the following directions for future research and development of CRYPTEN.326

Numerical issues are substantially more common in CRYPTEN implementations of machine-learning327

algorithms than in their PyTorch counterparts. In particular, the fixed-point representation with L bits328

of precision (L=16 by default) is more prone to numerical overflow or underflow than floating-point329

representations. Moreover, arithmetic secret shares are prone to wrap-around errors in which the sum330

of the shares [x]p exceeds the size of the ring, Q=264. Wrap-around errors can be difficult to debug331

because they may only arise in the multi-party setting, in which no individual party can detect them.332

We plan to implement tools in CRYPTEN that assist users in debugging such numerical issues.333

End-to-end privacy requires seamless integration between data-processing frameworks, such as334

secure SQL implementations [5], and data-modeling frameworks like CRYPTEN. In “plaintext”335

software, such frameworks are developed independently and combined via “glue code” or platforms336

that facilitate the construction of processing and modeling pipelines. Real-world use cases of machine337

learning via secure MPC require the development of a platform that makes the integration of private338

data processing and modeling seamless, both from an implementation and a security point-of-view.339

Differential privacy mechanisms may be required in real-world applications of CRYPTEN in order340

to provide rigorous guarantees on the information leakage that inevitably occurs when the results of a341

private computation are publicly revealed [27]. CRYPTEN implements sampling algorithms for the342

Bernoulli, Laplace, and Gaussian distributions (see appendix), which allows for the implementation343

of randomized response [67], the Laplace mechanism [28], and the Gaussian mechanism [6, 27]344

(although care must be taken when implementing these mechanisms [12, 45]). In future work, we345

aim to use these mechanisms, for example, to do a secure MPC implementation of DP-SGD [2].346

Threat models may vary per use case. Specifically, some use cases may require malicious security or347

may not provide a TTP. We plan to add support for malicious security via message authentication codes348

to CRYPTEN [22]. We also plan to support generation of Beaver triples via additive homomorphic349

encryption [51], oblivious transfer [38], or more recent methods [10] to eliminate the need for a TTP.350

Model architecture design for secure MPC is another important direction for future research.351

Following prior work in this research area, this study has focused on implementing existing machine-352

learning models in a secure MPC framework. However, these models were designed based on353

computational considerations in “plaintext” implementations of the models on modern GPU or354

TPU hardware. The results of our benchmarks suggest that this may be suboptimal because those355

considerations are very different in a secure MPC environment. For example, the evaluation of softmax356

functions over large numbers of values requires a lot of communication in secure MPC, which makes357

attention layers very slow. This implies that multilayer perceptron models [63] are likely much358

more efficient than vision transformers [25, 64] for image classification. We hope that CRYPTEN’s359

machine-learning API and ease of use will spur studies that design model architectures specifically360

optimized for a secure MPC environment, for example, via neural architecture search [43, 46, 70].361

8 Broader Impact362

Although we believe that the adoption of secure MPC in machine learning can lead to the development363

of AI systems that are substantially more private and secure, we note that there are also potential364

downsides to such adoption. In particular, because the computations in secure MPC are performed on365

encrypted data, it can be harder to do quality control of AI systems implemented in CRYPTEN. For366

example, it is impossible to inspect the values of intermediate activations (or even model outputs)367

unless all parties agree to reveal those values. This may make it harder to explain why a model368

makes a certain decision [24] or to detect data-poisoning attacks [8]. Indeed, there exist fundamental369

trade-offs between privacy and utility [56] and those trade-offs apply to CRYPTEN users, too.370

It is also worth noting that, although the protocols implemented in CRYPTEN come with rigorous371

cryptographic guarantees, practical implementations of these protocols may be broken by other means.372

For example, we have no reason to assume that CRYPTEN would not be susceptible to side-channel373

attacks [60]. Hence, good data stewardship remains essential even when using secure computation.374
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supplemental material or URL because doing so would reveal information about the568

identity of the authors.569

(d) Did you discuss whether and how consent was obtained from people whose data you’re570

using/curating? [N/A] We dot use data on people in this study.571

(e) Did you discuss whether the data you are using/curating contains personally identifiable572

information or offensive content? [No] The Yelp Review, LibriSpeech, or ImageNet573

dataset may contain personally identifiable information or offensive content, but the574

data content is not the subject of this study. Specifically, we have not used these datasets575

to train models.576

5. If you used crowdsourcing or conducted research with human subjects...577

(a) Did you include the full text of instructions given to participants and screenshots, if578

applicable? [N/A] We did not conduct research with human subjects.579

(b) Did you describe any potential participant risks, with links to Institutional Review580

Board (IRB) approvals, if applicable? [N/A] We did not conduct research with human581

subjects.582

(c) Did you include the estimated hourly wage paid to participants and the total amount583

spent on participant compensation? [N/A] We did not conduct research with human584

subjects.585
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