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Abstract
A Bayesian Network is a directed acyclic graph (DAG) on a set of n random variables (the vertices);
a Bayesian Network Distribution (BND) is a probability distribution on the random variables that is
Markovian on the graph. A finite k-mixture of such models is the projection on these variables of a
BND on the larger graph which has an additional “hidden” (or “latent”) random variable U , ranging
in {1, . . . , k}, and a directed edge from U to every other vertex. Models of this type are fundamental
to research in causal inference, where U models a confounding effect of multiple populations and
obscures the causal relationship in the observable DAG. By solving the mixture problem, we are able
to “observe” U , making these traditionally unidentifiable causal relationships identifiable. Using a
reduction to the more well-studied “product” case on empty graphs, we give the first algorithm to
learn mixtures of non-empty DAGs.
Keywords: Mixture models, Bayesian networks, Causal DAGs, Hidden confounder, Population
confounder, Global confounding, Causal identifiability

1. Introduction

A Bayesian Network is a directed acyclic graph G = (V, E), on a set of n random variables
(identified with the vertices); a Bayesian Network Distribution (BND) is a probability distribution
on the random variables that is Markovian on the graph. That is to say, the joint distribution on the
variables can be factored as

∏n
i=1 P[Vi = vi | pa(Vi)] where pa(Vi) is the assignment to the parents

of Vi. A k-MixBND on G is a convex combination, or “mixture”, of k BNDs. We represent this
situation graphically with a single unobservable random variable U with edges to each of the variable
V ∈ G. Here, U is referred to as a “confounding” variable with range 1, . . . , k and the variables in G
are referred to as the “observables.” The main complexity parameter of the problem is k, representing
the number of mixture constituents or “sources.”

One extremely special case has been of longstanding interest in the theory literature: where G is
empty. Such a distribution is a mixture of k product distributions or k-MixProd. See Fig. 1.
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Figure 1: (a) A small Bayesian Network, with latent variableU . (b) In the empty graph, a k-MixBND
is a k-MixProd (mixture of product distributions).

In this paper we study the identification problem for k-MixBNDs. Specifically, given the graph
G, and given a joint distribution P on the variables (vertices), recover up to small statistical error (a)
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the mixture weights, up to a permutation of the constituents, and (b) for every mixture constituent and
for every vertex V , its conditional distribution given each possible setting to its parents. The primary
algorithm will be developed by reducing the k-MixBND problem into a series of calls to a k-MixProd
oracle. k-MixBND models are not always identifiable, as further discussed in Assumptions below.
Thus, another contribution of our paper is to establish a sufficient setting to guarantee identifiability.

Assumptions The following assumptions are used throughout this paper.
1. We have access to a k-MixProd oracle requiring O(k) variables that are independent within

each source. We will refer to this quantity as Nmp. The most efficient published algorithm for
this problem is given in Gordon et al. (2021), which requires Nmp = 3k − 3 variables and time
complexity exp(k2). Recent unpublished work improves the complexity bound to exp(k log k).

2. The observable variables in our BND are binary and discrete. While a number of papers have
focused on continuous or large-alphabet settings, we restrict our focus to the simplest setting of
binary, discrete variables. Appendix C.4 gives a reduction from alphabets of any size d to the
binary case, incurring a mild cost in complexity.

3. The mixture is supported on ≤ k sources. If the hidden variable U has unrestricted range
(Specifically, range k = 2n would be enough), the BND can be any probability distribution,
making identification impossible. The question is therefore one of trading k against the sample
and computational complexity of an algorithm (and the degree of the network).

4. The underlying Bayesian DAG is sufficiently sparse. In order to reduce k-MixBND to k-MixProd
we need sufficiently many variables that can be separated from each other by conditioning on
disjoint Markov boundaries (example in Fig. 2, definition in Sec. 1.3). As a result, the complexity
of the algorithm is exponential in the size of a Markov boundary. Both for complexity and in
order to keep n small, a bound on the maximum degree ∆ is required. The algorithm works if
n ≥ (∆ + 1)4Nmp.1
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Figure 2: A Bayesian network. Four vertices V1, V6, V9, V13 with their corresponding disjoint
Markov boundaries are indicated.

5. The resulting product mixtures are non-degenerate. Even in mixtures of graphs with sparse
structure (in particular the empty graph—the k-MixProd problem), the k-MixBND can be uniden-
tifiable if the mixture components are insufficiently distinct. (E.g., trivially, a mixture of identical
sources generates the same statistics as a single source.) Past work has used conditions such as
ζ-separation Gordon et al. (2021). These ensure that matrices representing the parameters for each
source are well-conditioned. These are not always necessary conditions; characterizing necessary
conditions is a difficult question tackled in part in Gordon and Schulman (2022).

1. If the skeleton of G happens to be a path, then we only need a milder condition that n ≥ 2Nmp. For details see
Appendix C.3.
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6. The DAG structure representing conditional independence properties within each source, or a
common supergraph of these structures, is known. The primary purpose of this assumption is
to focus our paper on the causal identification problem itself. It is often the case that domain
knowledge provides an understanding of the causal DAG. If the causal DAG is unknown, we
are faced with a different problem, commonly known as “Causal Discovery;” this is an entirely
distinct, and extensively developed area (see Glymour et al. (2019a) for a recent survey.) Causal
discovery in the presence of a universal confounder has been suggested in Anandkumar et al.
(2012a) by substituting independence tests with rank tests. We should stress that our algorithm
does not depend on knowing the exact graph but can operate on any supergraph of it, which is
why our algorithm works even if the different components of the k-MixBND use slightly different
causal graphs, and why some uncertainty in knowledge of the graph can be tolerated.

1.1. Background

The primary application of Bayesian networks (a term coined in Pearl (1985)) is to model complex
causal relations, with concrete applications in mining data on diverse populations, multi-purpose
usage and bioinformatics, etc. In a wide range of complex natural and artificial systems causal
relations are probabilistic, and moreover inquiry using controlled experiments is impossible or
prohibitively expensive. In such settings researchers often have to resort to collecting samples of an
assortment of measurements from a joint distribution governed by causal relations.

In causal identification, we are given observable and unobservable variables with a corresponding
Bayesian network structure Pearl (2009). The graphical-conditions under which causal relationships
are identifiable are well studied Shpitser and Pearl (2006); Huang and Valtorta (2008); Pearl (2009);
Spirtes et al. (2000a); Peters et al. (2017); Koller and Friedman (2009). There has been little
exploration into expanding the class of identifiable causal relationships using numerical conditions.

A multiplicity of populations, or equivalently an unobserved discrete confounding variable U ,
can obscure the true causal behavior of the system, making causal relationships unidentifiable in the
traditional framework. However, mild additional assumptions in conjunction with a known DAG
structure allow identification of the previously unobservable U . With the full joint distribution now
accessible, causal identification is again possible.

There are actually two problems within mixture models: (1) Learning the model, namely,
producing any model consistent with (or close to) the observations; (2) Identifying the model,
namely, producing the true model (or one close to it) up to permutations in the source label. These
are incomparable problems, as the second goal is stronger but not always possible. Our paper is
concerned entirely with identification, because the underlying motivation is to be able to predict the
effect of interventions in a system (represented by the graph). Such predictions will not be valid
when the model is not identifiable.

The idea of using mixture models to identify parameters in latent variables dates back to E. S. All-
man (2009), who use algebraic methods from Kruskal (1976, 1977) to exploit within-source inde-
pendence. Anandkumar et al. (2012b) follows a similar strategy using tensor decomposition. Both
of these works rely on within-source independence between three variables with support on large
non-binary alphabets to achieve identifiablility. In such work, the alphabet size of the independent
variables must scale linearly with k.

A different line of work in the theory community involves scaling the number of variables n
with k while leaving the alphabet size of the visible variables constant. This problem, referred to as
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k-MixProd, and has been studied for nearly 30 years Kearns et al. (1994); Cryan et al. (2001); Freund
and Mansour (1999); Feldman et al. (2008); Chaudhuri and Rao (2008); Tahmasebi et al. (2018);
Chen and Moitra (2019); Gordon et al. (2021). 2 In Feldman et al. (2008) a seminal algorithm for
k-MixProd was given. Its running time, for mixtures on n binary variables (n suff. large), is nO(k3).
This was improved in Chen and Moitra (2019) to kO(k3)nO(k2). The most recent algorithm Gordon
et al. (2021) identifies a mixture of k product distributions on at least 3k − 3 variables in time
2O(k2)nO(k), under a mild “separation” condition that excludes unidentifiable instances (see below).
Under somewhat stricter separation, the time complexity improves to 2O(k2)n.

In principle, combining binary variables can create the larger-alphabet variables needed for
these strategies. In this case, the sample complexity suffers from conditioning on the larger Markov
boundary the merged variables (as well as needing accurate statistics for lower probability events).
In this sense the same complexity bottlenecks are found in both direction, though the identifiablility
conditions differ. While we continue the k-MixProd approach, this paper is supplemental to both
lines of work in that handles details that are necessary to apply either line of work.

To our knowledge, the only other attempt at detailing a multiple-run reduction to k-MixProd is
Anandkumar et al. (2012a), which gives an algorithm for mixtures of Markov random fields–i.e.,
undirected graphical models. While this setting is fundamentally different from ours, both papers
make use of boundary conditioning to induce independence –even though “Markov boundaries” in
DAGs are different from “separating sets” in undirected graphs. Additional complications arise for
directed graphs because the outputs of the k-MixProd subroutine are conditioned on their Markov
boundaries while the desired parameters are only conditioned on their parents. In addition, we note
that Anandkumar et al. (2012a) only guarantees identification of second order marginal probabilities,
which is insufficient for causal identification. 3

Other related work Kivva et al. (2021) contains as a special case a reduction to the k-MixProd
problem. Their goal is to learn a causal graphical model with latent variables, but with a very different
structure on the visible and latent variables. They allow for a DAG of latent variables with visible
children (which is learned as part of their algorithm); on the other hand, they require that there be
no causal relations between visible variables. In our work, the structure on the latent variables is
trivial (since there is a single latent variable), but the structure on the visible variables is arbitrary.
Characterizing identifiability in the generalization of both these settings in which we allow structure
on both the visible and latent portion of the graph is a nice problem beyond the scope of this paper.

Another paper with kindred motivation to ours is Kumar and Sinha (2021), which studies
inference of a certain kind of MixBND, in which the structure of the Bayesian network is known,
but the data collected is a mixture over some m unknown interventional distributions. The authors
give sufficient conditions for identifiability of the network and of the intervention distributions. At
a technical level, the papers are not closely related. k is not a parameter in their work, and instead
what is essential is an “exclusion” assumption which says that each variable has some value to which
it is not assigned by any of the interventions.

Some other loosely related work includes learning hidden Markov models Hsu et al. (2012);
Anandkumar et al. (2012b); Sharan et al. (2017), an incomparable line of work to our question, but
with somewhat similar motivation. In the same vein, some papers study learning mixtures of Markov

2. We do not even try to list the extensive analogous literature for parametrized distributions over R
3. We also mention that Anandkumar et al. (2010) and Anandkumar et al. (2012a) introduce the idea of a sparse local

separator; if this can be adapted to the directed-graph case one might be able to somewhat relax assumption 4. We do
not attempt this in this paper.
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chains from observations of random paths through the state space Batu et al. (2004); Gupta et al.
(2016). These models, too, differ substantially from the models addressed in this paper, and pose
very different challenges. Literature on causal structure learning Spirtes et al. (2000b); Glymour
et al. (2019b) answers the question of identifying the presence of hidden confounders. Fast Causal
Inference (FCI) harnesses observed conditional independence to learn causal structure, which can
detect the presence of unobserved variables when the known variables are insufficient to explain
the observed behavior. This literature includes the MDAG problem in which the DAG structure
may depend upon the hidden variable; see Thiesson et al. (1998) for heuristic approaches to this
problem. Other related works study causal inference in the presence of visible “proxy” variables
which are influenced by a latent confounder Miao et al. (2018); Kuroki and Pearl (2014). This has
more recently given rise to multiple causal inference, which assumes multiple causes which are
independent when conditioned on a confounder Heckerman (2018); Ranganath and Perotte (2018);
Wang and Blei (2019). These settings are given with respect to a known causal inference task and
significantly less general assumptions on the behavior of the proxy variables. Finite mixture models
have been the focus of intense research for well over a century, since pioneering work in the late
1800s Newcomb (1886); Pearson (1894), and doing justice to the vast literature that emanated from
this endeavor is impossible within the scope of this paper. See, e.g., the surveys Everitt and Hand
(1981); Titterington et al. (1985); Lindsay (1995); McLachlan et al. (2019).

1.2. Summary of contributions

Theorem 1 Our algorithm identifies a k-MixBND distribution with on a graph of maximum degree
∆ and of size n ≥ Ω(k∆4), using O(n2∆2

) calls to an oracle for the k-MixProd problem.

(For an exact statement see Lemma 18.) The first key insight involves conditioning on the Markov
boundaries of a linear number of variables via post-selection. This induces within-source indepen-
dence which can be harnessed by running a k-MixProd algorithm as a subroutine. Gordon et al.
(2021), the best published algorithm for this subroutine requires 3k − 3 conditionally independent
variables. (Or 2k − 1 for a weaker complexity bound.)

We execute a set of O(n2∆2
) “runs” of a k-MixProd algorithm on sets of these variables for

all the possible restrictions (assignments of values) to their Markov boundaries. The first challenge
is to align the outcomes of these runs, a procedure which we call “alignment.” Anandkumar et al.
(2012a) developed a primitive version of our “alignment” algorithm for a different but related
problem: mixtures of undirected Markov random fields. While they require a single variable that is
independent from the rest of the structure, our algorithm develops the notion of “good collections
of runs” to eliminate this restriction – a contribution which may have implications in the Markov
random field setting as well.

Our final challenge is to propagate the conditional probabilities through the entire network
and recover the model – a procedure we call “Bayesian unzipping.” Our key contributions can be
summarized by these “alignment” and “unzipping” procedures, as well as the notion of a “good
collection of runs.”

Organization. The rest of the paper is organized as follows. In Section 1.3 we outline some
Bayesian network notation. In Section 2 we formally develop the notion of a “run,” which calls a
k-MixProd oracle. In Section 3 we explain how the output of the “runs” is synthesized to get the
desired mixture parameters. This section details the process of alignment and Bayesian unzipping.
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Section 4 explains what is necessary in a group of runs in order for the algorithm to succeed, which
provides a framework for defining algorithms in terms of sets of runs.

In Appendix A we define the k-MixBND algorithm in pseudo-code. In Appendix B we analyze
the k-MixBND algorithm. In Appendix C we prove the existence of a good collection of runs. In
Appendix C.4 we generalize our algorithms to handle non-binary observations.

1.3. Notation

A Bayesian network consists of a directed acyclic graph (DAG) G = (V, E) and a probability
distribution P over V = {V1, . . . , Vn} factoring according to G, i.e.,

P(V1, V2, . . . , Vn) =
n∏
i=1

P(Vi | Pa(Vi)),

where Pa(V ) is the set of parents of V ∈ V . (Similarly, let Ch(V ) denote the children of V .)
Equivalently, P must satisfy that for any V ∈ V , V is independent of its non-descendants, given its
parents.

Conditioning on the “Markov boundary” of a vertex V ∈ V Pearl (2014) Mb(V ) makes V
conditionally independent of everything else in the graph.

Definition 2 (Markov Boundary) For a vertex Y in a DAG G = (V, E), the Markov boundary of
Y , denoted Mb(Y ), is defined by

Mb(Y ) := Pa(Y ) ∪ Ch(Y ) ∪ Pa(Ch(Y )) \ {Y }.

Lemma 3 (See Pearl (2014)) For any vertex V ∈ V and subset S ⊆ V \ (Mb(V ) ∪ {V }), P(V |
Mb(V ), S) = P(V | Mb(V )).

Observation 4 For any X,Y ∈ V , X ∈ Mb(Y ) ⇐⇒ Y ∈ Mb(X)

Uppercase/lowercase conventions Following notation in causal inference literature, we will use
lowercase letters to denote assignments. For example P(v | u) = P(V = v | U = u). Following
this convention, we will write pa(V ), ch(V ), and mb(X) to denote assignment to the parents Pa(V ),
children Ch(V ), and Markov boundary Mb(V ).

Within-source probabilities It will be easier to write Pu(v) = P(v | u) to give the probability
distribution within a source.

Finally, here are a few more definitions that will make the upcoming sections simpler.

Definition 5 (Top) We will use Top(V ) to denote Mb(V ) \ Ch(V ).

Definition 6 (Depth of a vertex) Given a DAG G = (V, E) and any vertex V ∈ V , let dG(V ) be
the depth of V in G, i.e. the length of the shortest path from a source vertex to V in G. When G is
clear from context, we’ll omit the subscript.

Definition 7 We’ll introduce a parameter γ(G) which will appear in the complexity of the identifica-
tion procedure, which is defined by γ(G) := maxV ∈V |Mb(V )|.
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2. Applying a k-MixProd algorithm

In contrast to k-MixProd, in the k-MixBND setting we are not always fortunate enough to have
a sufficient number of independent variables. Instead, our algorithm will induce instances of
independence through post-selected conditioning. We will then run a black box k-MixProd algorithm
on this post-selected subset of the data. A significant portion of this paper will be accounting
for multiple calls (or “runs”) of this k-MixProd oracle and explaining how their results can be
synthesized. As a result, we will need to take special care as we formally define this notion.

2.1. Describing runs

We will need to keep track of two crucial elements of each “run” of a k-MixProd oracle.
1. Which variables ∈ V we have passed to our k-MixProd oracle as independent variables (the

independent set).
2. Which variables ∈ V we have conditioned on (the conditioning set) and what values we have

post-selected these variables to take. This setting of the run will be essential for determining
how to synthesize the information between runs.

For simplicity, we will proceed with the simplest solution: conditioning on the Markov boundaries
of the variables in the independent set. This is a slightly larger conditioning set than is needed, the
“deepest” vertices only need their parents conditioned on. This will be further refined in Section 4.1.

Definition 8 (Run) A run over a graph G = (V, E) is a tuple a = (Ia, fa) where Ia ⊆ V are
variables that we will d-separate (within each source) by conditioning on assignments to the set

Conda :=
⋃
I∈Ia

Mb(I)

The value of the assignment is given by fa : Conda → {0, 1}. We will restrict our attention through
the entire paper to well-formed runs, i.e. runs for which

Ia ∩ Conda = ∅.

We’ll call Ia the independent set for a, and Conda the conditioning set.

Definition 9 An individual run a = (Ia, fa) is N -independent if |Ia| ≥ N .

Superscript notation We’ll write mba(V ),paa(V ), cha(V ) to refer to the assignment to the
Markov boundary of V , parents of V , and children of V as set by run a.4 In a similar spirit, we’ll
occasionally write v0 to denote the assignment V = 0.

Definition 10 (Distribution induced by a run) For any well-formed run a, the induced distribution
on the variables in Ia is denoted by

Pa(·) = P(· | conda),

where conda is the assignment to Conda in keeping with our conventions.

4. Any quantities parameterized by a run will take the parameter as a superscript.
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The outputs of applying a k-MixProd algorithm to Pa(Ia) are a matrix ma ∈ [0, 1]|I
a|×k and a

mixture vector πa ∈ [0, 1]k (satisfying
∑

u π
a
u = 1) defined by

ma
iu := Pa(Xi = 1 | Ua = u) = P(Xi = 1 | Ua = u,Conda), ∀i ∈ Ia, u ∈ [k] (1)

πau := Pa(Ua = u) = P(Ua = u | Conda), ∀j ∈ [k], (2)

where Ua is a source over [k] distributed according to U | Conda. Note that because a mixture is
invariant to a permutation of the labels of mixture components, we cannot guarantee correspondence
between the labels for the source variable from different runs. Hence the labels of Ua correspond to
a unique unknown label of U . Alignment of these labels is handled in Section 3.1.

3. Combining Runs

A single run of the k-MixProd oracle will not contain sufficient information to learn the parameters
of the k-MixBND problem. Instead we must synthesize information across multiple runs.

3.1. Aligning source labels across different runs

Each run of the k-MixProd algorithm will return Pa(V | Ua = u) for some arbitrary permutation
Ua of the variable. We need to align all of the outputs so that different outputs share the same
permutation of U . This can be done if we know ahead of time that a variable in one run’s independent
set should have the same probability distribution as it does in the other run. Ultimately, in our main
algorithm this will correspond to variables whose Markov boundaries are conditioned on the same
values in multiple runs, but this concept has broader implications.

Definition 11 (Separated variable) X ∈ V is separated if for all ui 6= uj ∈ [k], Pui(x) 6= Puj (x).

Definition 12 (Aligned mixture distributions) A pair of k-component mixture distributionsP(1),P(2)

over tuples of random variablesU, (X(1)
1 , . . . , X

(1)
m ) andU, (X(2)

1 , . . . , X
(2)
m ), respectively, is alignable

if there exist separated X(1)
i , X

(2)
j ∈ [m] such that Pu(X

(1)
i ) = Pu(X

(2)
j ) for all u ∈ [k]. We’ll

call any such random variable X(1)
i (which is the same as X(2)

j ) an alignment variable, and use
AV(P(a),P(b)) to denote the set of all alignment variables for P(a) and P(b). P(a) and P(b) are
alignable if AV(P(a),P(b)) is non-empty.

Definition 13 (Alignment spanning tree) We say a set of ` mixture distributions
{
P(1), . . . ,P(`)

}
,

is alignable if there exists an undirected spanning tree over the graph with vertices
{
P(1), . . . ,P(`)

}
and an edge P(i) ↔ P(j) whenever AV(P(i),P(j)) 6= ∅. We call this the alignment spanning tree.

The alignment step will take the output from alignable runs and permute the mixture labels,
assigning parameters to a global set of sources. Pseudocode for this procedure is given in Algorithm 1.

3.2. Bayesian unzipping: recovering parameters per source

Recall that our algorithm uses Markov boundary conditioning to induce independent variables. Hence,
after aligning the sources in runs of the k-MixProd algorithm we will have access to Pu(Y |Mb(Y ))
for each Y ∈ V . Our goal is to obtain Pu(Y | Pa(Y )). Note that

Pu(y1 | mb(Y )) =
Pu(y1,mb(Y ))

Pu(y1,mb(Y )) + Pu(y0,mb(Y ))
(3)
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The terms in this fraction are all of the same form and can be factored according to the DAG into

Pu(y,mba(Y )) = Pu(top(Y ))Pu(y | paa(Y ))
∏

V ∈Ch(Y )

Pu(va | fa(Pa(V ) \ {Y }), y)

︸ ︷︷ ︸
Pu(cha(Y )|topa(Y ),y)

.

See Figure 3 for a concrete example of this decomposition. After substitution into (3) we see
that Pu(top(Y )) appears in both the numerator and denominator because it is independent of the
assignment to Y . Simplification leaves only the following terms:

1. Pu(y0 | paa(Y )) and Pu(y1 | paa(Y )), which must sum to 1.
2. Pu(cha(Y ) | topa(Y ), y0) and Pu(cha(Y ) | topa(Y ), y1) which are both the product of the

desired parameters of variables later in the topological ordering. We can ensure we have access
to these terms by solving for the parameters of V ∈ V in a reverse-topological ordering.5

We can substitute 1 − Pu(y1 | paa(Y )) for Pu(y0 | paa(Y )) in the expanded version of (3) to
obtain a single equation with only Pu(y1 | paa(Y )) as an unknown, which we can then solve. The
pseudocode for this process is given in Algorithm 2.

Y

V1 V2

V5 V4

V3 Y

V1 V2

V5 V4

V3
Y

V1 V2

V5 V4

V3 Y

V1 V2

V5 V4

V3

Figure 3: We can decompose Pu(v1, v2, v3, y, v4, v5) = Pu(v1, v2, v3)Pu(y | v1, v2)Pu(v4 |
y, v3)Pu(v5 | y, v4). U and any other variables in the graph are omitted for clarity.

3.2.1. RECOVERING THE DISTRIBUTION ON SOURCES

Now consider some arbitrary run a of the k-MixProd algorithm with conditioning conda. Since
Pu(V) =

∏
V ∈V Pu(V | Pa(V )), knowing Pu(V | Pa(V )) gives us access to all of Pu(V) after

Bayesian unzipping. Thus, we can compute Pu(conda) = P(conda | u). The k-MixProd algorithm
will return Pa(U) = P(U | conda) when run on a (after source alignment). Finally, P(conda) is
directly observable. Combining these terms in Bayes’ rule lets us compute the distribution on U
(under the assumption of positivity):

P(u) =
P(u | conda)P(conda)

P(conda | u)

4. A good collection of runs

With the main concepts of source alignment and Bayesian unzipping now defined, our algorithm
will primarily consist of finding a good collection of these runs so that these subroutines can be
successfully applied to recover the k-MixBND mixture.

5. We will want to ensure that we only need to unzip parameters from vertices of a bounded depth, which bounds the
iterations of this step. Details on how this is done appear in Section 4.1.
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Definition 14 (Runs aligned at X/alignable pair of runs) A pair of runs a, b are aligned at X ∈
V if the distributions on Ia | conda and Ib | condb are aligned mixture distributions with alignment
variable X | conda. We say that a, b are alignable if there is any variable aligning them.

Observation 15 Two runs a, b are aligned at X ∈ V if and only if
1. X ∈ Ia ∩ Ib,
2. mba(X) = mbb(X), i.e, fa(Mb(X)) = f b(Mb(X)), and
3. X is separated given mba(X) (equivalently, given mbb(X)).

Definition 16 A collection of runs A
• is alignable if the undirected alignment graph H(A) = (A, E) with edges given by E =
{(a, b) : a and b are alignable} has a single connected component

• covers X ∈ V if for every assignment pa(X) to Pa(X) there exists a run a ∈ A with X ∈ Ia
and pa(X) = paa(X).

Definition 17 (A good collection of runs) A collection of well-formed runs A is good if it is (i)
alignable, (ii) every run is Nmp-independent, and (iii) the collection covers every vertex in V .

The following is our main result on good collections of runs:

Lemma 18 Given a graph with max degree ∆ satisfying n ≥ Nmp × O(∆4), we can find a set
of centers X =

{
X1, . . . , XNmp

}
⊆ V of size Nmp and depth at most 3Nmp, such that by running

Algorithm 4, we obtain a good collection of runs A of size O(2∆2
n).

We will sketch the collection of good runs, leaving some details to the appendices. To ensure
alignment is possible, we will construct a set of central runs, AC which we can align to each other
and which all other runs will be alignable to.

Definition 19 (Centers, Central Runs) A set of vertices X =
{
X1, . . . , XNmp

}
⊆ V will be called

centers if the Markov boundaries of the vertices in X are disjoint. Given a set of centers X , a run a
is called a central run if Ia = X .

To build these central runs, we will start with a set of Nmp vertices X =
{
X1, X2, . . . XNmp

}
with

disjoint Markov boundaries and a maximum depth of 3Nmb, whose existence is implied by our
degree bounds (see Appendix C). An example of four such vertices was given in Figure 2.

First, we fix a run a0 with Ia0 = X and mba0(X ) being chosen arbitrarily where Mb(X ) :=
∪Xi∈X Mb(Xi). We will refer to this assignment mba0(X ) as the default assignment. Each run
in a ∈ AC will have independent set Ia = X and will agree with a0 on the assignment to
Mb(X ) \Mb(Xi) for some Xi ∈ X , i.e., fa(Mb(X ) \Mb(Xi)) = mba0(X ) \mba0(Xi), as well
as some arbitrary assignment mb(Xi) to Mb(Xi). We’ll write each such run as a0[Mb(Xi) 7→
mb(Xi)], and AC will contain all such runs as we range over Xi and assignments to Mb(Xi).

Definition 20 AC := {a0} ∪
{
a0[Mb(Xi) 7→ mb(Xi)] : i ∈ [3k − 3],mb(Xi) ∈ {0, 1}Mb(Xi)

}
.

See Figure 4 for an example of a set of central runs and a visualization of how they are alignable.
We then perturb the independence sets of each of these central run until our runs covers every

vertex in V . These perturbations AY , will be chosen to cover V \ X while still being allignable to at
least one central run. The runs in AY will be the union of two sets as follows:

10
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1
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0

Mb(X1) Mb(X2)

0

X1

1

0

X2

0

Mb(X1) Mb(X2)

0

X1

0

1

X2

0

Mb(X1) Mb(X2)

0

X1

0

1

X2

1

Mb(X1) Mb(X2)

0

X1

0

0

X2

1
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at
X 2

Aligned at X2

Aligned at X
2

Aligned at X
1

Aligned at X1

Alig
ned

at
X 1

Default Assignment Run a0

Figure 4: An alignment graph of the default assignment a0 (Conda0 arbitrarily assigns all Markov
boundaries to 0) and six other central runs. The runs on the left cover all possible
assignments to Mb(X2), (v1, v2) ∈ {(0, 0), (0, 1), (1, 0)}, while maintaining the default
assignment to Mb(X1) to allow alignment with a0. The right runs similarly cover all
possible assignments to Mb(X1), aligned at X2.

1. For each Y ∈ V \ X in a Markov boundary of a center Mb(Xi), we exclude Xi to form
Ia = X −Xi + Y and Conda defined as given in Definition 8.6

2. For each Y /∈Mb(X ) ∩ X , Ia = X + Y , and Conda defined as given in Definition 8.
For either independence set we will form 2|Pa(Y )| runs each associated with a single assignment to
paa(Y ), with the remaining variables in Conda ∩Conda

0
conditioned on their defaults given by

fa0 . Any leftover variables in Conda can be chosen arbitrarily.
The pseudocode for this construction is in Appendix C, as well as justification for why our degree

bounds imply that Nmp disjoint Markov boundaries can be found.

4.1. Limiting the depth of unzipping

As currently given, our algorithm may require iteratively Bayesian unzipping parameters up to the
depth of the graph. Since each step of Bayesian unzipping may incur errors, we would like to limit
the depth of this process. By limiting the depth of the vertices that need to be unzipped, we can
ensure that we have an upper bound to the number of consecutive Bayesian unzipings.

Recall that the goal of the conditioning set of each run is to d-separate each of the vertices in
the independent set. Notice that we need not condition on the children of the deepest vertices in the
independence set, since they do not need to be d-separated from any deeper vertices. Conveniently,

6. This is a well-formed run since Y ∈ Mb(Xi) =⇒ Xj /∈ Mb(Y ) for any j 6= i by Observation 4.

11



these vertices no longer need Bayesian unzipping because the output of the k-MixProd oracle is
already in the desired form. We call these deepest vertices “bottom” vertices.

Definition 21 (Bottom vertices in a run) Given vertices I, we’ll define the set of bottom vertices
of the run to be the subset Bot(I) ⊆ I of vertices with maximal depth among the vertices in I. That
is d(B) = maxI∈I d(I) for all B ∈ Bot(I).

We can now update the conditioning sets for our definition of runs:

Conda :=
⋃

I∈Ia\Bot(Ia)

Mb(I)
⋃

B∈Bot(Ia)

Pa(B) (4)

We append two additional requirements for a good collection of runs (Definition 17).
• no vertex appears both as a bottom vertex and a non-bottom vertex, and
• every non-bottom vertex has depth at most 3Nmp.

Note that because we only need independent sets of size Nmp, it is trivial to limit the depth of our
non-bottom vertices to 3Nmp.

4.2. Outline of the algorithm

Our algorithm will take in a good collection of runs A satisfying the size constraint obtained by
Lemma 18. While any good collection of runs will suffice for the correctness of our algorithm for
sufficiently large sample complexity, having this bound on the collection size ensures that our sample
complexity bounds are sufficient.

Essentially our algorithm has four steps:
1. Use a k-MixProd algorithm on P(Ia | Conda) for each run a ∈ A to compute P (Y |

Mb(Y ), Ua = u) for all variables Y ∈ V .
2. Align the parameters obtained from the previous step to ensure that U means the same thing

across different runs, giving Pu(Y |Mb(Y )).
3. Work backwards in topological order to recover Pu(Y | Pa(Y )) for each vertex Y ∈ V via

Bayesian unzipping.
4. Compute P(U) by applying Bayes’ law.

The full procedure appears as Algorithm 3.

5. Conclusion

The algorithm presented here is not intended for immediate practical use. Instead, we hope this
algorithm and framework can serve as a springboard for understanding how solutions to the k-
MixProd and k-MixBND problems are intimately related.

The alignment process is highly nontrivial and a likely reason why papers such as Anandkumar
et al. (2012a) made crude assumptions (such as a conveniently independent variable) to simplify
this process. The formal development of a notion of a run, while tedious, will allow for further
improvements to give better “good sets of runs.” Graph-specific sets of runs can be optimized further,
as demonstrated in Appendix C.3.

12
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Appendix A. k-MixBND algorithm pseudocode

Algorithm 1: Alignment
Input: A set of distributions P(1), . . . ,P(`) with P(i) a distribution with parameters P(i)(x(i) | u(i))

forX(i) ∈ X (i) andP(u(i)). In addition, we have a spanning tree with edgesE and alignment
variables AV(P(i),P(j)) ∈ X (i) ×X (j).

Output: Pu(X
(j)
i ) for X(j)

i ∈ X (j) for j ∈ [`]. Also P(u) for each u ∈ [k].
Let T be an oriented tree on the undirected spanning tree with edges E with all vertices having a

directed path to an arbitrary fixed vertex P(t).
for each edge P(i) → P(j) in T and corresponding alignment variables AV(P(i),P(j)) =

(X
(i)
AV, X

(j)
AV ) do

Find σi→j , the permutation on the sources that minimizes∥∥∥P(i)(X
(i)
AV | σ

i→j(u(i)))− P(j)(X
(j)
AV | u

(j))
∥∥∥
∞

.

end
for each vertex P(s) do

Let p = (s, p1, . . . , pr, t) be the directed path in T from P(s) to P(t). Let σs→t = σs→p1 ·
σp1→p2 · · · · σpr→t be the composition of permutations along the path from P(s) to P(t). Set
Pu(X

(s)
i ))← P(s)(X

(s)
i | σs→t(u(s))) for all i ∈ [n]. Set P(u)← P(s)(σs→t(u(s))).

end

Algorithm 2: Bayesian Unzipping
Input: A collection of runs A of size at most 2O(∆2) and their aligned output. For each Vi and

assignment to its parents pa(Vi) there must be some run with Vi in its independent set with
parents conditioned to pa(Vi).

Output: P̃u(Y | Pa(Y ))
Fix a topological ordering on the vertices in V , 〈X1, X2, . . . , Xn〉; for i = n, n− 1, . . . , 1 do

for each assignment pa(Xi) to Pa(Xi) do
Let a be a run in A with paa(Xi) = pa(Xi). for u = 1, . . . , k do

for b = 0, 1 do
if Xi is a bottom vertex then

Set P̃u(xbi | paa(Xi))← P̃au(xbi).
else

Set P̃u(xbi | pa(Xi))←
P̃a
u(xbi )P̃u(cha(Xi)|topa(Xi),x

1−b
i )

P̃a
u(xbi )P̃u(cha(Xi)|topa(Xi),x

1−b
i )+P̃a

u(x1−b
i )P̃u(cha(Xi)|topa(Xi),xbi )

;

end
end

end
end

end
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Algorithm 3: The k-MixBND algorithm
Input: A good collection of runs A of size at most 2O(∆2); a target accuracy ε.
Output: P̃u(Y | Pa(Y )) and P̃(U).
Estimate P̃a(Ia) for all runs a ∈ A using

n log n · ε−2(∆ + 1)O(k)2O(∆2+∆k)(minπi)
−O(log k)(1/ζ)O(k log k+∆2k)

samples from P . Set ε′ ← ε/(6(∆ + 1))18k. for each run a ∈ A do
Let Q := Pa(Ia). Set

(
[ma

iu]i∈Ia,u∈[k], (π
a
u)u∈[k]

)
← LEARNPRODUCTMIXTURE(Q, ε′),

where ma
ij = Qu(x1

i ) = Pu(x1
i | conda) and πau = P (U = u | conda).

end
Run Algorithm 1 to align the sources in the output of all the runs in A. Run Algorithm 2 to unzip

the parameters. Fix any run a ∈ A. for j = 1, 2, . . . , k do
Set P̃(uj)← P̃(uj |conda)P̃(conda)

P̃(conda|uj)
.

end

Appendix B. Analyzing Bayesian Unzipping

Lemma 22 Let a be a run with Y ∈ Ia. Then we can compute Pu(yb | paa(Y )) for b ∈ {0, 1} as
follows:

1. If Y ∈ Bot(Ia), then
Pu(yb | paa(Y )) = Pau(yb).

2. If Y /∈ Bot(Ia), then

Pu(yb | paa(y)) =
Pau(yb)Pu(cha(y) | topa(y), y1−b)

Pau(yb)Pu(cha(y) | topa(y), y1−b) + Pau(y1−b)Pu(cha(y) | topa(y), yb)
(5)

Proof In the following we’ll fix cha := cha(Y ), mba := mba(Y ), paa := paa(Y ), and topa :=
topa(Y ). If Y ∈ Bot(Ia), then Pau(yb) = Pu(yb | paa(Y )), so the claim is trivially true. If
Y /∈ Bot(Ia), then

Pau(yb) = Pau(yb | mba) =
Pu(yb,mba)
Pu(mba)

=
Pu(yb,mba)∑

b′=0,1 P̃u(yb′ ,mba)

and we can expand Pu(yb,mba) as

Pu(yb,mba) = Pu(yb | paa)Pu(cha | topa, yb)Pu(topa).

Substituting this back into the preceding equation, we obtain

Pau(yb) =
Pu(yb | paa)Pu(cha | topa, yb)Pu(topa)∑

b′∈{0,1} Pu(yb′ | paa(Y ))Pu(cha | topa, yb′)Pu(topa)

=
Pu(yb | paa)P(cha | topa, yb)∑

b′∈{0,1} Pu(yb′ | paa)Pu(cha | topa yb′)
.
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We now multiply both sides by the denominator (which is non-zero since all terms are strictly
positive by assumption) and then simplify to obtain

Pu(yb | paa)
(
Pau(y1−b)P(cha | topa, yb)

)
+Pu(yb | paa)

(
−Pau(y1−b)Pu(cha | topa, y1−b)

)
= 0.

When augmented with the equation

Pu(yb | paa) + Pu(y1−b | paa) = 1

we have a system of two equations in Pu(yb | paa),Pu(y1−b | paa) which is non-singular whenever(
Pau(y1−b)P(cha | topa, yb)

)
6=
(
−Pau(y1−b)Pu(cha | topa, y1−b)

)
.

Since all probabilities occurring are strictly positive, this will always be the case and we can solve
the system for Pu(yb | paa). The resulting equation is

Pu(yb | paa) =
Pau(yb)P(cha | topa, y1−b)

Pau(yb)P(cha | topa, y1−b) + Pau(y1−b)P(cha | topa, yb)
,

proving the claim.

The following standard inequalities will be useful throughout the analysis:

Observation 23

1 + x

1− x
≤ 1 + 3x and 1− 3x ≤ 1− x

1 + x
for x ∈ (0, 1/4);

1− 2rx ≤ (1− x)r and (1 + x)r ≤ 1 + 2rx for x ∈ (0, 1), r ≥ 1, rx ≤ 1.

Lemma 24 Given access to
{
P̃au(Y )

}
a∈A,j∈[k]

for a good collection of runs A from a distribution

P satisfying
∣∣∣P̃au(yb)− Pau(yb)

∣∣∣ /Pau(yb) ≤ ε for all Y ∈ V , b ∈ {0, 1}, u ∈ [k] for ε sufficiently
small (and the estimated probabilities used as input to k-MixProd algorithms), the procedure in
Algorithm 2 will output P̃u(yb | Pa(Y )) and P̃(u) for all Y ∈ V , b ∈ {0, 1} , u ∈ [k] satisfying∣∣∣P̃u(yb | pa(Y ))− Pu(yb | pa(Y ))

∣∣∣
Pu(yb | pa(Y ))

≤ (6(∆ + 1))`ε

where ` is the distance from Y to the nearest bottom vertex if Y doesn’t appear as a bottom vertex
and is 0 if Y is a bottom vertex.

Proof We fix a topological ordering on V , let’s say X1, X2, . . . , Xn. Now starting with the last
vertex in topological order, Xn, and proceeding in decreasing order, we’ll compute P̃u(Xi | Pa(Xi)).
For bottom vertices, we set P̃u(xbi | pa(Xi)) = P̃au(xbi) for some run a with pa(Xi) = paa(Xi). It
immediately follows that Pu(Xi | Pa(Xi)) satisfies the desired relative error bound. Inductively,
assume we’ve already computed P̃u(Vm | Pa(Vm)) for all m > i satisfying the stated bounds, and
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that we also have access to P̃au(Vi) = P̃u(Vi | Conda) for a subset of the runs a ∈ A that cover Vi.
To streamline notation, let Y := Vi. Now fix a run a ∈ A with Y ∈ Ia.

Now we can bound each term above and below using the inductive hypothesis to get the desired
result. In particular, we know that

(1− ε)Pau(yb) ≤ P̃au(yb) ≤ (1 + ε)Pau(yb)

for b ∈ {0, 1} and

(1−(6(∆+1))`−1ε)Pu(vb | paa(vb)) ≤ P̃u(vb | paa(vb)) ≤ (1+(6(∆+1))`−1ε)Pu(vb | paa(vb))

for all V ∈ Ch(Y ) and b ∈ {0, 1} which implies that both the numerator and denominator of (5) are
within a factor of (1± ε)(1± (6(∆ + 1))`−1ε)∆ of the correct value for those terms. It immediately
follows that P̃u(yb | paa(Y )) is bounded by

Pu(yb | paa(Y ))
1− ε
1 + ε

(
1− (6(∆ + 1))`−1ε

1 + (6(∆ + 1))`−1ε

)
≤ P̃u(y1 | paa(Y ))

≤ Pu(y1 | paa(Y ))
1 + ε

1− ε

(
1 + (6(∆ + 1))`−1ε

1− (6(∆ + 1))`−1ε

)
.

We now use the inequalities from Observation 23 to simplify the bounds as follows:

P̃u(yb | paa(Y )) ≤ Pu(yb | paa(Y ))
1 + ε

1− ε

(
1 + (6(∆ + 1))`−1ε

1− (6(∆ + 1))`−1ε

)∆

≤ Pu(yb | paa(Y ))(1 + 3ε)(1 + 3(6(∆ + 1))`−1ε)∆

≤ Pu(yb | paa(Y ))(1 + 3(6(∆ + 1))`−1ε)∆+1

≤ Pu(yb | paa(Y ))(1 + 2 · 3(∆ + 1)(6(∆ + 1))`−1ε)

≤ Pu(yb | paa(Y ))(1 + (6(∆ + 1))`ε).

The lower bound is analogous.

Lemma 25 Given access to
{
P̃au(Y )

}
a∈A,j∈[k]

for a good collection of runs A from a distribution

P satisfying
∣∣∣P̃au(yb)− Pau(yb)

∣∣∣ /Pau(yb) ≤ ε for all Y ∈ Ia, b ∈ {0, 1}, u ∈ [k] for ε sufficiently

small, the procedure in Algorithm 2 will output P̃u(yb | Pa(Y )) and P̃(u) for all Y ∈ V , b ∈
{0, 1} , u ∈ [k] satisfying∣∣∣P̃u(yb | pa(Y ))− Pu(yb | pa(Y ))

∣∣∣
Pu(yb | pa(Y ))

≤ (6(∆ + 1))3Nmpε

and ∣∣∣P̃(uj)− P(uj)
∣∣∣

P(uj)
≤ 5∆2ε.

Since Pu(yb | pa(Y )),P(uj) ≤ 1, we also have that∣∣∣P̃u(yb | pa(Y ))− Pu(yb | pa(Y ))
∣∣∣ ≤ (6(∆ + 1))9kε and

∣∣∣P̃(uj)− P(uj)
∣∣∣ ≤ 5∆2ε.
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Proof The error bound on P̃u(yb | pa(Y )) follows from Lemma 24 above and the depth bound of
9k on non-bottom vertices.

For the error bound on P̃(uj) we write

P̃(uj) =
P̃(uj | conda)P̃(conda)

P̃(conda | uj)

and analyze each term separately. First, define Z := An(Conda) \ Conda to be all ancestors of
vertices conditioned upon in a minus Conda. Fix a topological order on the vertices in Z ∪ Conda,
〈X1, . . . , Xm〉. We can write

P̃(conda | uj) =
∑

z∈{0,1}Z

m∏
i=1

P̃(z(Xi) | z(X1, . . . , Xi−1), conda)

=
∑

z∈{0,1}Z

∏
Xi∈Z∪Conda

P̃(z(Xi) | z(Pa(Xi)),paa(Xi))

=
∑

z∈{0,1}Z

 ∏
Xi∈Z

P̃(z(Xi) | z(Pa(Xi)),paa(Xi))

 ∏
Xi∈Conda

P̃(z(Xi) | z(Pa(Xi)),paa(Xi))

 .

Now letCz denote the value in the first grouped product for a given z ∈ {0, 1}Z . Since
∑

z∈{0,1}Z Cz =
1, we can bound the error in the result by the error in the second grouped product:

(1− ε)|Conda|P(conda | uj) ≤ P̃(conda | uj) ≤ (1 + ε)|Conda|P(conda | uj).

Finally using the bound |Conda| < 2∆2 and the inequalities from Observation 23 we obtain

(1− 2∆2ε)P(conda | uj) ≤ P̃(conda | uj) ≤ (1 + 2∆2ε)P(conda | uj).

By assumption P̃(uj | conda) ∈ (1±ε)P(uj | conda); P̃(conda) is also known up to multiplicative
accuracy ε since the sampling needed to estimate the distributions that are input to k-MixProd
algorithms far exceed that needed to get an ε estimate of this quantity. Thus, the resulting bound on
P̃(uj) is

(1− 2∆2ε)(1− 3ε)P(uj) ≤ P̃(conda | uj) ≤ (1 + 2∆2ε)(1 + 3ε)P(conda | uj)

which can be simplified to

(1− 2∆2ε− 3ε)P(uj) ≤ P̃(conda | uj) ≤ (1 + 2∆2ε+ 3ε)P(conda | uj)

using (1− x)(1− y) ≥ (1− x− y) for x, y ∈ [0, 1) and 2∆2ε+ 3ε ≤ 5∆2ε for ∆ ≥ 1.

Appendix C. Finding good collections of runs

In this section we prove Lemma 18 and give a few different sufficient conditions for the existence of
a good collection of runs.
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C.1. Constructing a good collection of runs from Nmp centers

One sufficient condition for the existence of a good collection of runs is the presence ofNmp variables
with disjoint Markov boundaries. We will now present a good collection of runs for this case.

Lemma 26 Given a set X =
{
X1, . . . , XNmp

}
⊆ V of Nmp variables with depth at most 3Nmp and

disjoint Markov boundaries, Algorithm 4 finds a good collection of runs A, satisfying |A| = O(2γn)
where γ = maxV ∈V |Mb(V )|,.

Algorithm 4: Building a good collection of runs
Input: Vertices X = {X1, . . . , X3k−3} ⊆ V having disjoint Markov boundaries with maximum

depth 3Nmp.
Output: A good collection of runs A.
Let a0 be a run with Ia0 = {X1, . . . , X3k−3} and Conda0 chosen arbitrarily.
Set A ← {a0}.
for i = 1, . . . , 3k − 3 do
A ← A∪

{
a0[Mb(Xi) 7→ mb(Xi)] : mb(Xi) ∈ {0, 1}Mb(Xi)

}
. for Y ∈ V \ X do

if Y ∈ Mb(X) for some X ∈ X then
Ia = X −Xi + Y

end
else
Ia = X + Y

end
for pa(Y ) ∈ {0, 1}|Pa(Y )| do

if Y ∈ An(Ia − Y ) then
Conda = Mb(Ia)

end
else

Conda = Mb(Ia − Y ) ∪ Pa(Y )
end
Conda = Mb(Ia)
fa(Pa(Y )) = pa(Y )
Defaults = Conda0 ∩Conda \Pa(Y ) fa(Defaults) = fa0(Defaults)
fa(Conda \Conda0 \Pa(Y )) are chosen arbitrarily. A ← A ∪ {a}, where a
is given by a = (Ia, fa).

end
end

end

Claim 27 By construction, AC covers X and is alignable.

Claim 28 AY covers V \ X and each run in AY can be aligned with some run in AC .

Proof The fact that AY covers V \ X follows immediately from AY containing a run assigning
for independent variable Y ∈ V \ X each possible assignment pa(Y ). Fix any run a ∈ AY with
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Ia = X − Xi + Y or Ia = X + Y depending on whether Y overlaps with Mb(X ). Now if
Mb(Y )∩Mb(Xj) = ∅ for any j 6= i, a and a0 are aligned at Xj . If instead Mb(Y )∩Mb(Xj) 6= ∅
for all j 6= i, pick any j and consider the central run a0[Mb(Xj) 7→ mba(Xj)] ∈ AC . Clearly, a
and a0[Mb(Xj) 7→ mba(Xj)] are aligned at Xj . In either case, we’ve aligned a to a run in AC .

Claim 29 Every run a ∈ A is at least Nmp-independent.

Proof [Proof of Lemma 26] This follows immediately from Claims 27, 28, and 29

C.2. Degree bounds

We can ensure that Nmp centers can be found on certain degree-bounded graphs, which in turn bound
γ. Let ∆in upper bound on the in-degree of any vertex in G and let ∆out upper bound the out-degree.
Then

γ ≤ ∆in + ∆out + ∆out(∆in − 1) = ∆in + ∆out∆in.

If we have a bound ∆ on the degree of the undirected skeleton of G, we get that

γ ≤ ∆(∆− 1) = ∆2 −∆.

Corollary 30 If either of the following conditions hold, we can find Nmp centers for G with depth
at most 3Nmp:

1. n ≥ Nmp(∆2
in + 2∆out∆in + ∆2

out∆
2
in −∆in −∆out + 1) = Nmp ·O(∆2

out∆
2
in).

2. n ≥ Nmp(∆4 − 2∆3 + ∆ + 1) = Nmp ·O(∆4).

Proof [Proof of Lemma 18] This follows immediately from Corollary 30 and Lemma 26.

C.3. Mixtures of paths

Special cases do not require the condition of Nmp disjoint Markov boundaries. One of these special
cases is a mixture of paths v1 → v2 → v3 → · · · vn over k. We will will give a good set of runs for
n ≥ 2Nmp.

First, we will specify three default runs, which we will call ODD, EVEN, and LINK.

Definition 31 (ODD default run for Markov chains) Run ODD is specified by an independence
set of vertices with odd indices IODD = {V1, V3, V5, . . . , V2Nmp−1}. The conditioning set is given by
the evenly indexed vertices CondODD = {V2, V4, V6, . . . , V2Nmp−2}. fODD may be chosen arbitrarily,
but for simplicity we will give fODD(Vi) = 0 for all Vi ∈ CondODD.

Definition 32 (EVEN default run for Markov chains) Run EVEN is defined the same way for
evenly indexed vertices. That is, IEVEN = {V2, V4, V6, . . . , V2Nmp}, CondEVEN = {V1, V3, V5, . . . , V2Nmp−1},
and fEVEN(vi) = 0 for all Vi ∈ CondEVEN.
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Definition 33 (LINK default run for Markov chains) Run LINK is part evenly indexed vertices
and part oddly indexed vertices. ILINK = IEVEN ∪ {V1} \ {V2}. Similarly, we condition on the
complement CondLINK = {V2, V3, V5, . . . , V2Nmp−1} being 0.

Claim 34 If n ≥ 2Nmp, then ODD, EVEN, and LINK are well-formed runs.

Claim 35 ODD and LINK are aligned at V1. EVEN and LINK are aligned at evenly indexed
vertices beyond V2.

Now, we enumerate a set of runs that cover all possible entries to parents of vertices.

Definition 36 Let ODD[vi] denote a run on IODD[Vi] = IODD, CondODD[Vi] = CondODD with
fODD[Vi](Vj) = 1 if i = j and 0 if i 6= j. Similarly define EVEN[Vi] to be a run on IEVEN[Vi] =

IEVEN, CondEVEN[Vi] = CondEVEN with fEVEN[Vi](vj) = 1 if i = j and 0 if i 6= j.

Claim 37 Any run ODD[Vi] is aligned with ODD at Vj for j < i− 1 or j > i+ 1. Similarly, any
run EVEN[Vi] is aligned with EVEN at Vj for j < i− 1 or j > i+ 1.

Definition 38 Let TAILb[Vi] for i > 2Nmp give runs which have

ITAIL[Vi] = {V1, V3, V5, . . . , V2Nmp−1, Vi}
CondTAIL[Vi] = {V2, V4, . . . , V2Nmp−2, Vi−1}

with

fTAIL[Vi](Vj) =

{
0 if i− 1 6= j

b if i− 1 = j

Claim 39 Any run LINK[Vi] is aligned with ODD at Vj for j < 2Nmp with even j.

Claim 40 The set{
ODD[Vi] : vi ∈ IODD

}
∪
{

EVEN[Vj ] : Vj ∈ IEVEN
}
∪
{

TAIL0[Vj ],TAIL1[Vj ] : j > 6k − 6
}

covers V .

Proof For all Vi with i > 6k − 6 we have LINK0[Vi] and LINK1[Vi] to cover both possible
assignments to Vi−1.

Consider Vi with i ≤ 2Nmp. If i > 1 is odd, then fEVEN[Vi](Vi−1) = 0 and fEVEN(Vi−1) = 1, so
all possible assignments to the parent of Vi are covered. Similarly, if i is even, then fODD[Vi](Vi−1) =
0 and fODD(Vi−1) = 1, so all possible assignments to the parent of Vi are covered. Finally, if i = 1,
then Vi has no parents.

We give the following example to illustrate this construction. Consider k = 2 and n = 8. We
will express a run a as sequences of values 0, 1 or *. A * in the ith location indicates Vi ∈ Ia and a
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0 or 1 indicates fa(Vi) = 0 or fa(Vi) = 1, respectively. Finally, - indicates that the variable is not
conditioned on and not in the independent set (not in Cond and not in I). The default runs are:

EVEN = 0*0*0*--

ODD = *0*0**--

LINK = *00*0*--

In addition to these runs, we have:

ODD[V1] = 1*0*0*--

ODD[V3] = 0*1*0*--

ODD[V5] = 0*0*1*--

EVEN[V2] = *1*0*---

EVEN[V4] = *0*1*---

EVEN[V6] = *0*0*---

TAIL0[V7] = *0*0-0*-

TAIL1[V7] = *0*0-1*-

TAIL0[V8] = *0*0--0*

TAIL1[V8] = *0*0--1*

The construction of a good set of runs given does not use disjoint Markov boundaries, yielding
greater efficiency than our more general algorithm for degree bounded graphs.

While similar in name and structure, this setting is different from that of hidden Markov models.
Hidden Markov models are Bayesian networks consisting of a chain of unobserved variables, each
affecting a unique observed variable, with no causal relations among the observed variables. For
instance, in Gupta et al. (2016), all chains in the mixture have the same state space. The sampling
process selects a chain and a starting state from the mixture distribution, then generates a short
observable path through the chain. In their model, under some conditions, a sufficiently large
collection of paths of length 3 suffices to recover the parameters of the mixture, using spectral
methods. A different model is considered in Batu et al. (2004). There, the constituents of the mixture
have disjoint state spaces and the observation is a long sequence of interleaved paths in the separate
chains. The primary challenge is to cluster the observable states into the k constituents. This model
can be viewed as a special case of the hidden Markov model problem.

The natural extension of EVEN and ODD vertices is a two-coloring on a tree which denotes
sets that are of even or odd distance from the root. One can construct a good set of runs for learning
mixtures of trees of size n ≥ 2Nmp that is very similar to the one given for mixtures of paths.

C.4. Larger alphabets for mixtures of DAGs

The simplest reduction for larger alphabets is to replace each vertex with a clique of d binary vertices
which represent the value of the nonbinary vertex. The pseudocode for this process is given in
Algorithm 5.
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Algorithm 5: Reduction for larger alphabets
Input: A DAG (V, E) on n variables V1, . . . , Vn ∈ [d].
Output: A DAG (W, EW ) on dn binary variables W 1

1 , . . .W
d
1 , . . .W

1
n , . . .W

d
n ∈ {0, 1}.

Start with EW ← ∅ for each vertex i ∈ [n] do
Form a clique among W 1

i , . . .W
d
i by adding directed edges (W a

i ,W
b
i ) to EW for all pairs a < b

with a, b ∈ [d].
end
for each directed edge (Vi, Vj) ∈ E do

Add {W 1
i , . . . ,W

d
i } × {W 1

j , . . . ,W
d
j } to EW .

end

Observation 41 The maximum degree of (W, EW ) outputted by Algorithm 5 is now at least ∆ ≥ d.

Observation 42 The number of vertices |W| = nd.

We now give the function that translates data from the original graph to the new graph.

Definition 43 (One-hot encoding) We define χ(v) = (10(v), . . . ,1d−1(v)) to give the one-hot
encoding of the value of a variable V .

This allows us to give the full algorithm.

Algorithm 6: DAG reduction for larger alphabets
Input: A DAG (V, E) on n variables V1, . . . , Vn ∈ [d]. And data with entries of the form

(v1, v2, . . . , vn).
Output: Parameters Pu(vi | Pa(Vi)) for i ∈ [n].
Use Algorithm 5 to create a larger DAG on binary variables, called G′.
One-hot encode data on each Vi into binary variables ξ(V ) = (W 1

i , . . . ,W
d
i ).

Run the Mixture of DAGs algorithm for G′ on the one-hot encoded data.
for each parameter Pu(vi | Pa(Vi)) do

Let Z indicate zero assignments to W b
i for b 6= vi.

One-hot encode each parent Vj ∈ Pa(Vi) to obtain assignments to Pa(W vi
i ) \

{
wb : b 6= vi

}
,

denoted paOH(W vi
i ).

Assign Pu(vi | Pa(Vi)) = Pu(W vi
i = 1 | Z,paOH(W vi

i )).
end

Theorem 44 If P(V) =
∑

u Pu(V)P(u) is a mixture of k distributions over a DAG G = (V, E)
with V ∈ {0, . . . , d− 1} and there exists a set of Nmp centers, then there is an algorithm to compute
estimates of all parameters to accuracy ε. If D = max(d,∆) then the algorithm uses O(nd2D

2
)

calls to the k-MixProd oracle.

Proof The algorithm uses the reduction in Algorithm 6. This involves running the algorithm on a
larger graph with nd vertices and ∆ ≥ d, which modifies the run-time and sample complexity as
given.
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