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Abstract

Detecting 3D keypoints from point clouds is important for shape reconstruction,1

while this work investigates the dual question: can shape reconstruction benefit2

3D keypoint detection? Existing methods either seek salient features according3

to statistics of different orders or learn to predict keypoints that are invariant4

to transformation. Nevertheless, the idea of incorporating shape reconstruction5

into 3D keypoint detection is under-explored. We argue that this is restricted6

by former problem formulations. To this end, a novel unsupervised paradigm7

named SNAKE is proposed, which is short for shape-aware neural 3D keypoint8

field. Similar to recent coordinate-based radiance or distance field, our network9

takes 3D coordinates as inputs and predicts implicit shape indicators and keypoint10

saliency simultaneously, thus naturally entangling 3D keypoint detection and shape11

reconstruction. We achieve superior performance on various public benchmarks,12

including standalone object datasets ModelNet40, KeypointNet, SMPL meshes13

and scene-level datasets 3DMatch and Redwood. Intrinsic shape awareness brings14

several advantages as follows. (1) SNAKE generates 3D keypoints consistent15

with human semantic annotation, even without such supervision. (2) SNAKE16

outperforms counterparts in terms of repeatability, especially when the input point17

clouds are down-sampled. (3) the generated keypoints allow accurate geometric18

registration, notably in a zero-shot setting. Codes and models will be released.19

1 Introduction20

2D sparse keypoints play a vital role in both reconstruction [31] and recognition [21], with scale21

invariant feature transform (SIFT) [18] being arguably the most important pre-Deep Learning (DL)22

computer vision algorithm. Altough dense alignment using photometric or featuremetric losses is also23

successful in various domains [2, 35, 8], sparse keypoints are usually preferred due to compactness24

in storage/computation and robustness to illumination/rotation. Just like their 2D counterparts, 3D25

keypoints have also drawn a lot of attention from the community in both pre-DL [13, 34] and DL26

[15, 1, 37] literature, with various applications in reconstruction [42, 40] and recognition[25, 33].27

However, detecting 3D keypoints from raw point cloud data is very challenging due to sampling28

sparsity. No matter how we obtain raw point clouds (e.g., through RGB-D cameras [39], stereo29

[4], or LIDAR [10]), they are only a discrete representation of the underlying 3D shape. This fact30

drives us to explore the question of whether jointly reconstructing underlying 3D shapes helps 3D31

keypoint detection. To our knowledge, former methods have seldom visited this idea. Traditional32

3D keypoint detection methods are built upon some forms of first-order (e.g., density in intrinsic33

shape signature [41]) or second-order (e.g., curvature in mesh saliency [14]) statistics, including34

sophisticated reformulation like heat diffusion [32]. Modern learning-based methods rely upon the35

idea of consistency under geometric transformations, which can be imposed on either coordinate like36

USIP [15] or saliency value like D3Feat [1]. The most related method that studies joint reconstruction37
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Figure 1: A comparison between existing 3D keypoint detection formulations and our newly proposed
one. (a) USIP-like methods directly predict keypoint coordinates from input point clouds P . (b)
UKPGAN-like methods predict saliency scores for P . It reconstructs P coordinates simultaneously
using chamfer distance. (c) Our SNAKE formulation predicts saliency probabilities and shape
indicators for each continuous query point q instead of discrete point clouds P . Sub-networks used
for keypoint detection and reconstruction are shown in yellow and red, although they have different
formulations. Here, the occupied points are those on the input surface.

and 3D keypoint detection is a recent one named UKPGAN [37], yet it reconstructs input point cloud38

coordinates using an auxiliary decoder instead of the underlying shape manifold.39

Why is this promising idea under-explored in the literature? We argue the reason is that former40

problem formulations are not naturally applicable for reconstructing the underlying shape surface.41

Existing paradigms are conceptually illustrated in Fig. 1. USIP-like methods directly output keypoint42

coordinates while UKPGAN-like methods generate saliency values for input point clouds. In both43

cases, the representations are based upon discrete point clouds. By contrast, we reformulate the44

problem using coordinate-based networks, as inspired by the recent success of neural radiance fields45

[20, 16, 28] and neural distance fields [22, 30]. As shown in Fig. 1-c, our model predicts a keypoint46

saliency value for each continuous input query point coordinate q(x, y, z).47

A direct advantage of this new paradigm is the possibility of tightly entangling shape reconstruction48

and 3D keypoint detection. As shown in Fig. 1-c, besides the keypoint saliency decoder, we attach49

a parallel shape indicator decoder that predicts whether the query point q is occupied. The input50

to decoders is feature embedding generated by trilinearly sampling representations conditioned on51

input point clouds P . Imagine a feature embedding at the wing tip of an airplane, if it can be used to52

reconstruct the sharp curvature of the wing tip, it can be naturally detected as a keypoint with high53

repeatability. As such, our method is named as shape-aware neural 3D keypoint field, or SNAKE.54

Shape awareness, as the core feature of our new formulation, brings several advantages. (1) High55

repeatability. Repeatability is the most important metric for keypoint detection, i.e., an algorithm56

should detect the same keypoint locations in two-view point clouds. If the feature embedding can57

successfully reconstruct the same chair junction from two-view point clouds, they are expected to58

generate similar saliency scores. (2) Robustness to down-sampling. When input point clouds are59

sparse, UKPGAN-like frameworks can only achieve reconstruction up to the density of inputs. In60

contrast, our SNAKE formulation can naturally reconstruct the underlying surface up to any resolution61

because it exploits coordinate-based networks. (3) Semantic consistency. SNAKE reconstructs the62

shape across instances of the same category, thus naturally encouraging semantic consistency although63

no semantic annotation is used. For example, intermediate representations need to be similar for64

successfully reconstructing different human bodies because human shapes are intrinsically similar.65

To summarize, this study has the following two contributions:66

• We propose a new network for joint surface reconstruction and 3D keypoint detection based67

upon implicit neural representations. During training, we develop several self-supervised68

losses that exploit the mutual relationship between two decoders. During testing, we design69

a gradient-based optimization strategy for maximizing the saliency of keypoints.70

• Via extensive quantitative and qualitative evaluations on standalone object datasets Model-71

Net40, KeypointNet, SMPL meshes, and scene-level datasets 3DMatch and Redwood, we72
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demonstrate that our shape-aware formulation achieves state-of-the-art performance under73

three settings: (1) semantic consistency; (2) repeatability; (3) geometric registration.74

2 Related Work75

3D Keypoint Detector As discussed in the introduction, 3D keypoint detection methods can be mainly76

categorized into hand-crafted and learning-based. Popular hand-crafted approaches [41, 29, 27]77

employ local geometric statistics to generate keypoints. These methods usually fail to detect consistent78

keypoints due to the lack of global context, especially under real-world disturbances, such as density79

variations and noise. USIP [15] is a pioneering learning-based 3D keypoint detector that outperforms80

traditional methods by a large margin. However, the detected keypoints are not semantically salient,81

and the number of keypoints is fixed. Fernandez et al. [9] exploit the symmetry prior to generate82

semantically consistent keypoints. But this method is category-specific, limiting the generalization to83

unseen categories and scenes. Recently, UKPGAN [37] makes use of reconstruction to find semantics-84

aware 3D keypoints. Yet, it recovers explicit coordinates instead of implicit shape indicators. As85

shown in Fig. 1, different from these explicit keypoint detection methods, we propose a new detection86

framework using implicit neural fields, which naturally incorporates shape reconstruction.87

Implicit Neural Representation Our method exploits implicit neural representations to parameterize88

a continuous 3D keypoint field, which is inspired by recent studies of neural radiance fields [20, 16, 28]89

and neural distance fields [22, 30]. Unlike explicit 3D representations such as point clouds, voxels, or90

meshes, implicit neural functions can decode shapes continuously and learn complex shape topologies.91

To obtain fine geometry, ConvONet [23] proposes to use volumetric embeddings to get local instead92

of global features [19] of the input. Recently, similar local geometry preserving networks show a93

great success for the grasp pose generation [12] and articulated model estimation [11]. They utilize94

the synergies between their main tasks and 3D reconstruction using shared local representations and95

implicit functions. Unlike [12, 11] that learn geometry as an auxiliary task, our novel losses tightly96

couple surface occupancy and keypoint saliency estimates.97

3 Method98

This section presents SNAKE, a shape-aware implicit network for 3D keypoint detection. SNAKE99

conditions two implicit decoders (for shape and keypoint saliency) on shared volumetric feature100

embeddings, which is shown in Fig. 2-framework. To encourage repeatable, uniformly scattered,101

and sparse keypoints, we employ several self-supervised loss functions which entangle the predicted102

surface occupancy and keypoint saliency, as depicted in the middle panel of Fig. 2. During inference,103

query points with high saliency are further refined by gradient-based optimization since the implicit104

keypoint field is continuous and differentiable, which is displayed in Fig. 2-inference.105

3.1 Network Architecture106

Point Cloud Encoder As fine geometry is essential to local keypoint detection, we adopt the107

ConvONets [23], which can obtain local details and scale to large scenes, as the point cloud encoder108

denoted fθen for SNAKE. Given an input point cloud P ∈ RN×3, our encoder firstly processes it109

with the PointNet++ [24] (or alternatives like [43]) to get a feature embedding Z ∈ RN×C1 , where N110

and C1 are respectively the number of points and the dimension of the features. Then, these features111

are projected and aggregated into structured volume Z ′ ∈ RC1×H×W×D, where H , W and D are112

the number of voxels in three orthogonal axes. The volumetric embeddings serve as input to the 3D113

UNet [6] to further integrate local and global information, resulting in the output G ∈ RC2×H×W×D,114

where C2 is the output feature dimension. More details can be found in the supplementary.115

Shape Implicit Decoder As shown in the top panel of Fig. 2, each point q ∈ R3 from a query set Q116

is encoded into a Ce-dimensional vector qe via a multi-layer perceptron that is denoted the positional117

encoder fθpos , i.e. qe = fθpos(q). Then, the local feature Gq is retrieved from the feature volume G118

according to the coordinate of q via trilinear interpolation. The generated qe and Gq are concatenated119

and mapped to the surface occupancy probability Probo(q|P ) ∈ [0, 1] by the occupancy decoder fθo ,120

as given in Eq. (1). If q is on the input surface, the Probo(q|P ) would be 1, otherwise be 0.121

fθo(qe, Gq) → Probo(q|P ) (1)
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Figure 2: Framework: We use an implicit network to decode the surface occupancy and keypoint
saliency probability simultaneously. Green arrows indicate the mutual relationships between the
geometry and saliency field. Through marching cubes and non-maximum suppression (NMS), it could
respectively recover the shape and detect keypoints from the input. Loss functions for keypoint filed:
Three loss functions try to make the generated keypoint repeatable, located on the underlying surface,
and sparse. Inference: We design a gradient-based optimization method to extract keypoints from
the saliency field. Result: The object-scale and scene-scale keypoints after inference are displayed.

Keypoint Implicit Decoder Most of the process here is the same as in shape implicit decoder, except122

for the last mapping function. The goal of keypoint implicit decoder fθs is to estimate the saliency123

of the query point q conditioned on input points P , which is denoted as Probs(q|P ) ∈ [0, 1] and124

formulated by:125

fθs(qe, Gq) → Probs(q|P ). (2)
Here, saliency of the query point q is the likelihood that it is a keypoint.126

3.2 Implicit Field Training127

The implicit field is jointly optimized for surface occupancy and saliency estimation by several self-128

supervised losses. In contrast to former arts [12, 11] with a similar architecture that learn multiple129

tasks separately, we leverage the geometry knowledge from shape field to enhance the performance130

of keypoint field, as shown in the green arrows of Fig. 2. Specifically, the total loss is given by:131

L = Lo + Lr + Lm + Ls, (3)
where Lo encourages the model to learn the shape from the sparse input, Lr, Lm and Ls respectively132

help the predicted keypoint to be repeatable, located on the underlying surface and sparse.133

Surface Occupancy Loss The binary cross-entropy loss lBCE between the predicted surface occu-134

pancy Probo(q|P ) and the ground-truth label Probgto is used for shape recovery. The queries Q are135

randomly sampled from the whole volume size H × W × D. The average over all queries is as136

follows:137

Lo =
1

|Q|
∑
q∈Q

lBCE

(
Probo(q|P ), P robgto (q|P )

)
, (4)
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Algorithm 1 Optimization for Explicit Keypoint Extraction

Require: P,Qinfer, fθen , fθpos , fθo , fθs . Hyper-parameters: λ, J , thro, thrs.
Get initial Probo(Qinfer|P ) according to Eq.( 1).
Filter to get new query set Qinfer′ = {q|q ∈ Qinfer, P robo(q|P ) > 1− thro}.
for 1 to J do

Evaluate energy function E(Qinfer′ , P ).
Update coordinates with gradient descent: Qinfer′ = Qinfer′ − λ∇Qinfer′E(Qinfer′ , P ).

end for
Sample final keypoints Qk = {q|q ∈ Qinfer′ , P robs(q|P ) > thrs}.

where |Q| is the number of queries Q.138

Repeatability Loss Detecting keypoints with high repeatability is essential for downstream tasks like139

registration between two-view point clouds. That indicates the positions of keypoint are covariant to140

the rigid transformation of the input. To achieve a similar goal, 2D keypoint detection methods [26, 7]141

enforce the similarity of corresponding local salient patches from multiple views. Inspired by them,142

we enforce the similarity of local overlapped saliency fields from two-view point clouds. Since the143

implicit field is continuous, we uniformly sample some values from a local field to represent the local144

saliency distribution. Specifically, as shown in the top and the middle part of Fig. 2, we build several145

local 3D Cartesian grids {Qi}ni=1 with resolution of Hl ×Wl ×Dl and size of 1/U . We empirically146

set the resolution of Qi to be almost the same as the feature volume G. As non-occupied regions are147

uninformative, the center of Qi is randomly sampled from the input. Then, we perform random rigid148

transformation T on the P and Qi to generate TP and TQi. Similar to [26], the cosine similarity,149

denoted as cosim, is exploited for the corresponding saliency grids of Qi and TQi:150

Lr = 1− 1

n

∑
i∈n

cosim
(
Probs(Qi|P ), P robs(TQi|TP )

)
. (5)

Surface Constraint Loss As discussed in [15], 3D keypoints are encouraged to close to the input.151

They propose a loss to constrain the distance between the keypoint and its nearest neighbor from the152

input. Yet, the generated keypoints are inconsistent when given the same input but with a different153

density. Thanks to the shape decoder, SNAKE can reconstruct the underlying surface of the input,154

which is robust to the resolution change. Hence, we use the surface occupancy probability to represent155

the inverse distance between the query and the input. As can be seen in Fig. 2-(surface constraint),156

we enforce the saliency of the query that is far from input P close to 0, which is defined as157

Lm =
1

|Q|
∑
q∈Q

(
1− Probo(q|P )

)
· Probs(q|P ). (6)

Sparsity Loss Similar to 2D keypoint detection methods [26], we design a sparsity loss to avoid the158

trivial solution (Probs(Q|P )=0) in Eq.( 5)( 6). As can be seen in Fig. 2, the goal is to maximize159

the local peakiness of the local saliency grids. As the sailency values of non-occupied points are160

enforced to 0 by Lm, we only impose the sparsity loss on the points with high surface occupancy161

probability. Hence, we derive the sparsity loss with the help of decoded geometry by162

Ls = 1− 1

n

∑
i∈n

(
maxProbs(Q

1
i |P )−meanProbs(Q

1
i |P )

)
, (7)

where Q1
i = {q|q ∈ Qi, P robo(q|P ) > 1− thro}, thro ∈ (0, 0.5] is a constant, and n is the number163

of grids. It is noted that the spatial frequency of local peakiness is dependent on the grid size 1/U ,164

see 4.4. Since the network is not only required to find sparse keypoints, but also expected to recover165

the object shape, it would generate high saliency at the critical parts of the input, like joint points of a166

desk and corners of a house, as shown in the Fig. 2-result.167

3.3 Explicit Keypoint Extraction168

The query point q whose saliency is above a predefined threshold thrs ∈ (0, 1) would be selected as169

a keypoint at the inference stage. Although SNAKE can obtain the saliency of any query point, a170

higher resolution query set results in a high computational cost. Hence, as shown in Fig. 2-inference,171
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we build a relatively low-resolution query sets Qinfer which are evenly distributed in the input space172

and further refine the coordinates of Qinfer by gradient-based optimization on this energy function:173

E(Qinfer, P ) =
1

|Qinfer|
∑

q∈Qinfer

1− Probs(q|P ). (8)

Specifically, details of the explicit keypoint extraction algorithm are summarized in Alg. 1.174

4 Experiment175

In this section, we evaluate SNAKE under three settings. First, we compare keypoint semantic176

consistency across different instances of the same category, using both rigid and deformable objects.177

Next, keypoint repeatability of the same instance under disturbances such as SE(3) transformation,178

noise and downsample is evaluated. Finally, we inspect the point cloud registration task on the179

3DMatch benchmark, notably in a zero-shot generalization setting. Besides, an ablation study is done180

to verify the effect of each design choice in SNAKE. The implementation details and hyper-parameters181

for SNAKE in three settings can be found in the supplementary.182

4.1 Semantic Consistency183

Datasets The KeypointNet [38] dataset and meshes generated with the SMPL model [17] are utilized.184

KeypointNet has numerous human-annotated 3D keypoints for 16 object categories from ShapeNet [3].185

The training set covers all categories that contain 5500 instances. Following [37], we evaluate 630186

unseen instances from airplanes, chairs, and tables. SMPL is a skinned vertex-based deformable187

model that accurately captures body shape variations in natural human poses. We use the same188

strategy in [37] to generate both training and testing data.189

Metric Mean Intersection over Union (mIoU) is adopted to show whether the keypoints across190

intra-class instances have the same semantics or not. For KeypointNet, a predicted keypoint is191

considered the same as a human-annotated semantic point if the geodesic distance between them192

is under some threshold. Due to the lack of human-labeled keypoints on SMPL, we compare the193

keypoint consistency in a pair of human models. A keypoint in the first model is regarded semantically194

consistent if the distance between its corresponding point and the nearest keypoint in the second195

model is below some threshold.196

Ours

Human
Annotation

Figure 3: Comparison with human annotations
on KeypointNet [38] dataset.

Evaluation and Results We compare SNAKE197

with random detection, hand-crafted detectors:198

ISS [41], Harris-3D [29] and SIFT-3D [27], and199

DL-based unsupervised detectors: USIP [15] and200

UKPGAN [37]. As USIP has not performed se-201

mantic consistency evaluations, we train the model202

with the code they provided. We follow the same203

protocols in [37] to filter the keypoints via NMS204

with a Euclidean radius of 0.1. Quantitative re-205

sults are provided in Fig. 5-(a,e). SNAKE obtains206

higher mIoU than other methods under most thresholds on KeypointNet and SMPL. Qualitative207

results in Fig. 3 show our keypoints make good alignment with human annotations. Fig. 4 provides208

qualitative comparisons of semantically consistent keypoints on rigid and deformable objects. Owing209

to entangling shape reconstruction and keypoint detection, SNAKE can extract aligned representation210

for intra-class instances. Thus, our keypoints better outline the object shapes and are more semanti-211

cally consistent under large shape variations. As shown in the saliency field projected slices, we can212

get symmetrical keypoints, although without any explicit constraint like the one used in [37].213

4.2 Repeatability214

Datasets ModelNet40 [36] is a synthetic object-level dataset that contains 12,311 pre-aligned shapes215

from 40 categories, such as plane, guitar, and table. We adopt the official dataset split strategy.216

3DMatch [40] and Redwood [5] are RGB-D reconstruction datasets for indoor scenes. Following [15],217

we train the model on 3DMatch and test it on Redwood to show the generalization performance. The218

training set contains around 19k samples and the test set consists of 207 point clouds.219
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Figure 4: Semantic consistency of keypoints on rigid and deformable objects. Our keypoints are
more evenly scattered on the underlying surface of objects, more symmetrical, and more semantically
consistent under significant shape variations when compared to other methods. The saliency field
projected slice shows that SNAKE decodes well-aligned saliency values for keypoints in different
instances but with similar semantics, such as the wingtip of the airplane and the leg of the human.
Here, small saliency is shown in bright red and gets darker with a larger value.

(a)

SMPL

ModelNet40

(e)

(b)

KeypointNet

(c) (d)

(g) (h)

Redwood

(f)

Figure 5: Quantitative results on four datasets. Keypoint semantic consistency (a)(e) on KeypointNet
and SMPL. Relative repeatability for two-view point clouds with different distance threshold (b),
downsample rate (c), Gaussian noise N (0, σnoise) (d) on ModelNet40. The results of (f)(g)(h) are
tested on Redwood with the same settings in (b)(c)(d).

Metric We adopt the relative repeatability proposed in USIP [15] as the evaluation metric. Given two220

point clouds captured from different viewpoints, a keypoint in the first point cloud is repeatable if its221

distance to the nearest keypoint in the other point cloud is below a threshold ϵ. Relative repeatability222

means the number of repeatable points divided by the total number of detected keypoints.223

Evaluation and Results Random detection, traditional methods and USIP are chosen as our baselines.224

Since UKPGAN does not provide pre-trained models on these two datasets, we do not report its225

results in Fig. 5 but make an additional comparison on KeypointNet, which is summarized in226

the supplymentary. We use NMS to select the local peaky keypoints with a small radius (0.01227

normalized distance on ModelNet40 and 0.04 meters on Redwood) for ours and baselines. We228

generate 64 keypoints in each sample and show the performance under different distance thresholds ϵ,229

downsample rates, and Gaussian noise scales. We set a fixed ϵ of 0.04 normalized distance and 0.2230

meters on the ModelNet40 and Redwood dataset when testing under the last two cases. As shown in231

7



Ours

USIP

Shape
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ISS
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Figure 6: Visualization of keypoints under some disturbances on object-level [36] and scene-level [5]
datasets compared to hand-crafted [41] and explicit representation based [15] methods. Downsample
rate is 8x and the Gaussian noise scale is 0.06. The shape reconstruction via marching cubes for our
occupancy field is also given. Visualization of repeatability can be found in the supplementary.

Fig. 5-(b,f), SNAKE outperforms state-of-the-art at most distance thresholds. We do not surpass USIP232

on Redwood in the lower thresholds. Note that it is challenging to get higher repeatability on Redwood233

because the paired inputs have very small overlapping regions. Fig. 5-(c,d,g,h) show the repeatability234

robustness to different downsample rates and noise levels. SNAKE gets the highest repeatability in235

most cases because the shape-aware strategy helps the model reason about the underlying shapes of236

the objects/scenes, which makes keypoints robust to the input variations. Fig. 6 provides visualization237

of object-level and scene-level keypoints of the original and disturbed inputs. SNAKE can generate238

more consistent keypoints than other methods under drastic change of inputs.239

4.3 Zero-shot Point Cloud Registration240

Datasets We follow the same protocols in [37] to train the model on KeypointNet and then directly241

test it on 3DMatch [40] dataset, evaluating how well two-view point clouds can be registered. The242

test set consists of 8 scenes which include some partially overlapped point cloud fragments and the243

ground truth SE(3) transformation matrices.244

Metric To evaluate geometric registration, we need both keypoint detectors and descriptors. Thus,245

we combine an off-the-shelf and state-of-the-art descriptor D3Feat [1] with our and other keypoint246

detectors. Following [37], we compute three metrics: Feature Matching Recall, Inlier Ratio, and247

Registration Recall for a pair of point clouds.248

Evaluation and Results As baselines, we choose random detection, ISS, SIFT-3D, UKPGAN,249

and D3Feat. Note that D3Feat is a task-specific learning-based detector trained on the 3DMatch250

dataset, thus not included in this zero-shot comparison. Ours and UKPGAN are trained on the251

synthetic object dataset KeypointNet only. The results are reported under different numbers of252

keypoints (i.e., 2500, 1000, 500, 250, 100). The NMS with a radius of 0.05m is used for D3Feat,253

UKPGAN, and ours. As shown in Table 1, SNAKE outperforms other methods consistently under254

three metrics. For registration recall and inlier ratio, we achieve significant gains over UKPGAN and255

other traditional keypoint methods. Notably, when the keypoints are high in numbers, SNAKE even256

outperforms D3Feat which has seen the target domain. Local shape primitives like planes, corners, or257

curves may be shared between objects and scenes, so our shape-aware formulation allows a superior258

generalization from objects to scenes.259

Table 1: Registration result on 3DMatch. We combine the off-the-shelf descriptor D3Feat [1] and
different keypoint detectors to perform two-view point cloud registration.

Feature Matching Recall (%) Registration Recall (%) Inlier Ratio (%)
Detector Descriptor 2500 1000 500 250 100 2500 1000 500 250 100 2500 1000 500 250 100
D3Feat D3Feat 95.6 94.5 94.3 93.3 90.6 84.4 84.9 82.5 79.3 67.2 40.6 42.7 44.1 45.0 45.6
Random D3Feat 95.1 94.5 92.8 90.0 81.2 83.0 80.0 77.0 65.5 38.8 38.6 33.6 28.9 23.6 17.3

ISS D3Feat 95.2 94.4 93.4 90.1 81.0 83.5 79.2 76.0 64.3 37.2 38.2 33.5 28.8 23.9 17.4
SIFT D3Feat 94.9 94.0 93.0 91.2 81.3 84.0 79.9 76.1 60.9 38.6 38.4 33.6 28.8 23.3 17.4

UKPGAN D3Feat 94.7 94.2 93.5 92.6 85.9 82.8 81.4 77.1 69.7 47.4 38.8 35.5 34.0 33.1 27.7
Ours D3Feat 95.5 95.0 94.7 92.9 89.5 85.1 83.7 81.2 74.6 50.9 41.3 39.0 37.0 33.5 30.0
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(c)(a) (b)

U=6 U=8 U=10

Figure 7: (a) SNAKE fails to predict semantically consistent keypoints without the occupancy decoder.
(b) Saliency field slice with a different grid size of (1/U)3. (c) The impact of the optimization step.

4.4 Ablation Study260

Loss Function Table 2 reports the performance w.r.t. designs of loss functions. (Row 1) If the surface261

occupancy decoder is removed, the surface constraint cannot be performed according to Eq.( 6), so262

they are removed simultaneously. Although the model could detect significantly repeatable keypoints263

on ModelNet40 [36], it fails to give semantically consistent keypoints on KeypointNet [38]. Fig. 7-a264

shows that SNAKE is unable to output symmetric and meaningful keypoints without the shape-aware265

technique. That indicates the repeatability could not be the only criterion for keypoint detection if an266

implicit formulation is adopted. (Row 2-4) Each loss function for training keypoint field is vital for267

keypoint detection. Note that the model gives a trivial solution (0) for the saliency field and cannot268

extract distinctive points when removing the sparsity loss.269

Table 2: Ablations for the designs of loss
function. occ. = occupancy, sur. = surface,
rep. = repeatability, spa. = sparsity and rr. =
relative repeatability.

rr. (%) on [36] mIoU (%) on [38]
Threshold ϵ 0.04 0.05 0.06 0.08 0.09 0.1

w/o occ. & sur. 0.92 0.94 0.95 0.22 0.25 0.28
w/o sur. 0.28 0.36 0.42 0.31 0.35 0.39
w/o rep. 0.22 0.28 0.34 0.30 0.35 0.39
w/o spa. 0 0 0 0 0 0

w/ all 0.85 0.89 0.90 0.30 0.37 0.42

Table 3: Impact of different local grid size
used in the Lo and Ls on ModelNet40.

U 4 6 8 10
rr. (%) (ϵ=0.04) 0.79 0.85 0.79 0.77

Table 4: Impact of different global volumetric
resolution on ModelNet40.

H(= W = D) 32 48 64 80
rr. (%) (ϵ=0.04) 0.62 0.79 0.85 0.78

Grid Size and Volumetric Resolution The grid size 1/U controls the number of keypoints because270

Ls enforces the model to predict a single local maxima per grid of size (1/U)
3. Fig. 7-b shows271

different saliency field slices obtained from the same input with various 1/U . When U is small,272

SNAKE outputs fewer salient responses, and more for larger values of U . We also give the relative273

repeatability results on ModelNet40 under distance threshold ϵ = 0.04 in Table 3, indicating that274

U = 6 gives the best results. From Table 4, we can see that higher resolution improves performance.275

However, the performance drops when it reaches the resolution of 80. The potential reason is as such:276

the number of queries in a single grid increases when the resolution becomes higher, as mentioned in277

3.2. In this case, finer details make the input to cosine similarity too long and contain spurious values.278

Optimization Step and Learning Rate Fig. 7-c shows the importance of optimization (see Alg. 1)279

for refining keypoint coordinates on the ModelNet40 dataset. It is noted that too many optimization280

steps will not bring more gains but increase the computational overhead. In this paper, we set the281

number of update steps to 10. The learning rate for optimization is also key to the final result. When282

the learning rate is set to 0.1, 0.01, 0.001 and 0.0001, the relative repeatability (%) on ModelNet40283

dataset with the same experimental settings as Table 4 are 0.002, 0.622, 0.854 and 0.826, respectively.284

5 Conclusion and Discussion285

We propose SNAKE, a method for 3D keypoint detection based on implicit neural representations.286

Extensive evaluations show our keypoints are semantically consistent, repeatable, robust to downsam-287

ple, and generalizable to unseen scenarios. Limitations. The optimization for keypoint extraction288

during inference requires considerable computational cost and time, which may not be applicable289

for use in scenarios that require real-time keypoint detection (see supplementary). Negative Social290

Impact. The industry may use the method for pose estimation in autonomous robots. Since our291

method is not perfect, it may lead to wrong decision making and potential human injury.292
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