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ABSTRACT

In Federated Learning (FL), the role of a central server is to simply aggregate the
gradient or parameter updates sent by an array of remote clients, which perform
local model training using their individual data. Even though the server in FL does
not have access to raw user data, the privacy of users may still be compromised
through model parameters. To mitigate this and provide guaranteed level of privacy,
user-level differentially private (DP) FL aggregation methods can be employed
which are able to achieve accuracy approaching that of non-private training when
there is a sufficient number of remote clients. In most practical distributed learning
scenarios, the amount of labelled data each client has is usually limited, necessitat-
ing few-shot learning approaches. An effective approach to few-shot learning is
transfer learning where the model employs a backbone pretrained on large public
datasets and then fine-tunes it on a downstream dataset. A key advantage of transfer
learning systems is that they can be made extremely parameter efficient by updating
only a small subset of model parameters during fine-tuning. This advantage is
extremely beneficial in the FL setting, as it helps minimize the communication cost
spent on each client-server communication during training by transferring only
those model parameters that need to be updated. To understand in which settings
DP FL few-shot transfer learning can be effective, we perform a set of experiments
that reveals how the accuracy of DP FL image classification systems is affected as
the model architecture, dataset, and subset of learnable parameters in the model
varies. We evaluate on three FL datasets, establishing state-of-the-art performance
on the challenging FLAIR federated learning benchmark.

1 INTRODUCTION

In Federated Learning (FL) (McMahan et al., 2016), training data are split between remote clients,
e.g. mobile phones or personal laptops, and the goal is to train a global (McMahan et al., 2016)
or personalized (Fallah et al., 2020) model using the distributed data without transferring it to a
central server. Model training is typically performed via numerous aggregation steps (communication
rounds) between the server and clients. On each step, a subset of clients is selected, and each member
performs local computation on their personal data, returning information to the server. Then the
server aggregates all information from the chosen clients, updates the shared model parameters, and
proceeds to the next round until convergence. Perhaps the most commonly used FL aggregation
algorithm is FedAvg (McMahan et al., 2016), which makes several optimization steps over model
parameters using stochastic gradient descent (SGD) locally and then computes a weighted sum of
the updates from each client (based on the number of samples per client) to get a new shared model
state. Even though client data is not directly shared with the server in FL aggregation, the privacy of
clients may still be compromised via model parameters leaking some subset of training data (Yin
et al., 2021; Huang et al., 2021; Geiping et al., 2020). This necessitates FL aggregation algorithms
that ensure formal user-level privacy guarantees.

For applications where training data are sensitive (Abowd, 2018; Cormode et al., 2018), it has
become increasingly common to train under Differential Privacy (DP) (Dwork et al., 2006) which is
considered to be the gold standard for protecting individual training examples from discovery. To
incorporate DP guarantees into standard centralized training DP-SGD (Rajkumar & Agarwal, 2012;
Song et al., 2013; Abadi et al., 2016), a DP version of standard SGD, was introduced. Similarly
to DP-SGD, DP-FedAvg (McMahan et al., 2018) is an adaptation of the baseline FL algorithm
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FedAvg (McMahan et al., 2016), which provides user-level DP guarantees by clipping the norm
of local parameter updates and applying the Gaussian mechanism to the aggregated global update.
If there are a sufficient number of remote clients, DP FL systems are able to achieve accuracy
approaching that of non-private training (McMahan et al., 2018).

In addition to client data being sensitive, in most practical distributed learning scenarios, the amount
of labeled data each client has is usually limited (e.g. medical images (Sheller et al., 2020), personal
photos (Massiceti et al., 2021), or personal data or actions entered on a mobile device (Differential
Privacy Team, 2017; Ding et al., 2017)), necessitating few-shot learning approaches. An effective
approach to few-shot learning is transfer learning, which utilizes a backbone pretrained on large
public datasets and then fine-tunes it on a downstream dataset (Yosinski et al., 2014; Kolesnikov
et al., 2019). This approach is especially useful for private learning, as non-private pretraining
provides a rich feature representation and reduces the amount of information required from the private
downstream data to build a performant model. Another key advantage of transfer learning systems
is that they can be made extremely parameter efficient by updating only a small subset of model
parameters during fine-tuning (Shysheya et al., 2023). This advantage is extremely beneficial in the
FL setting, as models with a smaller number of updateable parameters are preferred in order to reduce
the client-server communication cost which is typically bandwidth-limited.

To date, we are only aware of one study (Song et al., 2022) that has used large pretrained models fine-
tuned via FL aggregation algorithms for the task of transfer-learned image classification. However,
this study evaluated DP FL systems using a single model architecture and on a single dataset with the
data distribution significantly overlapping with the pretraining data distribution. In this work, we aim
to understand under which conditions DP FL few-shot transfer learning can be effective as well as
complement the existing study by evaluating on broader range of model architectures and datasets,
including those with different degrees of distribution overlap. Our contributions are:

• We perform a comprehensive set of experiments that reveals how the accuracy of DP and non-
private FL models are affected by dataset distribution overlap, model architecture, and the subset of
learnable parameters in the model vary.

• We establish state-of-the-art performance under DP on the challenging FLAIR (Song et al., 2022)
few-shot federated learning benchmark in terms of both classification metrics (macro average
precision increased from 44.3% to 51.9%) and communication efficiency (cost reduced from
11.9M to 0.017M parameters per round) using the backbone from the original paper of Song et al.
(2022).

• We further improve the state-of-the-art results under DP on FLAIR using a larger architecture,
without any loss in communication efficiency compared to a smaller backbone. Macro average
precision increased from 51.9% to 59%, while communication cost is only 0.013M parameters per
round.

2 BACKGROUND

In this section, we provide background information, definitions, and nomenclature required for
subsequent sections. We focus our analysis on few-shot transfer learning based image classifiers that
rely on large pretrained backbones.

Preliminaries We denote input images x and image labels y ∈ {1, . . . , C} where C is the number
of image classes indexed by c. Assume that we have access to a model f(x) = hϕ(bθ(x)) that
outputs class-probabilities for an image p(y = c|x,θ,ϕ) for c = 1, . . . , C and comprises a feature
extractor backbone bθ : Rd → Rdb with parameters θ pretrained on a large upstream public dataset
such as Imagenet-21K (Russakovsky et al., 2015) where d is the input image dimension and db is the
output feature dimension, and a linear layer classifier or head hϕ : Rdb → RC with weights ϕ. Let
D = {(xn, yn)}Nn=1 be the downstream dataset that we wish to fine-tune the model f to. We denote
the number of training examples per class or shot as S.

Learnable Parameters In all experiments, the head parameters ϕ are initialized to zero and are
always learned when fine-tuning on D. For the backbone weights θ, we consider three options:
(i) Head: θ are fixed at their pretrained values and do not change during fine-tuning, only the head
parameters ϕ are updated; (ii) All: θ are initialized with pretrained values, but can be updated during
fine-tuning in addition to the head; and (iii) FiLM: using FiLM (Perez et al., 2018) layers. There
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exists a myriad of adaptors for both 2D convolutional and transformer networks including FiLM,
Adapter (Houlsby et al., 2019), LoRA (Hu et al., 2021), VPT (Jia et al., 2022), AdaptFormer (Chen
et al., 2022c), NOAH (Zhang et al., 2022), Convpass (Jie & Deng, 2022), Model Patch (Mudrakarta
et al., 2019), and CaSE (Patacchiola et al., 2022) that enable a pretrained network to adapt to a
downstream dataset in a parameter efficient manner. In this work, we use FiLM due to its simplicity,
high performance, and low parameter count (Shysheya et al., 2023), though another adapter could
be used. A FiLM layer scales and shifts the activations aij arising from the jth output of a layer in
the ith block of the backbone as FiLM(aij , γij , βij) = γijaij + βij , where γij and βij are scalars.
We implement FiLM by fixing θ at their pretrained values except for a subset of the scale and
offset parameters utilized in the backbone normalization layers (e.g. BatchNorm, GroupNorm, or
LayerNorm — see Appendix A.3.1 for details), which can update during fine-tuning. For example, in
a ResNet50, there are only 11 648 learnable FiLM parameters, which is fewer than 0.05% of θ.

Dataset Distribution Overlap (DDO) The overlap between the distributions of the pretraining data
and the downstream dataset is a key determinant of the ease and success of transfer learning. We
measure the overlap as the relative difference between the accuracy of the All and Head learnable
parameter configurations for a non-private model trained centrally, i.e. with all training data on one
server. If two domains overlap substantially, then only adapting the head of the network is sufficient.
If the overlap is small, then the backbone must also be adapted. Table A.1 provides the DDO values
for all of the datasets used in the paper.

Differential Privacy (DP) DP (Dwork et al., 2006) is the gold standard for protecting sensitive data
against privacy attacks. A stochastic algorithm is differentially private if it produces similar output
distributions on similar datasets. More formally, (ϵ, δ)-DP with privacy budget ϵ ≥ 0 (lower means
more private) and additive error δ ∈ [0, 1] bounds how much the output distribution can diverge on
adjacent datasets. The additive error is typically chosen such that δ < 1/|D|. We refer to Dwork
& Roth (2014) for a comprehensive introduction to DP. Centralized training with DP guarantees
commonly assumes example-level privacy, which defines dataset adjacency on an examplar level, i.e.
two datasets are adjacent if one can be obtained from the other by adding or removing one datapoint.
In contrast, in DP FL, aggregation schemes that guarantee user-level privacy are considered, where
two federated datasets are adjacent if one can be obtained from the other by adding or removing
the data of a single user or client. Being stronger than example-level privacy, user-level privacy is
constructed to prevent information about any training client from being leaked by a published model.

3 RELATED WORK

Non-private FL and Transfer Learning There has been a recent surge of interest in using large
pretrained models as initialization for training non-private decentralized models in both NLP (Lin
et al., 2022; Stremmel & Singh, 2021; Weller et al., 2022; Tian et al., 2022) and computer vision (Chen
et al., 2022b; Tan et al., 2022; Qu et al., 2021; Chen et al., 2022a; Nguyen et al., 2022; Liu et al.,
2022). Most of these works were able to improve upon state-of-the-art results under different tasks
and settings within FL as well as showing that the client data heterogeneity problem often seen in FL
can be partially mitigated with pretrained networks.

FL and DP Even though the server in FL does not have access to raw user data, the privacy of
users may still be compromised if i) the server is untrusted (Huang et al., 2021) or ii) a third party
has access to the model after training (Geiping et al., 2020; Carlini et al., 2022). Cryptographic
techniques like secure aggregation Goryczka et al. (2013) can protect against the former, while
to tackle the latter, DP adaptations of the FL aggregation algorithms are needed McMahan et al.
(2018). Similarly to DP-SGD, DP-FedAvg (McMahan et al., 2018) is an adaptation of the baseline
FL algorithm FedAvg (McMahan et al., 2016), which provides user-level DP guarantees by applying
the Gaussian mechanism to parameter updates sent to the server.

Recently, a few studies have been conducted investigating the use of large pretrained models for
FL under DP constraints in NLP (Basu et al., 2021), representation learning (Xu et al., 2022), and
image classification (Song et al., 2022). The closest work to ours is the work of Song et al. (2022)
who introduce FLAIR, a few-shot federated learning image classification dataset, which they use
to perform a relatively small evaluation of pretrained models (only ResNet18 was used) fine-tuned
using FL under DP. However, to the best of our knowledge, there are no other studies on how large
pretrained models fine-tuned via FL aggregation algorithms behave under DP constraints for the
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task of transfer-learned image classification. In this work we aim to close this gap and provide
experimental evaluation of these methods on real-world datasets.

4 EXPERIMENTS

In our experiments, we endeavor to answer the question: “Under what conditions is differentially
private few-shot federated image classification effective?” We focus on transfer learning approaches
that utilize large pretrained backbones. We do this empirically by varying the: (i) set of learnable
parameters in f (All, Head, FiLM); (ii) downstream dataset D (with varying DDO); and (iii) network
architecture: ResNet18 (R-18) (He et al., 2016) pretrained on ImageNet-1K with 11.2M parameters,
BiT-M-R50x1 (R-50) (Kolesnikov et al., 2019) pretrained on ImageNet-21K with 23.5M parameters,
Vision Transformer VIT-Base-16 (VIT-B) (Dosovitskiy et al., 2020) pretrained on ImageNet-21K
with 85.8M parameters. Source code for all experiments will be made publicly available.

In our evaluation, we use three datasets with different DDO. The first is FLAIR Song et al. (2022),
which is a recently proposed real-world dataset for multi-label image classification. It has more than
50k users with heterogeneous data as well as a long-tailed label distribution, making it particularly
appealing for benchmarking federated learning both in non-private and private settings. Comprising
mainly natural image data, FLAIR is a high DDO dataset. The second dataset is CIFAR-100, which
is medium DDO. For CIFAR-100, we use 500 training clients and 100 test clients, with each client
having 100 samples and no clients sharing any data. To introduce more client heterogeneity, the
data are distributed using the Pachinko Allocation Method (Li & McCallum, 2006) as in Reddi et al.
(2021). The allocation method is described in detail in Appendix A.2. The third dataset is Federated
EMNIST Caldas et al. (2018), a dataset of black-and-white handwritten symbols from 62 classes
grouped according to the writer. EMNIST is a highly out-of-distribution dataset (i.e. low DDO) with
respect to the ImageNet-21K pretraining data. As the number of training users in CIFAR-100 (500
users) and Federated EMNIST (3400 users) is relatively low, we need to increase ϵ from 2 to 8, such
that the amount of added noise during aggregation is not excessive. δ is set to N−1.1, where N is the
number of training clients.

We use FedADAM (Reddi et al., 2021) aggregation, which was shown to have a better empirical
performance than standard FedAvg (McMahan et al., 2016). For hyper-parameter tuning, we perform
a small grid search over the server and client learning rates. The hyper-parameter ranges searched are
provided in Appendix A.3.2.

FLAIR,ϵ= 2, δ= 41131−1.10
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Figure 1: Private (colored) and non-private (gray) FL performance on FLAIR (left), CIFAR-100
(middle) and EMNIST (right) as a function of backbone and learnable parameters. We use Macro-AP
as the primary metric to report accuracy for FLAIR, and standard accuracy on other datasets. The R-
18 All result on FLAIR is taken from Song et al. (2022). Our FLAIR results set a new state-of-the-art.

Figure 1 shows the performance of different model configurations on all three datasets with and
without DP. Tabular results are shown in Tables 1 to 3. For FLAIR, we report macro average precision
(Macro-AP) results in the figure, while other metrics are in Tables 1 and 2. For a fair comparison on
FLAIR, we fixed all of the training hyperparameters to the values from the original paper (Song et al.,
2022), except for local and server learning rates. For CIFAR-100 and Federated EMNIST, we report
standard test classification accuracy. All training details and hyperparameters are in Appendix A.3.2.

As communication cost is important in FL, in Figure 2 we report the number of parameters required
to be transmitted for each model configuration in one user-server interaction. The results are shown
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Figure 2: FLAIR communication cost – the number of parameters sent at every user-server communi-
cation round.

for just FLAIR. The results for the other datasets are of the same magnitude, varying only because
the number of classes is different. Summarizing Figures 1 and 2, key observations are:

FLAIR and CIFAR-100 (high-moderate DDO)

• With R-18 used in the original paper, we achieve state-of-the-art performance under DP with
FiLM, improving Macro-AP from 44.3 to 51.9. This improvement comes with a reduction in
communication cost from 11.2M parameters per each user-server interaction to only 17k.

• With VIT-B we further improve the state-of-the-art results on FLAIR in both DP and non-private
settings. Under DP, we improved the Macro-AP to 59.0, while for non-private, the Macro-AP
increased from 62.1 to 74.7.

• Head is more robust under DP than All or FiLM. Head has the smallest relative drop in performance
of around 10% on FLAIR and 33.8% on CIFAR-100 using VIT-B.

• Under DP, in the case of a large number of training clients as in FLAIR, tuning either FiLM or
Head is the most performant in terms of both accuracy and communication cost. Head is preferable
in the case of a large output feature dimension (as in R-50 with db = 2048), while FiLM adaptation
is better when the output feature dimension is smaller (as in R-18 with db = 512).

• In the case of a small number of training clients as in CIFAR-100, the performance deteriorates
significantly under DP and Head performs the best (50.9% for VIT-B). Interestingly, VIT-B
achieves far better accuracy than the other backbones.

Federated EMNIST (low DDO)

• Although All has the largest relative drop in accuracy under DP (14.1% for R-50), it achieves the
best accuracy for ϵ = 8 and ϵ = ∞.

• Head under-performs regardless of the backbone used, providing empirical evidence that adapting
the head only is insufficient for datasets with low DDO.

• Under DP, FiLM reaches accuracy on par with All (68.4% vs. 69.7% for VIT-B). FiLM transfers
far fewer parameters than All during training (Figure 2), making it the preferred approach for FL
on low DDO datasets.

• VIT-B outperforms all other backbones regardless of configuration. Surprisingly, R-18 pretrained
on ImageNet-1k performs similarly to R-50 pretrained on ImageNet-21k, perhaps indicating that
the learned fine-grained features of a larger backbone are not that useful in transfering to a low
DDO dataset.

5 DISCUSSION

In summary, our experiments show that DP few-shot FL can be effective in terms of accuracy and
can lower communication cost per round in comparison to All by orders of magnitude using FiLM in
the case of low DDO and Head in the case of high DDO. To achieve a high level of privacy (i.e. low
ϵ) the number of clients needs to be in the tens of thousands in order to minimize the noise added
during parameter updates.
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Table 1: Non-private Federated Learning performance on FLAIR as a function of backbone bθ and
learnable parameters. C stands for averaged per-class metrics (Macro) and O denotes overall metrics
(Micro). P, R and AP denote precision, recall, and average precision, respectively. The R-18 All
result is taken from the original paper Song et al. (2022). Due to the significant computational
requirements, only a single random seed was used in all experiments on FLAIR.

bθ ϵ C-P O-P C-R O-R C-F1 O-F1 C-AP O-AP

ALL ∞ 71.8 83.5 48.6 76.0 58.0 79.5 62.1 88.8
R-18 FILM ∞ 73.8 82.0 44.8 74.4 55.7 78.0 59.7 87.7

HEAD ∞ 71.0 79.9 43.8 72.9 54.1 76.2 57.9 85.8

ALL ∞ 76.9 85.2 62.0 82 68.6 83.6 72.3 91.9
R-50 FILM ∞ 78.3 83.8 57.9 80.0 66.6 81.9 70.2 90.6

HEAD ∞ 76 82.3 42.7 71.3 54.6 76.4 60.5 86.7

ALL ∞ 79.6 86.8 57.4 82.9 66.7 84.8 72.9 93.1
VIT-B FILM ∞ 81.9 86.8 59.3 81.6 68.8 84.1 74.7 92.7

HEAD ∞ 81.6 83.7 52 72.2 63.4 77.5 70.0 87.6

Table 2: Federated Learning performance on FLAIR under DP with ϵ = 2 as a function of backbone
bθ and learnable parameters. C stands for averaged per-class metrics (Macro) and O denotes overall
metrics (Micro). P, R and AP denote precision, recall, and average precision, respectively. The
R-18 All result is taken from the original paper Song et al. (2022). Due to significant computational
requirements, only single random seed was used in all experiments with FLAIR.

bθ ϵ C-P O-P C-R O-R C-F1 O-F1 C-AP O-AP

ALL 2 47.3 77.5 32.3 64.3 38.4 70.3 44.3 80.2
R-18 FILM 2 59.0 81.0 39.1 70.3 47.0 75.3 51.9 85.2

HEAD 2 47.6 81.4 34.2 66.4 39.8 73.1 47.2 83.4

ALL 2 56.2 83.1 38.1 70.9 45.4 76.6 52.3 86.6
R-50 FILM 2 59.7 79.3 39.4 69.9 47.5 74.3 51.3 84.2

HEAD 2 57.0 79.8 38.0 68.5 45.6 73.7 50.4 83.8

ALL 2 47.8 82.3 37.5 71.0 42.1 76.2 49.7 86.1
VIT-B FILM 2 58.1 84.2 42.5 76 49.1 79.9 57.2 89.2

HEAD 2 67.1 83.4 39.8 68.9 50.0 75.5 59.0 85.9

Table 3: Federated Learning performance on CIFAR-100 and EMNIST with (ϵ = 8) and without
(ϵ = ∞) DP as a function of backbone bθ and learnable parameters. Accuracy (in %) is reported.
R-18 backbone is pretrained on ImageNet-1k, VIT-B and R-50 are pretrained on ImageNet-21k. The
± sign indicates the 95% confidence interval over 3 runs with different seeds.

R-18 R-50 VIT-B

DATASET ϵ HEAD FILM ALL HEAD FILM ALL HEAD FILM ALL

CIFAR-100 ∞ 63.3±0.2 69.8±0.3 72.8±0.7 59.1±0.5 79.8±0.5 83.0±0.1 84.6±0.1 90.2±0.3 90.8±0.3
8 27.1±1.4 18.3±0.9 15.6±1.0 20.9±0.6 21.3±1.0 23.5±1.3 50.8±0.1 40.2±2.3 41.2±3.4

EMNIST ∞ 65.4±0.1 74.0±0.9 78.4±1.1 66.2±0.4 75.9±0.4 79.9±0.4 72.7±0.2 78.6±0.1 80.5±0.1
8 58.0±0.4 66.3±0.5 65.5±0.2 57.0±0.3 63.5±0.1 65.8±0.3 62.6±0.1 68.4±0.2 69.7±0.3
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A APPENDIX

A.1 DATASET DISTRIBUTION OVERLAP

Table A.1 shows the data distribution overlap between the pretraining data (ImageNet-1K for FLAIR
and ImageNet-21K for CIFAR-100 and EMNIST) and each of the downstream datasets used in our
experiments.

Table A.1: Amount of distribution overlap between each of the 3 downstream datasets used in our
experiments and the pretraining data. The Score column is computed as the difference between
the non-private accuracy of the All learnable parameter configuration and the Head configuration,
normalized by the All accuracy, and then scaled by 100. The lower the score, the more the data
distribution overlap between the pretraining data and the downstream dataset. In the Distribution
Overlap column, we map the score into three buckets: a score of 0-5 is High, 5-10 is Medium, and 10
or greater is Low. To compute the scores, we use the VIT-B backbone and use accuracies (Macro-AP
for FLAIR) from the non-private FL experiments.

Dataset Score Distribution Overlap

FLAIR (Song et al., 2022) 4 High
CIFAR100 (Krizhevsky, 2009) 7 Medium
EMNIST (Caldas et al., 2018) 10 Low

A.2 FEDERATED CIFAR-100 ALLOCATION METHOD

Pachinko Allocation Method (PAM) is a topic modeling method that structures topics as a rooted
directed acyclic graph (DAG), with leaves corresponding to the vocabulary words. Each interior
node models a correlation among its children (vocabulary words or other internal nodes) with a
Dirichlet distribution. To generate a document, each interior node samples a multinomial distribution
from the corresponding Dirichlet distribution. Then to sample a word from the document, starting
from the root, a child is sampled from the corresponding generated multinomial distribution and the
chosen child node is used as the next sampling point. This procedure is repeated until the leaf node is
reached.

To distribute CIFAR-100 across clients, we use the coarse and fine labels provided for each image.
In particular, in CIFAR-100, there are 20 coarse labels and 5 fine labels for each coarse label. This
label structure is represented by a DAG, where root is connected to coarse labels and each coarse
label is connected to the corresponding fine labels. The root node models the distribution over its
children with a symmentic Dirichlet distribution with parameter α (Dir(α)), while each coarse label
node has a symmetric Dirichlet distribution with parameter β (Dir(β)). We sample a subset of N
images per each client as we would sample N words from a new document using PAM. In more
detail, for each client we sample a multinomial distribution from Dir(α) over the coarse labels and a
set of multinomial distributions from Dir(β), one for each coarse label node. After that, to add a
new image to the client dataset, we first sample a leaf node using PAM, and then randomly sample
(without replacement) an example with the generated fine label. This example is added to the client
dataset. If there are no more examples with a particular label, we remove the label node from the
coarse label node multinomial and renormalize the resulting distribution to obtain a new multinomial.
In our experiments, we used 100 images per client, 500 training clients, α = 0.1 and β = 10. We
used the implementation provided in tensorflow-federated (Google, 2019a).

A.3 TRAINING AND EVALUATION DETAILS

A.3.1 FILM LAYER IMPLEMENTATION

Table A.2 details the locations and count of the parameters that are updateable for the FiLM configu-
ration in each of the backbones used in the experiments.
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Table A.2: Backbone parameter count, FiLM parameter count, FiLM parameter count as a percentage
of the backbone parameter count, and FiLM parameter locations within the backbone for each of the
backbones used in the experiments.

BACKBONE BACKBONE COUNT FILM COUNT FILM (%) LOCATIONS

R-18 11.2M 7808 0.07 GROUPNORM SCALE AND BIAS THAT FOLLOWS EACH 3X3CONV LAYER

R-50 23.5M 11648 0.05 GROUPNORM SCALE AND BIAS THAT FOLLOWS EACH
3X3CONV LAYER
FINAL GROUPNORM SCALE AND BIAS BEFORE HEAD

VIT-B 85.8M 38400 0.04 ALL LAYERNORM SCALE AND BIAS

A.3.2 FEDERATED LEARNING EXPERIMENTS

All experiments were performed in TensorFlow using tensorflow-federated Google (2019a) for
federated aggregation and tensorflow-privacy Google (2019b) for privacy accounting and the adaptive
clipping algorithm Andrew et al. (2021). CIFAR-100 and Federated EMNIST datasets were taken
from tensorflow-federated.

FLAIR Each model configuration is trained for 5000 rounds with a cohort size of 200. Each
sampled user trains the model locally with SGD for 2 epochs with local batch size set to 16. The
maximum number of images for each user is set to 512. For DP, ϵ = 2, δ = N−1.1, where N is
the number of training users. As in the original paper, we set L2 norm quantile to 0.1 for adaptive
clipping and we use 200 users sampled uniformly per round to simulate the noise-level with a cohort
size of 5000.

For the non-private setting we perform the grid search over:

• server learning rate ∈ {0.01, 0.05, 0.1}
• client learning rate ∈ {0.01, 0.05, 0.1}

For the private setting (ϵ = 2) we fixed the client learning rate to the optimal value found for the non-
private run and a perform grid search over the server learning rate in the set {a/2, a/10, a/50, a/100},
where a is the optimal server learning rate found for the non-private setting.

CIFAR-100 and Federated EMNIST Each model configuration is trained for 500 rounds with
a cohort size of 20. Each sampled user trains the model locally with SGD for 5 epochs with
local batch size set to 100. The maximum number of images for each user is set to 512. For DP,
ϵ = 8, δ = N−1.1, where N is the number of training users (N = 500 for CIFAR-100, N = 3400
for Federated EMNIST). As in the original paper, we set L2 norm quantile to 0.1 for adaptive clipping
and we use 20 users sampled uniformly per round to simulate the noise-level with a cohort size of
100.

For the non-private setting we perform the grid search over:

• server learning rate ∈ {0.05, 0.1, 0.5}
• client learning rate ∈ {0.01, 0.05, 0.1}

For the private setting (ϵ = 8) we fixed the client learning rate to the optimal value found for the
non-private run and perform a grid search over:

• server learning rate ∈ {a/2, a/10, a/50, a/100}, where a is the optimal server learning rate
found for the non-private setting.

• quantile for adaptive clipping bound ∈ {0.1, 0.5, 0.8}
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