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Abstract

Privacy-preserving federated learning (PPFL) is a paradigm of distributed privacy-1

preserving machine learning training in which a set of clients jointly compute a2

shared global model under the orchestration of an aggregation server. The system3

has the property that no party learns any information about any client’s training4

data, besides what could be inferred from the global model. The core cryptographic5

component of a PPFL scheme is the secure aggregation protocol, a secure multi-6

party computation protocol in which the server securely aggregates the clients’7

locally trained models, and sends the aggregated model to the clients. However,8

in many applications the global model represents a trade secret of the consortium9

of clients, which they may not wish to reveal in the clear to the server. In this10

work, we propose a novel model of secure aggregation, called client-private secure11

aggregation, in which the server computes an encrypted global model that only12

the clients can decrypt. We provide an explicit construction of a client-private13

secure aggregation protocol, as well as a theoretical and empirical evaluation of our14

construction to demonstrate its practicality. Our experiments demonstrate that the15

client and server running time of our protocol are less than 19 s and 2 s, respectively,16

when scaled to support 250 clients.17

1 Introduction18

Federated learning (FL) [24] is a paradigm of distributed machine learning (ML) training in which a19

set of n clients jointly compute a shared global model under the orchestration of an aggregation server,20

without sharing their local training data in the clear. This is particularly applicable in industries where21

sensitive data is distributed across silos and centralizing such data for analysis is infeasible. For22

example, in the healthcare domain, a consortium of healthcare providers, each hosting patient-level23

sensitive data, can contribute towards building a shared machine learning model to improve patient24

care, while aiding in complying with regulatory guidelines [10, 11, 12]. Similarly, in the finance25

industry, FL has been applied for credit card fraud detection, leveraging data hosted across several26

banks [31]. In FL, the aggregation server maintains the current state of the global model so that27

when new clients join, the global model can be distributed to each new client. Additionally, the28

aggregation server facilitates the communication between the consortium of clients so that the clients29

need not setup and maintain a complete graph network infrastructure to directly communicate with30

each other. In this work, we consider cross-silo FL, in which the clients are typically fixed institutions31

(e.g. businesses, institutions, hospitals, etc.), and total in number on the order of 100.32

FL begins with the server sending the initial global model to all clients. Each client then locally trains33

the model on their training data to compute a local model update, which they send to the aggregation34

server. The server aggregates the model updates from the clients to compute a global model update,35
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which it applies to the initial model to compute a new global model. The new global model is then36

broadcast to the clients. This process can be repeated until a global optimum is reached.37

Note that after an iteration of FL, each party receives the new aggregated global model without38

any client sharing their training data in the clear. However, several attacks [30, 32] demonstrate39

that an adversary can reconstruct the clients’ training data from their local model updates. The40

breakthrough work of [3] constructed a secure multi-party computation (MPC) protocol in which the41

server computes the sum of the clients’ local model updates, which it then broadcasts to the clients.42

The security of the protocol enforces that no party learns any information about any client’s model43

update, except for what could be inferred from the sum of the clients’ model updates. FL with secure44

aggregation is commonly called privacy-preserving federated learning (PPFL).45

In the standard model of secure aggregation the server computes the global model in the clear, which46

it then broadcasts to the clients. However, in many cases the global model may represent a trade47

secret of the consortium of clients. As such, the clients may not wish to reveal their global model to48

the server, which, potentially, could be run by a cloud service provider independent of the consortium.49

In this work, we propose a model of secure aggregation in which the server computes an encrypted50

global model that can only be decrypted the clients. The result is that while the clients all obtain the51

global model in the clear, the server only ever sees the encrypted global model. Since in the cross-silo52

FL setting, the network availability of the clients is typically not an issue, we don’t seek to address53

client dropout in our model of secure aggregation.54

Prior Work. Beginning with the foundational work of [3], secure aggregation protocols have been55

widely studied in the literature [2, 6, 7, 23, 29]. Various protocols have been constructed which offer56

trade-offs with respect to the security model and computational, communication, space, and round57

complexity. The original work of [3] constructed a four-round secure aggregation protocol with58

semi-honest security (and a five-round variant with malicious security). Their protocol works by each59

client choosing a random mask which locally encrypts their input as a one-time pad (OTP), but with60

the property that the clients’ masks all together sum to zero. In this way, the server can sum over the61

OTP’s from the clients to compute the sum of their inputs.62

In [29], the authors construct a natural two-round computationally efficient secure aggregation63

protocol with semi-honest security using threshold additive homomorphic encryption (AHE). The64

work of [2] employs a simple additive secret sharing approach to achieve a one-round maliciously65

secure aggregation protocol. Their protocol is computationally and communication-efficient, but66

requires two independent non-colluding servers.67

Recall that the security property of a secure aggregation protocol enforces that no party learns68

any information about any other party’s input, except for what could be inferred from the protocol69

output. This begs the question if we can enforce a privacy guarantee against an adversary inferring70

information about a party’s input from the protocol output. Differential privacy (DP) [14, 15] is a71

statistical model of privately releasing aggregate data which masks a single party’s contribution to72

the aggregate data. That is, DP ensures that no adversary, given access to the differentially private73

aggregate data, can infer any information about any particular party’s contribution to the aggregate74

data. Several secure aggregation protocols [6, 7, 20] employ DP to construct a protocol in which all75

parties compute a differentially private sum of the clients’ inputs.76

Our Contributions. While differentially private secure aggregation protocols enforce client privacy77

against all parties, the server still learns the plaintext global model, which in many applications78

represents a trade secret of the consortium of clients. We propose a novel model of differentially79

private secure aggregation, called client-private secure aggregation, in which the server computes an80

encrypted global model that only the clients can decrypt. Client-private secure aggregation protocols81

composed with differential privacy achieve complete input privacy for the clients, precluding model82

inversion and membership inference attacks against all parties. Additionally, this model enforces a83

stronger security guarantee against the server, namely that an adversarial server learns no information84

about any client’s input, not even the global model. We construct a novel client-private secure85

aggregation protocol that is secure against a semi-honest adversary, and relies only on a trusted86

third-party (TTP) for homomorphic encryption key management. We also provide a theoretical and87

empirical evaluation of our protocol, and compare it to another protocol which can be constructed88

from a modification to the secure aggregation protocols of [3, 7]. If m ∈ N is the dimension of89

each client’s input vector to the protocol, then we define m′ = m′(m,n) ∈ N as the dimension of90
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the server’s output ciphertext vector. Our novel protocol achieves a constant-rate output ciphertext91

vector dimension of m′ = m, while the protocol modified from [3, 7] has a quadratic-rate output92

ciphertext vector dimension of m′ = O(mn2). Additionally, our experimental results demonstrate93

the practicality of our novel protocol, achieving client and server running times of less than 19 s94

and 2 s, respectively, when scaled to n = 250. We remark that we limit the scope of this work to95

studying the client-private secure aggregation protocol itself. A plethora of prior works ([2, 6, 7, 29],96

and many more) have shown how to use PPFL with different secure aggregation protocols and DP97

to train high-quality models on popular standard datasets, and so it’s clear that client-private secure98

aggregation protocols can be similarly applied in this manner.99

2 Client-Private Secure Aggregation100

In this section, we construct a novel client-private secure aggregation protocol. See Appendix C for101

proofs of correctness and security in the semi-honest model. We additionally provide a theoretical102

comparison of our protocol against another protocol which can be constructed from a modification to103

the secure aggregation protocols of [3, 7] (this modification of [3, 7] is detailed in Appendix D).104

Preliminaries. If k ∈ N, then we denote by [k] the set {1, 2, . . . , k}. If q ∈ N, then we write Zq105

for the ring of integers (mod q). For m ∈ N, we denote vectors in Zmq by bold lower-case characters106

x. If x ∈ Zmq , then we denote the ith component of x by xi ∈ Zq. If x1, . . . , xm ∈ Zq, then we107

write (xi)i∈[m] for the vector in Zmq whose ith component is xi. Sets are written as upper-case bold108

characters S, algorithms are written asA, and probabilistic distributions are written as D. Throughout109

this work, we denote the security parameter by λ ∈ N. A quantity f(λ) is said to be negligible in λ,110

written f(λ) = negl(λ), if f(λ) asymptotically tends to zero faster than any inverse polynomial in λ.111

A quantity f(λ) is said to be polynomial in λ if f(λ) = O(λc), for some constant c ∈ N. We say that112

two distributions X and Y are statistically indistinguishable, written X ≡ Y, if for every probabilistic113

algorithm A which gives output in {0, 1}, it holds that114 ∣∣∣Prx∼X
[
A(1λ, x) = 1

]
− Pry∼Y

[
A(1λ, y) = 1

]∣∣∣ = negl(λ). (1)

In the aforementioned definition, if we instead restrict A to be a probabilistic polynomial time (PPT)115

algorithm, then we say that X and Y are computationally indistinguishable, and write X ≈c Y. See116

Appendix A for further cryptographic preliminaries.117

Client-Private Secure Aggregation. Let λ ∈ N be the security parameter and n = n(λ), q =118

q(λ),m = m(λ). A secure aggregation protocol is a secure multi-party computation (MPC) protocol119

executed among a set of parties P = {C1, . . . , Cn, S} consisting of n clients C1, . . . , Cn and a120

server S. The protocol utilizes the star network graph in which each client Ci has an established121

secure communication channel with the server S. Each client Ci holds a private input xi ∈ Zmq , the122

server has no input, and all parties securely compute z =
∑
i

xi ∈ Zmq . In each round of the protocol,123

every client sends a message to the server, and the server responds with a message for each client.124

Here we define a novel model of secure aggregation which we call client-private secure aggregation.125

The syntax of a client-private secure aggregation protocol Π is described in Figure 1. Intuitively,126

the security of the protocol enforces that no adversary that corrupts a subset of parties learns any127

information about any non-corrupted client’s input, except for what could be inferred from the128

protocol output. Additionally, since the server outputs a vector of ciphertexts to each client which the129

clients decrypt to reconstruct z, then the security of the associated encryption scheme implies that the130

server learns no information about any client’s input, not even the sum of their inputs. See Appendix131

B for a formal definition of the security model.132

Adding Differential Privacy. We briefly describe a generic method to integrate differential privacy133

into a client-private secure aggregation protocol. This technique follows the approach described134

in [29]. For an overview of DP, see Section A.0.6 in Appendix A. We employ the Gaussian mechanism,135

in which the degree of DP enforced is characterized by two parameters ε, δ > 0. The Gaussian136

mechanism works by adding to the sum
∑
i

xi ∈ Zmq of the clients’ inputs a vector of independently137

generated Gaussian samples e ← Nmσ , where Nσ denotes the Gaussian distribution centered at 0138
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Notation: Let λ ∈ N be the security parameter and
n = n(λ), q = q(λ),m = m(λ),m′ = m′(λ) ∈ N. The protocol participants are n
clients C1, . . . , Cn and a server S. Let (Gen,Enc,Dec) be an encryption scheme with
ciphertext space G.

Input: Each client Ci (i ∈ [n]) receives as input xi ∈ Zmq ; the server S has no input.

Output: The server S computes a vector c ∈ (Gm′
)n of ciphertexts and outputs to each

client Ci the vector ci ∈ Gm′
; each client then outputs

n∑
i=1

xi ∈ Zmq .

Figure 1: The syntax of a client-private secure aggregation protocol Π.

with variance σ > 0. It follows that when ε ∈ (0, 1), δ > 0 and σ > ∆2

√
log(25/(16δ))/ε, where139

∆2 denotes the `2−sensitivity1 of the sum function, then the Gaussian mechanism with variance140

σ achieves (ε, δ)−DP [15]. It is a well-known fact that if e1 ← Nσ1
and e2 ← Nσ2

(σ1, σ2 > 0),141

then e1 + e2 ← Nσ1+σ2
. Hence if each client Ci transforms its input vector xi in the protocol to142

x′i := xi + ei, for ei ← Nmσ/n, then the protocol will output
∑
i

xi +
∑
i

ei, where
∑
i

ei ← Nmσ , as143

desired.144

An Explicit Construction. We now construct a novel client-private secure aggregation protocol145

ΠA which achieves semi-honest security. At a high level, the protocol works by each client Ci first146

receiving a public/secret key pair (pk, sk) for an additive homomorphic encryption (AHE) scheme147

from a TTP. Next, each client Ci begins by splitting their input xi ∈ Zmq into n additive secret shares148

{si,j}j∈[n] ⊆ Zmq , one for every other client, and distributing each share si,j to Client Cj by way of149

the server. Now, each client Ci holds shares {sj,i}j∈[n] ⊆ Zmq , and sums over the shares to compute150

ti =
∑
j∈[n]

sj,i ∈ Zmq , which is a share of the sum z =
∑
r∈[n]

xr ∈ Zmq . Each client Ci then uses the151

AHE scheme to encrypt their share ti under pk, obtaining ci, and sends ci to the server. The server152

homomorphically reconstructs z by homomorphically adding {ci}i∈[n], obtaining a ciphertext c′153

of z. The server then outputs c′ to each client, which uses sk to decrypt c′ to z. The full protocol154

description is detailed in Figure 2. See Appendix C for proofs of correctness and security.155

Remark. Note that in our protocol ΠA, each client Ci holds the same AHE secret key sk. Although156

this is typically non-standard in homomorphic encryption solutions to n−party secure MPC protocols,157

in this application the AHE scheme is used to protect the protocol output, which is learned by all158

clients, from the server. If an adversary controlling the server corrupts a client, then the AHE secret159

key sk falls into the view of the adversary. Thus the adversary learns all of the clients’ shares of the160

sum z ∈ Zmq , and hence the plaintext sum z falls into the adversary’s view. But, since the adversary161

has corrupted the client, then z already falls into its view, and so no further information about any162

non-corrupted client’s input is revealed to the adversary.163

Theoretical Evaluation. A close inspection of the full protocol description of ΠA, detailed in164

Appendix C, reveals that the client and server computational complexities are O(mn) and O(mn2),165

respectively. The client’s computational complexity is dominated in Round 3 by summing across166

n shares, each of which is an m−dimensional vector. The server’s computational complexity is167

dominated in Round 2 by distributing to each client n ciphertext vectors of dimension m. Similarly,168

we can see that the client and server communication complexity isO(mn) andO(mn2), respectively.169

Each client needs to store a vector of n − 1 public keys (one from every other client), in addition170

to its input and output vector of dimension m, which yields a space complexity of O(m+ n). The171

server only needs to store the encrypted m−dimensional protocol output, which requires O(m)172

space. By inspecting the full protocol description of the client-private secure aggregation protocol173

ΠB constructed from [3, 7] (Appendix D), we can see that ΠB is equivalent to ΠA with respect to174

each of these criteria, except that ΠB is a two-round protocol (while ΠA requires three rounds), but175

1The `2−sensitivity of a function f : Xr → Ys (X,Y ⊆ R) is defined as

maxx1,x2∈Xrs.t.
dist(x1,x2)=1

{
||f(x1)− f(x2)||2

}
, where dist(·, ·) denotes hamming distance.
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Setup: All parties have access to the protocol security parameter λ ∈ N, a key agreement
scheme KA = (Gen,Agree) with key space K, an authenticated encryption scheme
AE = (Gen,Enc,Dec) with ciphertext space H, and an additive homomorphic
encryption scheme AHE = (Gen,Enc,Dec,Add) with plaintext space Zq and ciphertext
space G. Assume that a TTP generates (pk, sk)← AHE.Gen(1λ) and sends (pk, sk) to
each client Ci (i ∈ [n]).

Input: Each client Ci has a private input xi ∈ Zmq ; the server S has no input.

Output: The server outputs a ciphertext c′′ ∈ Hm to each client Ci (i ∈ [n]); each

client then outputs
n∑
i=1

xi ∈ Zmq .

Round 1:
• Ci → S : Generate (pki, ski)← KA.Gen(1λ), and output pki.

• S→ Ci : Output (pkj)
n
j=1.

Round 2:
• Ci → S : For each j ∈ [n]\{i}, compute ki,j ← KA.Agree(ski, pkj). For all
j ∈ [n− 1], choose si,j ← Zmq , and let si,n = xi −

∑
j∈[n−1]

si,j ∈ Zmq . For each

j ∈ [n]\{i}, perform the following: for all k ∈ [m], compute
ci,j,k ← AE.Enc(ki,j , si,j,k), and let ci,j = (ci,j,k)k∈[m] ∈ Hm. Output
(ci,j)j∈[n]\{i}.

• S→ Ci : Receive (ci,j)j∈[n]\{i} from each client Ci (i ∈ [n]). Output (cj,i)j∈[n]\{i}
to each client Ci.

Round 3:
• Ci → S : For each j ∈ [n]\{i}, perform the following: for all k ∈ [m], compute
s∗j,i,k ← AE.Dec(ki,j , ci,j,k), and let s∗j,i = (s∗j,i,k)k∈[m]. Compute
ti =

∑
j∈[n]

s∗j,i ∈ Zmq . For each k ∈ [m], compute c′i,k ← AHE.Enc(pk, ti,k). Let

c′i = (c′i,k)k∈[m] ∈ Gm, and output c′i.

• S→ Ci : Let c′′ := c′1. For all i ∈ {2, . . . , n}, k ∈ [m], update
c′′k ← AHE.Add(c′′k , c

′
i,k). Output c′′ to each client Ci.

• Ci : Receive c′′. For all k ∈ [m], compute zk ← AHE.Dec(sk, c′′k). Output
z = (zk)k∈[m] ∈ Zmq .

Figure 2: Protocol ΠA

ΠB has a server space complexity of O(mn2) (while that of ΠA is O(m)). Note that in ΠA, the176

server outputs to each client a single m−dimensional vector of ciphertexts, while in ΠB, the server177

outputs to each client an (n− 1)−sized set of m−dimensional ciphertext vectors.178

3 Experimental Results179

In this section, we empirically evaluate our client-private secure aggregation protocol ΠA with180

respect to its running time, and communication and space overhead. Additionally, we compare its181

performance ΠB across these criteria. We implemented both protocols in Python, using Elliptic Curve182

Diffie-Hellman for a key agreement scheme, AES-GCM for an authenticated encryption scheme,183

AES-CTR for a pseudorandom generator, and Paillier Encryption [26] for an additive homomorphic184

encryption scheme. For each protocol construction, we conducted the following experiments:185

• Measure running time for client and server for number n of clients, dimension m of clients’186

input vector, and modulus q when n ∈ {10, 50, 100, 250}, m = 100, q = 2128.187

• Measure communication and space overhead for client and server when n = 100,m =188

100, q = 2128.189

All experiments were run on a MacBook Pro with Intel Core i7 6-core 2.6 GHz CPU, and each190

party was simulated as a sub-process. Our experiments only measure the local performance of the191
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Client Server
n ΠA ΠB ΠA ΠB

50 16.763 0.458 0.195 0.000690
100 16.990 0.934 0.415 0.00659
250 18.0570 2.334 1.0150 0.0342

Table 1: Client and server running times for n ∈ {50, 100, 250} (m = 100).

Client
Comm Overhead (KB) Space Overhead (KB)

ΠA 925.239 21.391
ΠB 868.029 21.303

Server
Comm Overhead (MB) Space Overhead (MB)

ΠA 92.996 5.720
ΠB 87.751 86.791

Table 2: Client and server communication and space overhead (n = 100,m = 100).

protocol, and in particular ignore network latency. Table 1 compares the running times vs. number192

n ∈ {50, 100, 250} of clients between the two protocols for the client and server, respectively. We193

can see that while our theoretical analysis of the computational complexity of protocols ΠA and194

ΠB indicates they are identical, in reality the running time of ΠA for both the client and server is195

noticeably higher than that of ΠB. This is due to the cost of the homomorphic operations of Paillier196

Encryption. However, note that the running times for ΠA are still practical, with the client and server197

obtaining running times of roughly 18 s and 1 s, respectively, even when scaled to 250 clients.198

Table 2 displays the client and server communication and space overhead for each protocol construc-199

tion when n = 100 and m = 100. We remark that for both the client and server, the communication200

and space overhead between the two protocol constructions is quite comparable, except that the201

server’s space overhead of 5.72 MB in ΠA is significantly lower than for ΠB (86.791 MB). This is202

because in ΠA, the server outputs to each client a single m−dimensional vector of ciphertexts, while203

in ΠB, the server outputs to each client an (n− 1)−sized set of m−dimensional ciphertext vectors.204

4 Conclusions and Future Work205

In this work, we propose a novel model of secure aggregation, called client-private secure aggre-206

gation, in which the server computes an encrypted global model that can only be decrypted by the207

clients. When composed with differential privacy, the security implication is that no party learns any208

information about any client’s input. In particular, the server does not even learn the global model in209

the clear. We provided an explicit construction ΠA of a client-private secure aggregation protocol and210

proved its correctness and security in the semi-honest model. Finally, we empirically evaluated our211

construction to demonstrates its practicality, and compared it to a client-private secure aggregation212

protocol ΠB which can be obtained from a modification to [3, 7]. While the client and server running213

time of ΠA is noticeably higher than ΠB, and ΠA requires an extra round over ΠB and uses a TTP214

for key management, ΠA requires the server to only store a single m−dimensional encrypted global215

model. On the other hand, ΠB requires the server to store an (n− 1)−sized set of m−dimensional216

ciphertext vectors for every client, yielding a storage complexity of O(mn2).217

There are several elements of future work which we seek to incorporate into the full version of this218

work. First, we believe it’s possible to prove (a simple modification) of our protocol construction219

ΠA is secure against a malicious adversary. Also, we believe we can employ techniques to mitigate220

the client and server running time of our implementation of ΠA. For example, it may be possible to221

use the additive homomorphic version of ElGamal Encryption [17], which works over small input222

domains, and is more computationally efficient than Paillier Encryption. Alternatively, we wish to223

investigate packing Paillier ciphertexts, following [25], to improve the client and server running224

times.225
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A Cryptographic Preliminaries334

A.0.1 Key Agreement Scheme335

Here, we define a key agreement scheme [8], which is typically used for two parties to agree on a336

shared key for a symmetric-key cryptosystem.337

Definition 1. A key agreement scheme is a pair of PPT algorithms KA = (Gen,Agree) with the338

following syntax, correctness, and security.339

Syntax:340

• Gen(1λ) takes as input the security parameter λ and outputs a public/secret key pair (pk, sk)341

for some user.342

• Agree(ski, pkj) takes as input a secret key ski corresponding to some user i, and a public343

key pkj , corresponding to some user j 6= i, and outputs a key ki,j from the key space K.344

Correctness: Let λ be the security parameter. If (pk1, sk1), (pk2, sk2) ← Gen(1λ), k1,2 ←345

Agree(sk1, pk2), k2,1 ← Agree(sk2, pk1), then k1,2 = k2,1.346

Security: Let λ be the security parameter. Define the following distributions:347

• D0(1λ) : Compute (pk1, sk1), (pk2, sk2) ← Gen(1λ), k ← Agree(sk1, pk2), and output348

(pk1, pk2, k).349

• D1(1λ) : Compute (pk1, sk1), (pk2, sk2)← Gen(1λ), k← K, and output (pk1, pk2, k).350

If A is a PPT distinguishing algorithm, then ∀b ∈ {0, 1}, define351

PAb (λ) := Pr(pk1,pk2,k)←Db(1λ)

[
A(1λ, pk1, pk2, k) = 1

]
. (2)

Then, for all PPT distinguishing adversaries A,352 ∣∣PA0 (λ)− PA1 (λ)
∣∣ = negl(λ). (3)

A.0.2 Authenticated Encryption353

Authenticated encryption (AE) is a cryptographic primitive that provides confidentiality and integrity354

of messages exchanged between two parties which each hold a shared symmetric key.355

Definition 2. An authenticated encryption scheme is a triple of PPT algorithms AE =356

(Gen,Enc,Dec) with the following syntax, correctness, and security.357

Syntax:358

• Gen(1λ) takes as input the security parameter λ and outputs a symmetric key k ∈ K in the359

key space K.360
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• Enc(k,m) takes as input a symmetric key k ∈ K, a message m ∈M in the message space361

M, and outputs a ciphertext c = (c′, t) ∈ H of m under k in ciphertext space H. c′362

denotes the actual ciphertext of the message, while t denotes the message authentication363

code (MAC).364

• Dec(k, c) takes as input a symmetric key k ∈ K and a ciphertext c = (c′, t) ∈ H, and365

outputs either a message m ∈M or an error symbol ⊥.366

Correctness: Let λ be the security parameter. If k ← Gen(1λ), m ∈ M is a message, c ←367

Enc(k,m), then Dec(k, c) = m.368

Semantic Security: Let λ be the security parameter. If k← Gen(1λ), then for every PPT distin-369

guishing adversary A and distinct messages m0,m1 ∈M, it holds that370 ∣∣∣Prc←Enc(k,m0)

[
A(1λ,m0,m1, c) = 1

]
− Prc←Enc(k,m1)

[
A(1λ,m0,m1, c) = 1

]∣∣∣ = negl(λ). (4)

Ciphertext Integrity: Let λ be the security parameter. The AE scheme AE = (Gen,Enc,Dec) is371

said to provide ciphertext integrity if every PPT adversaryA can only win the following game against372

a computationally unbounded challenger C with probability negl(λ):373

Setup: C computes k← Gen(1λ).374

Query Phase: For all i = 1, . . . , r = poly(λ), A generates a message mi ∈M and send mi to C. C375

then computes and outputs to A the ciphertext ci ← Enc(k,mi).376

Challenge Phase: A produces and sends to C a ciphertext c′ ∈ H. A wins if c′ /∈ {c1, . . . , cr} and377

Dec(k, c′) 6= ⊥.378

A.0.3 Pseudorandom Generator379

Definition 3. Let r, s ∈ N such that r < s. A pseudorandom generator (PRG) [21, 22] is a PPT380

function G : {0, 1}r → {0, 1}s such that G
(
U({0, 1}r)

)
≈c U({0, 1}s), where U({0, 1}r) and381

U({0, 1}s) denote the uniform distributions on {0, 1}r and {0, 1}s, respectively.382

A PRG G can be used to strecth a random shared symmetric key in the following way. Let K be383

a symmetric key space and q,m ∈ N such that log2(|K|) < m log2(q). Then, it is easy to see that384

without loss of generality we can define a PRG G : K→ Zmq .385

A.0.4 Additive Secret Sharing386

Let n, t, q ∈ N. A (t, n)−secret sharing scheme over Zq is a pair of PPT algorithms (Share,Rec)387

with the following properties:388

• Share(x) takes as input a secret x ∈ Zq and outputs shares {si}i∈[n] for a set of n users,389

indexed by [n].390

• Rec({xij}j∈[t]) takes as input a subset {xij}j∈[t] ⊆ Zq of t distinct shares of a secret391

x ∈ Zq , and reconstructs and outputs x ∈ Zq .392

• Any subset of shares of size less than t is statistically independent of the underlying secret.393

Additive secret sharing is a (n, n)−secret sharing scheme over Zq in which Share(x) chooses random394

s1, . . . , sn−1 ← Zq, computes sn = x −
∑

i∈[n−1]

si ∈ Zq, and outputs {si}i∈[n]. Rec({si}i∈[n])395

simply works by outputting
n∑
i=1

si ∈ Zq . Note that any subset of {si}ni=1 of size k < n is distributed396

identically to k uniformly random elements of Zq , hence is statistically independent of the secret x.397

A.0.5 Homomorphic Encryption398

Homomorphic encryption (HE) [4, 5, 16, 18, 19, 26, 27] is a cryptographic primitive which enables399

computation directly on encrypted data. That is, HE is an encryption scheme which supports400

homomorphic addition or multiplication operations, so that a party, holding only ciphertexts of two401

messages m1,m2, can apply the homomorphic addition (resp., multiplication) operation to compute a402
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ciphertext ofm1+m2 (resp.,m1 ·m2). Since an arbitrary computable function f : {0, 1}∗ → {0, 1}∗403

can be expressed as an arithmetic circuit, then theoretically a HE scheme allows a client C, which404

holds a private input x ∈ {0, 1}∗, to outsource the computation of f(x) to a server S without405

revealing any information about x to S. This works by C encrypting x ∈ {0, 1}∗ and sending the406

ciphertext to S, which can homomorphically compute a ciphertext of f(x) which can be decrypted407

by C. The semantic security of the HE scheme ensures that S learns no information about x during408

the homomorphic evaluation of f(x).409

A partially homomorphic encryption (PHE) scheme is an HE scheme that supports either homo-410

morphic addition or multiplication operations, but not both. PHE schemes are either additive ho-411

momorphic encryption (AHE) schemes or multiplicative homomorphic encryption (MHE) schemes.412

An example of an AHE scheme is Paillier Encryption [26], while examples of MHE schemes are413

RSA [28] and ElGamal Encryption [17].414

A fully homomorphic encryption (FHE) scheme is a HE scheme that supports both homomorphic415

addition and multiplication operations. First constructed by Craig Gentry in [18], numerous follow-up416

works [4, 5, 16, 19] introduced improved constructions of FHE schemes. Most FHE constructions417

rely on a computationally expensive bootstrapping operation [1, 9, 13] to refresh the ciphertexts418

after a fixed-length consecutive sequence of homomorphic operations. Indeed, these bootstrapping419

algorithms continue to serve as the principal bottleneck in achieving FHE as a computationally420

practical general-purpose solution to privacy-preserving cloud-outsourced computation.421

In this work, we use AHE, and so for completeness we provide a formal definition of AHE below.422

Definition 4. An additive homomorphic encryption (AHE) scheme is a quadruple of PPT algorithms423

AHE = (Gen,Enc,Dec,Add) with the following syntax, correctness, and security.424

Syntax:425

• Gen(1λ) takes as input the security parameter λ ∈ N and outputs a public/secret key pair426

(pk, sk).427

• Enc(pk,m) takes as input a public key pk and message m ∈M in the message space M,428

and outputs a ciphertext c ∈ H in the ciphertext space H.429

• Dec(sk, c) takes as input a secret key sk and ciphertext c ∈ H, and outputs a message430

m ∈M.431

• Add(c1, c2) takes as input two ciphertexts c1, c2 ∈ H and outputs a ciphertext c3 ∈ H.432

Correctness of Decryption: Let λ ∈ N be the security parameter, m ∈ M be a message, and433

suppose (pk, sk)← Gen(1λ), c← Enc(pk,m). Then, Dec(sk, c) = m.434

Correctness of Homomorphic Addition: Let λ ∈ N be the security parameter, m1,m2 ∈M be435

a message, and suppose (pk, sk)← Gen(1λ), ci ← Enc(pk,mi) ∀i ∈ {1, 2}, and c3 ← Add(c1, c2).436

Then, Dec(sk, c3) = m1 +m2.437

Semantic Security: Let λ ∈ N be the security parameter, and suppose (pk, sk)← Gen(1λ). If A438

is a PPT distinguishing algorithm and m0,m1 ∈M are distinct messages, then ∀b ∈ {0, 1} define439

PAb (λ, pk,m0,m1) := Prc←Enc(pk,mb)

[
A(1λ, pk,m0,m1, c) = 1

]
. (5)

Then, for every PPT distinguishing adversary A and distinct messages m0,m1 ∈M, it holds that440 ∣∣PA0 (λ, pk,m0,m1)− PA1 (λ, pk,m0,m1)
∣∣ = negl(λ). (6)

A.0.6 Differential Privacy441

Differential privacy (DP) [14, 15] is a statistical model of privately releasing aggregate data which442

masks a single party’s contribution to the aggregate data. That is, DP ensures that no adversary, given443

access to the differentially private aggregate data, can infer any information about any particular444

party’s contribution to the aggregate data. While an adversary may infer be able to infer information445

about some client’s contribution to the aggregate data, they can’t associate that inference with a446

particular client.447
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Let X,Y ⊆ R, n,m ∈ N, and f : Xn → Ym be a function. f is meant to model an aggregate448

function of data collected from n users that is represented as a database record x ∈ Xn. We define449

the function dist(·, ·) : Xn ×Xn → Z as the hamming distance function (i.e., dist(x,x′) = #{i ∈450

[n] : xi 6= x′i}). A differentially private mechanism for f is a PPT algorithmMf that gets oracle451

access to f , takes input in Xn, and provides output in Ym. We now provide a formal definition of a452

differentially private mechanism below.453

Definition 5. Let ε, δ > 0. A PPT algorithm Mf is said to be an (ε, δ)−differentially private454

mechanism for f if ∀x,x′ ∈ Xn such that dist(x,x′) = 1, and ∀S ⊆ supp(M),455

Pry←Mf (x)

[
y ∈ S

]
≤ eε · Pry′←Mf (x′)

[
y′ ∈ S

]
+ δ. (7)

The parameters (ε, δ) in the definition above are said to be the privacy parameters. It is important to456

emphasize that a differentially private mechanismMf does not:457

• Guarantee that the outputMf (x) cryptographically hides either the aggregate data f(x) or458

the input record x.459

• Guarantee that the values ofMf (x) andMf (x′) are the same when dist(x,x′) = 1.460

What a differentially private mechanism Mf does guarantee is if x,x′ ∈ Xn are neighboring461

databases (i.e., dist(x,x′) = 1), then the distributionsMf (x) andMf (x′) are close. Consequently,462

no adversary can distinguish between the cases in which it seesMf (x) andMf (x′), thus masking463

a particular user’s contribution to the aggregate data. It follows that any information the adversary464

could possibly infer fromMf (x) can’t be associated with a particular user i ∈ [n].465

Two popular explicit constructions of differentially private mechanisms are the Laplace and Gaussian466

mechanisms. See [15] for details on these constructions, as well for a more complete treatment of DP.467

B Security Model468

Let Π be a client-private secure aggregation protocol. We define two notions of security:469

S1: No information about any client’s input, other than the protocol output, is revealed to any470

other party.471

S2: No information about any client’s input, not even the protocol output, is revealed to the472

server.473

Additionally, we are concerned with the threats:474

T1: A single client attempts to steal information about another client’s input.475

T2: The server attempts to steal information about some client’s input.476

T3: A subset of clients, possibly including the server, collude to attempt to steal information477

about another client’s input.478

Our security model of client-private secure aggregation enforces S1 against against all threats, and S2479

against T2. Since by definition of client-private secure aggregation, each client computes the protocol480

output in the clear, then it is not possible to enforce S2 against T1 or T3.481

We formally prove each notion of security using the standard real/ideal world paradigm. Let A be a482

PPT adversary controlling a corrupted subset C ⊆ P of parties. We define the view of A in Π as the483

distribution that includes the input and random coins from each Pi ∈ C, as well as the messages sent484

to each Pi ∈ C from the non-corrupted parties. Let S be a PPT simulation algorithm which simulates485

the view of A in an ideal execution of Π, without access to the non-corrupted parties’ inputs. The486

ideal execution SimΠ,P,C,A,S of Π is defined in Figure 3. We define the following random variables:487

• RealΠ,P,C,A(1λ, {xi}i∈[n]) is the view of A during a real execution of Π.488

• IdealΠ,P,C,A,S

(
1λ, {xi} i∈[n]s.t.

Ci∈C

)
is the view of A during an ideal execution489

SimΠ,P,C,A,S of Π.490
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We say that Π is secure against A controlling C if there exists a PPT simulation algorithm S such491

that RealΠ,P,C,A(1λ, {xi}i∈[n]) ≈c IdealΠ,P,C,A,S
(

1λ, {xi} i∈[n]s.t.
Ci∈C

)
.492

Notation: Let λ ∈ N be the security parameter and
n = n(λ), q = q(λ),m = m(λ),m′ = m′(λ) ∈ N. The protocol participants are a set
P = {C1, . . . , Cn, S} consisting of n clients C1, . . . , Cn and a server S. Let
(Gen,Enc,Dec) be an encryption scheme with ciphertext space G. A is a PPT adversary
which controls a subset C ⊆ P of compromised parties, and S is a PPT simulation
algorithm which simulates the distribution of messages sent from the non-corrupted
parties to the corrupted parties.

Input: Each client Ci ∈ C receives as input xi ∈ Zmq ; the server S has no input. The
simulation algorithm S does not have access to the non-corrupted clients’ inputs.

Output: The server S computes a vector c ∈ (Gm′
)n of ciphertexts and outputs to each

client Ci the vector ci ∈ Gm′
; each client outputs

n∑
i=1

xi ∈ Zmq .

Simulation: In each round of Π, every corrupted client Ci ∈ C computes its output
message according to A, and sends that message to S. Every non-corrupted client
Cj ∈ {C1, . . . , Cn}\C computes its output message according to S, and sends that
message to S. If S is corrupted (resp., non-corrupted), then S computes its output
messages for each client according to A (resp., S), and sends each client their
corresponding message.

Figure 3: The ideal execution SimΠ,P,C,A,S of Π.

There are two types of adversaries we are concerned with: semi-honest and malicious adversaries. A493

semi-honest adversary instructs the corrupted parties to follow the protocol honestly, but attempts494

to infer information about the non-corrupted parties’ inputs from its view. In contrast, a malicious495

adversary can instruct the corrupted parties to deviate from the protocol, sending arbitrary messages496

or dishonestly forwarding messages to parties, to attempt to infer information about the non-corrupted497

parties from its view. We say that Π is secure in the semi-honest model (resp., secure in the malicious498

model), if for every semi-honest (resp., malicious) adversaryA, and every subset C ⊆ P of corrupted499

parties, Π is secure against A controlling C.500

C Correctness and Security of ΠA501

Here we supply proofs of correctness and security for protocol ΠA.502

Correctness. We begin by proving the correctness of ΠA, captured by Lemma 6 below.503

Lemma 6. After an execution of ΠA, the server outputs a vector of ciphertexts c′′ ∈ Gm to each504

client, and each client outputs
∑
i

xi ∈ Zmq .505

Proof. After the end of Round 1, each client Ci holds their secret key ski and a public key pkj from506

every other client Cj (j 6= i) for the key agreement scheme KA. So, in Round 2, each client Ci507

computes a shared symmetric key ki,j with every other client Cj . Ci then splits its private input508

into additive secret shares {si,j}j∈[n] ⊆ Zmq for every client, encrypts each Cj’s share si,j (j 6= i)509

with the authenticated encryption scheme AE under the shared symmetric key ki,j , and sends the510

resulting ciphertexts to the server. The server then forwards to each client Ci ciphertexts of its shares511

sj,i from every other client Cj , which it decrypts in Round 3 to obtain {sj,i}j∈[n]. Ci then computes512

ti =
∑
j∈[n]

sj,i ∈ Zmq , which it follows is a share of z :=
∑
j∈[n]

xi ∈ Zmq . Finally, Ci uses the additive513

homomorphic encryption scheme AHE to encrypt ti under pk, obtaining a ciphertext c′i, which it514

sends to the server. By definition of additive secret sharing, it follows that
∑
i∈[n]

ti = z ∈ Zmq . So, the515

server, each holding AHE ciphertext vectors c′1, . . . , c
′
n of t1, . . . , tn, respectively, component-wise516

homomorphically adds {c′1, . . . , c′n} to obtain a ciphertext c′′ of z, which it outputs to each client.517

Each client then uses sk to decrypt c′′ to z.518
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Security. We now prove that ΠA is secure with respect to S1 and S2 in the semi-honest model.519

Let A be a semi-honest adversary controlling a subset C ⊆ P of corrupted parties. First, we note520

that the security S2 of ΠA when C = {S} follows immediately from the semantic security of the521

authenticated encryption and additive homomorphic encryption schemes. It thus suffices to prove the522

security S1 of ΠA when there exists some client Ci ∈ C. Lemma 7 below completes the proof of523

security.524

Lemma 7 (Security). Let A be a semi-honest adversary which corrupts a subset C ⊂ P of parties525

containing at least one client. Then, ΠA is secure against A controlling C.526

Proof. We may assume without loss of generality that T := {i ∈ [n] : Ci /∈ C} 6= ∅. Let527

z =
∑
i∈T

xi ∈ Zmq . We’ll actually make one small modification to the ideal execution of ΠA in528

this case. Although the simulation algorithm S is not given access to the non-corrupted parties’529

inputs, we will endow S with the sum z :=
∑
i∈T

xi ∈ Zmq of the non-corrupted parties’ inputs.530

Note that this is without loss of generality since any adversary, given the protocol output
∑
i∈[n]

xi ∈531

Zmq and the corrupted parties inputs {xi}i/∈T ⊆ Zmq can efficiently compute z. We thus replace532

IdealΠA,P,C,A,S

(
1λ, {xi}i/∈T

)
with IdealΠA,P,C,A,S

(
1λ, {xi}i/∈T, z

)
. We now proceed by a533

standard hybrid argument.534

• H0 : This hybrid is simply a real execution of ΠA.535

• H1 : This hybrid is the same as H0, except that for each non-corrupted client Ci ∈536

{C1, . . . , Cn}\C, in Round 2, for each Cj ∈ C, we set si,j ← Zmq . Since the view of537

the adversary after Round 2 contains {si,j} i∈T
j /∈T

, then by the security of the additive secret538

sharing scheme we have thatH0 ≡ H1.539

• H2 : In this hybrid, it will be more convenient to index the non-corrupted clients by540

Ci1 , . . . , Cir . For each j ∈ [r − 1], in Round 2, Cij generates shares {sij ,t}t∈[n] of 0,541

while Cir generates shares {sir,t}t∈[n] of z′. Similarly, by the security of the additive secret542

sharing scheme we have thatH1 ≡ H2.543

We define S by H2, and it follows that RealΠA,P,C,A(1λ, {xi}i∈[n]) ≡ H0 ≡ H1 ≡ H2 ≡544

IdealΠA,P,C,A,S

(
1λ, {xi}i/∈T, z

)
.545

D Protocol ΠB546

The protocol ΠB, described below, achieves a client-private secure aggregation protocol with semi-547

honest security through a simple modification to the two-round semi-honest secure variant of [3] (the548

two-round variant is described in [7]). At a high level, the protocol works by each client Ci computing549

a quasi-one-time pad of its private input xi ∈ Zmq as yi := xi + ri ∈ Zmq , where the clients’ random550

masks r1, . . . , rn ← Zmq are chosen such that
∑
i

ri = 0 ∈ Zmq . Each client Ci then simply encrypts551

yi for every other client Cj under a shared symmetric key ki,j , and sends the ciphertexts to the server,552

which routes them to the appropriate clients. Each client Ci then has a set of one-time pads {yj}j∈[n]553

whose random masks sum to zero, hence the client computes z :=
∑
j∈[n]

yj =
∑
j∈[n]

xj , as desired.554

Figure 2 contains the full protocol description of ΠB.555

Correctness. We prove the correctness of ΠB in Lemma 8 below.556

Lemma 8 (Correctness). After an execution of ΠB, the server outputs to each client Ci (i ∈ [n])557

ciphertexts (cj,i)j∈[n]\{i} ∈ Cm(n−1), and each client outputs
∑
i

xi ∈ Zmq .558
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Setup: All parties have access to the protocol security parameter λ ∈ N, a key agreement
scheme KA = (Gen,Agree) with key space K, a pseudorandom generator G : K→ Zmq ,
and an authenticated encryption scheme AE = (Gen,Enc,Dec) with ciphertext space G.

Input: Each client Ci has a private input xi ∈ Zmq ; the server S has no input.

Output: The server outputs ciphertexts (cj,i)j∈[n]\{i} ∈ Gm(n−1) to each client Ci

(i ∈ [n]); each client then outputs
n∑
i=1

xi ∈ Zmq .

Round 1:
• Ci → S : Generate (pk

(b)
i , sk

(b)
i )← KA.Gen(1λ), ∀b ∈ {0, 1}, and output

(pk
(0)
i , pk

(1)
i ).

• S→ Ci : Output
(

(pk
(0)
j , pk

(1)
j )
)n
j=1

.

Round 2:
• Ci → S : For all j ∈ [n]\{i}, b ∈ {0, 1}, compute k

(b)
i,j ← KA.Agree(sk

(b)
i , pk

(b)
j ).

For all j ∈ [n]\{i}, compute ri,j ← G(k
(1)
i,j ). Let yi = xi +

∑
j<i

ri,j −
∑
j>i

ri,j ∈ Zmq .

For all j ∈ [n]\{i}, k ∈ [m], compute ci,j,k ← AE.Enc(k
(0)
i,j , yi,k). For all j ∈ [n]\{i},

let ci,j = (ci,j,k)k∈[m] ∈ Gm. Output (ci,j)j∈[n]\{i}.

• S→ Ci : Store
(

(cj,i)j∈[n]

)
i∈[n]

. Output (cj,i)j∈[n]\{i} to each client Ci.

• Ci : For all j ∈ [n]\{i}, k ∈ [m], compute wj,k ← AE.Dec(k
(0)
i,j , cj,i,k). For all

j ∈ [n], let wj = (wj,k)k∈[m] ∈ Zmq if j 6= i, or wj = yi otherwise. Output
z =

∑
j∈[n]

wj ∈ Zmq .

Figure 4: Protocol ΠB

Proof. In Round 1, each client Ci uses the key agreement scheme to generate two sets of public/secret559

key pairs
(
(pk

(b)
i , sk

(b)
i )
)
b∈{0,1}, and sends (pk

(0)
i , pk

(1)
i ) to the server. The server then forwards560

(pk
(0)
i , pk

(1)
i )i∈[n] to each client. For each pair of clients (Ci, Cj) (i 6= j), and for each b ∈ {0, 1},561

Ci (resp., Cj) uses their secret key sk
(b)
i (resp., sk(b)

j ) and the public key pk
(b)
j (resp., pk(b)

i ) of client562

Cj (resp., Ci) to compute a shared random key k
(b)
i,j = k

(b)
j,i .563

Now, each client Ci computes ri,j ← G(k
(1)
i,j ), ∀j ∈ [n]\{i}, yi = xi +

∑
j<i

ri,j −
∑
j>i

ri,j ∈ Zmq ,564

uses the authenticated encryption scheme to encrypt each component of yi under k(0)
i,j to obtain a565

vector of ciphertexts ci,j , ∀j ∈ [n]\{i}, and outputs (ci,j)j∈[n]\{i} to the server. The server forwards566

(cj,i)j∈[n]\{i} to each client Ci.567

Now, each client Ci uses the authenticated encryption scheme to decrypt the components of each cj,i,568

using ki,j , to recover yj ∈ Zmq , ∀j ∈ [n]\{i}. Ci then computes z =
∑
j∈[n]

yj =
∑
j∈[n]

xj +
∑
j<k

rj,k +569 ∑
j>k

rj,k =
∑
j∈[n]

xj +
∑
j<k

rj,k −
∑
j>k

rk,j =
∑
j∈[n]

xj , since each rj,k = rk,j .570

Security. We now prove that ΠB is secure with respect to S1 and S2 in the semi-honest model.571

Let A be a semi-honest adversary controlling a subset C ⊆ P of corrupted parties. First, we note572

that the security S2 of ΠB when C = {S} follows immediately from the semantic security of the573

authenticated encryption scheme. So, it suffices to prove the security S1 of ΠB when there exists574

some client Ci ∈ C. Lemma 9 below completes the security proof.575

Lemma 9 (Security). Let A be a semi-honest adversary which corrupts a subset C ⊆ P of parties576

such that some client Ci ∈ C. Then, ΠB is secure against A controlling C.577

15



Proof. Let C ⊆ P, and RealΠB,P,C,A(1λ, {xi}i∈[n]) denote the distribution of the view of A in a578

real execution of ΠB in which A corrupts C. We’ll construct a PPT simulation algorithm S which579

simulates the view of A without access to the non-corrupted clients’ inputs. By definition of the ideal580

execution of ΠB (Figure 3), this completes the proof. Let T = {i ∈ [n] : Ci /∈ C}. We may assume581

WLOG that T 6= ∅.582

Just as in the proof of Lemma 9, we may endow S with the sum z :=
∑
i∈T

xi ∈ Zmq583

of the non-corrupted parties’ inputs. We thus replace IdealΠB,P,C,A,S

(
1λ, {xi}i/∈T

)
with584

IdealΠB,P,C,A,S

(
1λ, {xi}i/∈T, z

)
.585

We now proceed by a standard hybrid argument.586

• H0 : This hybrid is simply a real execution of ΠB.587

• H1 : For each Ci ∈ {C1, . . . , Cn}\C, we choose ri ← Zmq such that
∑
i∈T

ri = z ∈ Zmq ,588

and Ci instead lets yi := ri ∈ Zmq . Note that since the adversary corrupts some client Cj ,589

then each symmetric key k
(0)
i,j (i ∈ [n] s.t. Ci /∈ C) falls into the adversary’s view, hence so590

does each yi. By Lemma 6.1 in [3], we have thatH0 ≡ H1.591

We define S by H1, and it follows that RealΠB,P,C,A(1λ, {xi}i∈[n]) ≡ H0 ≡ H1 ≡592

IdealΠB,P,C,A,S

(
1λ, {xi}i/∈T, z

)
.593
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