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Abstract

In recommendation systems, global positioning, system identification and mobile1

social networks, it is a fundamental routine that a server completes a low-rank2

matrix from an observed subset of its entries. However, sending data to a cloud3

server raises up the data privacy concern due to eavesdropping attacks and the4

single-point failure problem, e.g., the Netflix prize contest was canceled after a5

privacy lawsuit. In this paper, we propose a homomorphic matrix completion6

algorithm for privacy-preserving data completion. First, we formulate a homomor-7

phic matrix completion problem where a server performs matrix completion on8

cyphertexts, and propose an encryption scheme that is fast and easy to implement.9

Secondly, we prove that the proposed scheme satisfies the homomorphism property10

that decrypting the recovered matrix on cyphertexts will obtain the target complete11

matrix in plaintext. Thirdly, we prove that the proposed scheme satisfies an (ϵ, δ)-12

differential privacy property. While with similar level of privacy guarantee, we13

reduce the best-known error bound O( 10
√

n3
1n2) to EXACT recovery at a price of14

more samples. Finally, on numerical data and real-world data, we show that both15

homomorphic nuclear-norm minimization and alternating minimization algorithms16

achieve accurate recoveries on cyphertexts, verifying the homomorphism property.17

1 Introduction18

The recurring low-rank matrix completion problem [4, 18, 23, 10, 22] concerns completing a low-rank19

matrix from a randomly observed subset of entries. It has wide applications in recommendation20

systems (collaborative filtering) [1, 33, 20], computer vision [2, 12, 21], global positioning [34],21

system identification, network data analysis [35], mobile social networks [19, 25], etc. Existing works22

[4, 7] have demonstrated a remarkable fact: if an n × n matrix with rank r ≪ n satisfies certain23

incoherence properties, then with high probability, it is possible to exactly recover the matrix from24

O(nrpoly log n) ≪ n2 entries using polynomial-time algorithms. Intuitively, one needs roughly25

(2nr− r2) parameters [4] (by counting the parameters in the singular value decomposition (SVD)) to26

fix an n× n matrix of rank r, and the sampling randomness introduces a log n factor due to a coupon27

collector’s effect. The information theoretical lower bound is Ω(nr log n) [4], while the tightest28

known upper bound is O(nr log2 n) [7] with another log n factor comes from the Golfing scheme29

used by the recovery algorithm.30

The low-rank matrix completion problem usually deals with large-scale matrices involving extensive31

computations, while in mobile computing, smart devices usually outsource such a huge computation32

task to a cloud server. However, revealing data to a server or releasing anonymized data raises up33

privacy concerns [19, 31, 29], e.g., the recommendation contest Netflix prize was canceled after34

privacy lawsuit [24]. There are two major obstructive factors: anonymization in data publishing is35

still vulnerable, and storing sensitive data on a cloud server may encounter the single-point of failure36

(SPOF) problem, say hackers. Existing works [14, 16, 8] address the privacy concern in various ways,37
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Figure 1: Matrix completion on plaintext versus homomorphic matrix completion on cyphertext.

e.g., a popular approach is to [14] add noise to the data, therefore making a tradeoff between the38

recovery accuracy and the level of privacy.39

In cloud computing and distributed systems, the homomorphism property [11, 32] allows computa-40

tions to be carried out on cyphertexts, generating an encrypted result which, when decrypted, matches41

the result of operations performed on the corresponding plaintexts. In this manner, homomorphic42

encryption securely chains together different services without sacrificing recovery accuracy, but43

at a price of more samples. There are several partially homomorphic crypto-systems, and also a num-44

ber of fully homomorphic crypto-systems [11, 32]. In addition, the homomorphic property can also45

be used to create many other secure systems, for example secure voting systems, collision-resistant46

hash functions, private information retrieval schemes [30], etc.47

In this paper, we integrate the large-scale distributed matrix completion task with a homomorphic48

encryption-decryption scheme, which guarantees the EXACT recovery and differential privacy at a49

price of more samples. First, we define the homomorphic matrix completion problem that ensures50

data privacy by preserving a similarly homomorphism property between plaintexts and cyphertexts.51

Specifically, we propose a homomorphic encryption-decryption scheme, in which each node performs52

local encryption and decryption, and uploads an encrypted incomplete vector to a server that carries53

out the matrix completion computation. Then, we theoretically prove that the proposed scheme54

satisfies the homomorphism and differential privacy properties — reducing the best-known error55

bound O( 10
√
n3
1n2) [14] to EXACT recovery. Finally, based on numerical and real-world data, we56

show that the homomorphic nuclear-norm minimization and alternating minimization algorithms57

achieve accurate recoveries on both cyphertexts and plaintexts, verifying the homomorphism property.58

2 Homomorphic Matrix Completion Problem59

2.1 Notations and Preliminaries60

For matrix X , its (i, j)-th element is Xij or X(i, j) and its j-th column is Xj . The transpose of a61

vector/matrix is indicated by a superscript ⊤, e.g., x⊤ and X⊤. The concatenation of two matrices62

A ∈ Rn1×n2 and B ∈ Rn1×n3 is denoted by [A, B] ∈ Rn1×(n2+n3). By with high probability63

(w.h.p.) we mean that with probability at least 1− c1n
−c2 for some constants c1, c2 > 0.64

We use an overline to represent the encrypted version of a variable. Variables before encryption65

are called plaintexts, e.g., X , while the encrypted variables are called cyphertexts, e.g., X . Let set66

Ω ⊆ {(1, 1), (1, 2), ..., (n1, n2)} index the observed entries. We denote the observed entries as MΩ,67

and define a linear operator PΩ : Rn1×n2 → Rn1×n2 to represent the observation model as follows68

[PΩ(M)]ij =

{
Mij , if (i, j) ∈ Ω

0, otherwise.
(1)

We assume the true matrix M is low-rank, i.e., rank(M) = r ≪ min(n1, n2). The singular value69

decomposition (SVD) is M = USV ⊤, where U ∈ Rn1×r denotes the r left singular vectors70

(corresponding to the column subspace), V ∈ Rn2×r denotes the r right singular vectors, and71

2



S = diag(σi) ∈ Rr×r where σi is the i-th largest singular value and σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0. The72

nuclear norm of M is ||M ||∗ =
∑r

i=1 σi. The ℓ2-norm of a vector is ||x||2, while the Frobenius73

norm of a matrix is ||M ||F =
√∑

i,j |Mij |2. The operator norm (spectral norm) of a matrix and a74

linear operator L is defined as follows75

||M || ≜ sup
x∈Rn2 , ||x||2≤1

||Mx||2 = σ1(M), and ||L|| ≜ sup
||X||F≤1

||L(X)||F . (2)

The kernel/null space of the linear operator PΩ is Ker(PΩ) = {Z ∈ Rn1×n2 | PΩ(Z) = 0}, which76

is denoted as Ω⊥. We adopt the notation Ω⊥ since Ker(PΩ) equals to the complement set of Ω. Let77

Ω ∼ Uni(m) denote a set with m entries, which is sampled uniformly from all sets of m entries,78

and Ω ∼ Ber(p) denote a set with E|Ω| = m entries, each sampled independently according to a79

Bernoulli model.80

2.2 Problem Formulation for Homomorphic Matrix Completion81

We are interested in completing large-scale low-rank matrices and want to exploit the superior82

computing power of cloud servers by outsourcing this task from mobile devices to a cloud server.83

Note that data privacy usually concerns sensitive information, here we aim to preserves the values of84

matrix entries from leakage, which is the key concern for recommendation systems as in Netflix’s85

privacy lawsuit [24].86

The distributed matrix completion problem on plaintexts. Assume that there are n2 nodes with87

limited computing power, and a cloud server with superior computing power. The j-th node’s88

attribute vector is denoted as Mj ∈ Rn1 , j = 1, ..., n2, however, it is incomplete and the observed89

entries is indexed by the j-th set Ωj ⊆ {(1, j), (2, j), ..., (n1, j)}. We assume that the true values of90

these n2 vectors form a low-rank matrix M ∈ Rn1×n2 with rank r ≪ min(n1, n2), the ℓ2-norms91

of the attribute vectors is bounded by L, i.e., maxj=1,...,n2 ||Mj ||2 ≤ L, and the observation set92

Ω =
⋃

j=1,...,n2
Ωj ⊆ {(1, 1), (1, 2), ..., (n1, n2)}. We assume that Ω is a set of m entries sampled93

uniformly from all sets of m entries, i.e., Ω ∼ Uni(m). Nodes upload their incomplete vectors to a94

cloud server that carries out the matrix completion task by solving the following problem95

Find a matrix X ∈ Rn1×n2 , s.t. PΩ(X) = PΩ(M), rank(X) ≤ r, (3)

where Ω ∼ Uni(m). Without loss of generality, we assume that n1 ≤ n2 from now on.96

The homomorphic matrix completion problem on cyphertexts. In cloud computing, the homomor-97

phism property allows computations to be carried out on cyphertexts, generating an encrypted result98

which, when decrypted, matches the result of operations performed on the plaintext. Following such99

a paradigm, we define a novel homomophic matrix completion problem that ensures data privacy. As100

shown in Fig. 1, this framework consists of three main steps:101

• 1) each node locally encrypts as PΩj (M j) = PΩj (g(Mj)) with its private keys, j = 1, ..., n2,102

and uploads PΩj
(M j) to a cloud server that forms an incomplete matrix PΩ(M);103

• 2) the cloud server solves a matrix completion problem (4) based on PΩ(M), and sends back the104

recovered vector M̂ j to the j-th node, j = 1, ..., n2;105

• 3) each node locally decrypts its own vector using private keys, i.e., M̂j = g−1(M̂ j), j = 1, ..., n2.106

Find a matrix X ∈ Rn1×n2 , s.t. PΩ(X) = PΩ(M), rank(X) ≤ r, (4)

where r = rank(M) may be slightly bigger than r due to by the encryption scheme g(·).107

2.3 Notions of Privacy108

We introduce a new variant of differential privacy for low-rank matrices.109

2.3.1 Differential Privacy (DP)110

Let D = {d1, ..., dn} be a dataset of n entries and T be a fixed domain, where each entry dj ∈ T111

encodes potentially sensitive information about node j. Let A : T n → On be an algorithm that112
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operates on dataset D and produces n output, one for each node j and from a set of possible output113

O. Let D−j denote the dataset D without the entry of the j-th node, and similarly A−j(D) denote114

the set of outputs without the output for the j-th node. Let (dj ;D−j) denote the dataset obtained by115

adding a data entry dj to the dataset D−j .116

The (ϵ, δ)-differential privacy and joint (ϵ, δ)-differential privacy [17] are given in the following.117

Definition 1. ((ϵ, δ)-differential privacy). An algorithm A satisfies (ϵ, δ)-differential privacy if for118

any node j, any two possible values of data entry dj , d′j ∈ T for node j, any tuple of data entries for119

all other nodes D−j ∈ T n−1, and any output set O ⊆ On, we have120

PA[A(dj ;D−j) ∈ O] ≤ eϵ · PA[A(d′j ;D−j) ∈ O] + δ. (5)

Definition 2. (Joint (ϵ, δ)-differential privacy [17]). An algorithm A satisfies (ϵ, δ)-joint differential121

privacy if for any node j, any two possible values of data entry dj , d
′
j ∈ T for node j, any tuple of122

data entries for all other nodes D−j ∈ T n−1, and any output set O ⊆ On−1, we have123

PA[A−j(dj ;D−j) ∈ O] ≤ eϵ · PA[A−j(d
′
j ;D−j) ∈ O] + δ. (6)

Intuitively, an algorithm A satisfies (ϵ, δ)-differential privacy if for any node j and dataset D, A(D)124

and D−j do not reveal “much" information about dj . For low-rank matrices, [14] used a relaxed125

notion joint (ϵ, δ)-differential privacy: an algorithm A satisfies joint (ϵ, δ)-differential privacy if for126

any node j and dataset D, A−j(D) (the output for the other n − 1 nodes) and D−j (data entries127

of the other n − 1 nodes) do not reveal “much" information about dj . Relaxing (ϵ, δ)-differential128

privacy to joint (ϵ, δ)-differential privacy is reasonable for the matrix completion problem since the129

j-th column for the j-th node can reveal a lot of information about dj . share the recovered column.130

2.3.2 Differential Privacy for Low-rank Matrix Completion131

We would like to point out that joint (ϵ, δ)-differential privacy in Def. 2 ((ϵ, δ)-differential privacy132

in Def. 1) can be further refined. For a low-rank matrix M , its column subspace S(M) is global133

information, which is shared by all n2 nodes and can be easily inferred from A−j(D) and D−j . Note134

that the DP notion aims to protect individual information, rather than global information. We extend135

it for low-rank matrices and propose a variant definition that excludes the shared column subspace136

and protect nodes’ individual information.137

Low-rank matrices have linearly dependent columns, and this dependency is reflected in the fact that138

they share a common column subspace. Formally, a rank-r matrix M = USV ⊤ can be expressed139

as M = UC where U ∈ Rn1×r and C = SV ⊤ ∈ Rr×n2 ; alternatively, a column can be expressed140

as Mj = UCj , for j = 1, ..., n2, where Cj is the coefficient vector (individual information) of the141

j-th node in the column subspace with basis U (global information).142

The following subspace-aware joint (ϵ, δ)-differential privacy considers the coefficient vectors Cj for143

j = 1, ..., n2, i.e., D in Def. 2 corresponds to the coefficient matrix C ∈ Rr×n2 .144

Definition 3. (Subspace-aware joint (ϵ, δ)-differential privacy). Assume n2 nodes’ data vector form145

a rank-r matrix M ∈ Rn1×n2 with M = USV ⊤ = UC where U ∈ Rn1×r and C = SV ⊤ ∈146

Rr×n2 . A matrix completion algorithm A satisfies subspace-aware (ϵ, δ)-joint differential privacy if147

for any node j, any two possible coefficient vectors Cj ,C
′
j ∈ Rr for node j, any tuple of coefficient148

vectors for all other nodes C−j ∈ Rr×(n2−1), and any output set O ⊆ Rr×n2 that consists of149

estimated coefficient vectors in a column subspace with basis U , we have150

PA[A−j(Cj ;C−j |U) ∈ O] ≤ eϵ · PA[A−j(C
′
j ;C−j |U) ∈ O] + δ. (7)

3 Novel Homomorphic Framework for Matrix Completion151

We propose a homomorphic encryption-decryption scheme: a node performs local encryption or152

decryption, and uploads an encrypted vector to a server to perform the matrix completion computation.153

3.1 Our Idea: Hiding Information in a Larger Space154

To preserve data privacy of a low-rank data matrix M ∈ Rn1×n2 with rank r, our idea is to hide M155

(lies in an r-dimensional subspace) into a larger space of dimension r, such that r ≥ r and r, r ≪ n1.156
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Algorithm 1 Homomorphic matrix completion at the cloud server
Input: parameters n1, n2, r, k.

Output: public keys K ∈ Rn1×k, the recovered matrix X̂ ∈ Rn1×n2 .
1: Generate a random matrix K ∈ Rn1×k and broadcast K to all n2 nodes;
2: until received all n2 encrypted vectors PΩj

(M j) (line 4 in Alg. 2) do

3: Carry out a matrix completion task in (4) and obtain X̂ ∈ Rn1×n2 ;

4: Send the recovered vector X̂j ∈ Rn1 back to the j-th node, j = 1, ..., n2.
5: end

Algorithm 2 Homomorphic matrix completion at node j, for j = 1, ..., n2.
Input: an incomplete vector PΩj (Mj), observation set Ωj , and parameters n1, r, k.
Output: an recovered vector X̂j .
1: until received K ∈ Rn1×k from the server (line 1 in Alg. 1) do
2: Generate k random numbers Rj

i.i.d∼ N (0, σ2Ik);
3: Perform local encryption as PΩj (M j) = PΩj (Mj) + PΩj (KRj);
4: Upload PΩj

(M j) to the cloud server;
5: end
6: until received the recovered vector X̂j from the cloud server (line 4 in Alg. 1) do
7: Using Rj and K, decrypt X̂j to obtain X̂j , i.e., X̂j = X̂j −KRj .
8: end

A sound approach would be enlarging the original subspace of the data matrix (i.e., the plaintext)157

as follows: a cloud server generates a random matrix K ∈ Rn1×k as public keys, k ≪ n1, and158

broadcasts K to all n2 nodes; then, node j generates k random numbers as private keys Rj ∈ Rk,159

and encrypts its vector Mj ∈ Rn1 as follows (a version with missing entries is given in (9))160

M j = Mj +KRj , j = 1, ..., n2. (8)

In the encryption scheme (8), M is added up with KR, resulting in a matrix M with rank r ≤ r+k.161

Since r ≪ n1, M is also low-rank, it is possible to recover M from a subset of entries.162

3.2 Proposed Homomorphic Encryption-Decryption Scheme163

We propose a homomorphic encryption-decryption scheme that consists of the following steps, while164

the pseudocodes are summarzied in Alg. 1 and Alg. 2.165

• First, in line 1 of Alg. 1, the cloud server generates a random matrix K ∈ Rn1×k as public keys,166

then broadcasts K to all n2 nodes.167

• Second, in lines 1-5 of Alg. 2, after receiving K ∈ Rn1×k from the server (line 1 in Alg. 1), the168

j-th node locally carries out an encryption with k private keys (i.e., Rj ∈ Rk). As shown in Fig. 2,169

the j-th node locally encrypts its incomplete vector PΩj
(Mj) as follows170

PΩj
(M j) = PΩj

(Mj) + PΩj
(KRj), j = 1, ..., n2, (9)

where Rj
i.i.d∼ N (0, σ2Ik), N (0, σ2) denotes a Gaussian distribution, PΩj (KRj) means keeping171

the entries in Ωj and setting the entries in the complement set of Ωj to be zeros, thus PΩj
(M j)172

has the same set of missing entries as PΩj (Mj). Note that these k random numbers Rj are stored173

locally, which are private keys that will NOT be shared with any other node. Then, each node174

uploads its encrypted vector PΩj (M j) to the cloud server.175

• Third, in lines 2-5 of Alg. 1, after receiving all n2 encrypted vectors PΩj (M j), j = 1, ..., n2, the176

server forms an incomplete matrix MΩ with Ω =
n2⋃
j=1

Ωj . Then, the server carries out a matrix177

completion task in (4) using any method, and sends the recovered vector X̂j back to the j-th node,178

j = 1, ..., n2.179
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Figure 2: Our encryption method. The sets of missing entries are the same for plaintext and cyphertext.

• Finally, in lines 11-13 of Alg. 2, using the locally stored private keys Rj , and the public keys K,180

the j-th node decrypts its own vector, i.e., X̂j = g−1(X̂j) = X̂j −KRj , j = 1, ..., n2.181

4 Homomorphism Property Holds at Price of More Samples182

We prove that the homomorphism property holds for the proposed scheme, which guarantees exact183

recovery on the cyphertext at a cost of more samples. The detailed proofs are given in Appx. A.184

Overview: Starting from a necessary and sufficient condition in Lemma 1, we obtain a sufficient185

condition in Lemma 2 for the homomorphism property to hold. Then, we provide a homomorphic186

version of Rudelson Selection Estimation Theorem in Theorem 2 that guarantees Lemma 2 with high187

probability. Therefore, we obtain a sample complexity for EXACT recovery in Theorem 3, where our188

interesting finding is that the homomorphism property holds at price of more samples.189

4.1 Sufficient Condition for Low-rank Matrix Completion190

We start from a necessary and sufficient condition for low-rank matrix completion. Note that a similar191

necessary and sufficient condition for sparse vector recovery is discussed in compressive sensing192

[3, 6]. Here, we apply a similar argument to obtain Lemma 1 for low-rank matrix completion.193

We define a set of matrices with rank at most r and a rank-descent cone as follows194 {
M = {X ∈ Rn1×n2 : rank(X) ≤ r},
DM(M) = {t(X −M) ∈ Rn1×n2 : rank(X) ≤ r, t ≥ 0},

(10)

where M is the closure of the manifold of rank-r matrices. Accordingly, for M , we have195 {
M = {X ∈ Rn1×n2 : rank(X) ≤ r},
DM(M) = {t(X −M) ∈ Rn1×n2 : rank(X) ≤ r, t ≥ 0}.

(11)

Lemma 1. (Necessary and sufficient condition for low-rank matrix completion) M is the unique196

optimal solution to (3) if and only if Ω⊥ ∩ DM(M) = {0}, where Ω⊥ denotes Ker(PΩ).197

Geometric interpretation: M is the unique optimal solution to problem (3) if and only if starting198

from M , the rank of M +D increases for all directions D ∈ Ω⊥, where D is nonzero.199

Therefore, the homomorphism property of low-rank matrix completion in problem (4) holds if200

Ω⊥ ∩ DM(M) = {0} = Ω⊥ ∩ DM(M). (12)

Since the rank-decent cone is a subset of the tangent cone ([13], Theorem 4.8), DM(M) ⊆201

T, and DM(M) ⊆ T , we relax (12) to a sufficient condition in Lemma 2.202

Lemma 2. A sufficient condition for the homomorphic property of matrix completion under the203

proposed scheme in Alg. 1 and Alg. 2 is Ω⊥ ∩ T = {0}.204

Interpretation: if Ω⊥ ∩ T = {0} holds, then we know that M = M +KR is the unique optimal205

solution to problem (4) and M is the unique optimal solution to problem (3). Since M = M +KR206

is a one-to-one mapping, a decryption scheme M −KR will return the desired true matrix M .207
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4.2 Homomorphic Version of Rudelson Selection Estimation Theorem208

The Rudelson selection estimation theorem [26] investigates the number of random points needed209

to bring a convex body into a nearly isotropic position. Such an approximate isometry property is210

fundamentally useful to characterize the number of entries needed to complete a low-rank matrix.211

M is said to satisfy the standard incoherence condition with parameter µ0 if212

µ(U) ≤ µ0, and µ(V ) ≤ µ0. (13)

A small µ0 ensures that the information of the row/column spaces of M is not too concentrated on213

a small number of rows/columns. It characterizes the contribution of an entry in recovering M : a214

small µ0 means that each entry provides approximated the same amount of information.215

Theorem 1. (Rudelson selection estimation theorem [3]) Assume that Ω ∼ Ber(p) with p =216

Θ( m
n1n2

), and M obeys the standard incoherence condition (13) with parameter µ0. There is a217

constant CR such that for β > 1,218

||p−1PTPΩPT − PT || ≤ CR

√
µ0n2r(β log n2)

m
≜ ϵ < 1, with prob. at least 1− 3n−β

2 . (14)

We derive the following homomorphic variant of the Rudelson selection estimation theorem [26] and219

will use it to guarantee Lemma 2. Our new contribution here is to derive the conditions when the220

approximate isometry property will hold simultaneously for both cyphertexts and plaintexts.221

Theorem 2. (Homomorphic version of Rudelson selection estimation theorem) Assume that222

Ω ∼ Ber(p) with p = Θ( m
n1n2

), M and M satisfy the standard incoherence condition (13) with223

parameter µ0 and µ0, respectively. Under the proposed scheme in Alg. 1 and Alg. 2, there are224

constants CR, C
′
R such that for β > 1, with probability at least 1− 3n−β

2 ,225

||p−1PTPΩPT − PT || ≤ C ′
R

√
n2µ0r(β log n2)

m
≜ ϵ′ < 1, which implies that

||p−1PTPΩPT − PT || ≤ CR

√
n2µ0r(β log n2)

m
≜ ϵ < 1.

(15)

Note that ||p−1PTPΩPT − PT || < 1 implies that the sufficient condition Ω⊥ ∩ T = {0} holds.226

4.3 Sample Complexity for EXACT Recovery227

Then, we prove Theorem 3 that the homormophism property holds for the proposed scheme, provided228

that there are sufficient number of observations.229

Theorem 3. For Alg. 1 and Alg. 2, with probability at least 1− 3n−β
2 , the homomorphism property230

holds if p ≥ C0µ0r(β logn2)
n1

where C0 is positive.231

Next, we characterize the coherence change of µ0 and provide the sample complexity for the EXACT232

recovery in Alg. 1 and Alg. 2.233

Lemma 3. The new coherence under the proposed scheme in Alg. 1 and Alg. 2 satisfies234

µ0 ≤ r

r
µ0 + Cmax(

k

r
,
log n2

r
), with probability at least 1− cn−3

2 log n2. (16)

Combining Theorem 3 and Lemma 3, we characterize the required number of entries. Therefore,235

by proving the homomorphism property and providing the sample complexity, we reduce the error236

bound O( 10
√
n3
1n2) from [14] to ZERO since we have EXACT recovery.237

Corollary 1. For Alg. 1 and Alg. 2, with probability at least 1− 6n−β
2 − cn−3

2 log n2, the homomor-238

phism property holds if p ≥ C0(rµ0+C max(k,logn2))(β logn2)
n1

where C0 and C are positive.239
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5 Differential Privacy Property Holds240

In this section, we show that the differential privacy holds for the proposed scheme. First of all, it241

is well-known that one can achieve (ϵ, δ)-differential privacy by adding appropriate Gaussian noise.242

Denote the Gaussian distribution by N (0, σ2), with mean 0 and standard deviation σ.243

Definition 4. (Privacy loss as a random variable [9]) Considering a mechanism A on a pair of244

databases D,D′. For an outcome o ∈ O, the privacy loss on o is defined as the logarithmic ratio245

between the probability to observe o on input D compared to that on input D′:246

L(o)
A(D)||A(D′) = ln

P(A(D) = o)

P(A(D′) = o)
, (17)

where P(A(D) = o) is a probability density over a continuous set O.247

Theorem 4 states that the proposed scheme satisfies the subspace-aware joint (ϵ, δ)-differential privacy248

in Section 2.3.2. The detailed proofs are given in Appx. B, where the key is to quantify σ under249

which the random variable privacy loss in (4) is bounded by ϵ, with probability at least 1− δ.250

Theorem 4. Let ϵ ∈ (0, 1) and c2 > 2 ln(1.25/δ). Assume the true matrix M ∈ Rn1×n2 has251

is a rank-r and each column has bounded ℓ2-norm, i.e., ∆ = maxj=1,...,n2
||Mj ||2 ≤ L. Let252

R1
j ∼ Ns(0, σ

2
1Ik) with σ1 ≥ 2cL

√
2 ln(2/δ)/ϵ and R2

j ∼ N (0, σ2
2I(k+r)) with σ2 ≥ 2c(L +253

4σ1 + 2σ1

√
log 1

ξ )
√
2 ln(2/δ)/ϵ, then the encryption and decryption scheme in Alg. 1 and Alg. 2,254

satisfies the subspace-aware joint (ϵ, δ)-differential privacy property.255

A substantial improvement is: for the same level of privacy (the same ϵ, δ parameter in the above256

joint (ϵ, δ)-DP property), our algorithms are able to achieve EXACT recovery.257

6 Performance Evaluation258

We evaluate the proposed scheme on numerical data and real-world datasets using two matrix259

completion algorithms [28, 15], verifying the homomorphism property of the proposed scheme.260

6.1 Experimental Settings261

Datasets. We experiment with numerical data and real-world datasets. The numerical data is gener-262

ated randomly according to the low-rank 1, 000× 1, 000 matrix model and serves as well-controlled263

inputs for verification. The real-world datasets include two benchmark datasets for recommendation,264

namely the MovieLens10M (Top 400)1 and Netflix (Top 400) datasets. The MovieLens dataset contains265

ratings of 400 most rated movies made by approximately 7, 000 users, and the Netflix dataset contains266

ratings of 400 most rated movies made by approximately 480 thousand users.267

Matrix completion algorithms. For the matrix completion on the server, we use nuclear-norm268

minimization (NN) and alternating minimization (AM) algorithms. In Section 6.2, we compare both269

algorithms with their homomorphic versions. In Section 6.3, on the real-world datasets, we also270

include the private Frank-Wolf (FW) algorithm [14] for comparison.271

Performance metric. We measure the recovery error via the relative square root error RSE =272

||M̂−M ||F
||M ||F . All experiments are executed for ten times and we report the average results.273

6.2 Results on Numerical Data274

We experiment with randomly generated low-rank matrices on NN and AM algorithms and their275

homomorphic versions HNN and HAM. We vary the rank r of the generated matrix and the percentage276

of observed entries from 1, 5, to 95. As shown in Fig. 6.2, we observe two trends: 1) for a certain277

rank r, the success rate increases as the percentage of observed entries increases; and 2) for a certain278

percentage of observed entries, the success rate decreases as the rank r increases. On the other hand,279

we find that the HNN and HAM need slightly more observed entries to reach the success threshold,280

1https://movielens.org/
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Figure 3: Comparing NN and AM algorithms with their homomorphic versions. The figure plots the
success rates within 10 trials, where the white and black cells mean “success” and “fail”. The trial is
“success” if RSE ≤ 10−5. We set k = 10 in Alg. 1 and Alg. 2
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Figure 4: Results on MovieLens10M and Netflix datasets. We vary the percentage of observed entries
and measure the RSE recovery error.

which verifies Theorem 3 that the scheme guarantees exact recovery at a cost of more samples. As an281

interpretation, the homomorphic version is to hide the plaintext matrix into a larger space, namely282

from rank r to rank r + k. In this case, given that we set k = 10 for the experiments, we find that the283

results of HNN and HAM can be obtained by shifting the results of their counterparts left one grid.284

6.3 Results on MovieLens10M and Netflix Datasets285

Fig. 4 shows the results on MovieLens10M and Neflix datasets. For the newly introduced compared286

algorithm FW, we set the privacy parameter ϵ = 2 log(1/δ) and δ = 10−6. For the NN and AM287

algorithms, the setting is the same in Section 6.2.288

First of all, we observe that the homomorphic algorithms can achieve significantly lower recovery289

errors than the error of FW algorithm. This points out the difference between the proposed scheme290

and existing strategies, in which we do not sacrifice the recovery error to improve the privacy. On291

the other hand, we find that the homomorphic algorithms can reach the same level of recovery error292

as the vanilla algorithms on plaintexts, but need more samples. Such a performance is consistent293

with our theoretical proofs and our observations in Section 6.2. Moreover, we analyze the impact of294

increasing the percentage of observed entries on three types of algorithms, as shown in Fig. 4. For295

AM and FW algorithms, the recovery error decreases smoothly as the percentage increases (note that296

the y-axis decreasing in log). However, the NN algorithm demonstrates a significant error drop as we297

increase the percentage of observed entries.298

7 Conclusion299

This work studied the problem of privacy-preserving data completion in a distributed manner. To300

address the privacy concern, we define the homomorphic matrix completion problem and propose301

a homomorphic encryption-decryption scheme. Unlike existing works that preserve privacy by302

sacrificing recovery accuracy, our work guarantees the EXACT recovery while making a tradeoff303

between privacy and the number of samples. Then, we theoretically prove that the proposed scheme304

satisfies the homomorphism and differential privacy properties. Experimentally, we show that the305

proposed scheme is compatible with two matrix completion algorithms, namely the nuclear norm306

minimization and alternating minimization, and verify the homomorphism property.307
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