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ABSTRACT

Open-vocabulary semantic segmentation aims to segment an image into seman-
tic regions according to text descriptions, which may not have been seen during
training. Recent two-stage methods first generate class-agnostic mask propos-
als and then leverage pre-trained vision-language models, e.g., CLIP, to classify
masked regions. We identify the performance bottleneck of this paradigm to be
the pre-trained CLIP model, since it does not perform well on masked images.
To address this, we propose to finetune CLIP on a collection of masked image
regions and their corresponding text descriptions. We collect training data by
mining an existing image-caption dataset (e.g., COCO Captions), using CLIP to
match masked image regions to nouns in the image captions. Compared with the
more precise and manually annotated segmentation labels with fixed classes (e.g.,
COCO-Stuff), we find our noisy but diverse dataset can better retain CLIP’s gen-
eralization ability. Along with finetuning the entire model, we utilize the “blank”
areas in masked images using a method we dub mask prompt tuning. Experiments
demonstrate mask prompt tuning brings significant improvement without modify-
ing any weights of CLIP, and it can further improve a fully finetuned model. In
particular, when trained on COCO and evaluated on ADE20K-150, our best model
achieves 29.6% mIoU, which is +8.5% higher than the previous state-of-the-art.
For the first time, open-vocabulary generalist models match the performance of
supervised specialist models in 2017 without dataset specific adaptations.

1 INTRODUCTION

Semantic segmentation aims to group pixels into meaningful regions with corresponding semantic
categories. Although remarkable progress has been made (Long et al., 2015; Chen et al., 2017; 2018;
Zhao et al., 2017; Cheng et al., 2021), modern semantic segmentation models are mainly trained with
pre-defined categories, failing to generalize to unseen classes. On the contrary, humans understand
scenes in an open-vocabulary manner, typically with thousands of categories (Biederman, 1987). To
approach human-level perception, this paper studies open-vocabulary semantic segmentation where
the model segments an image by arbitrary categories described by texts.

Vision-language models, e.g., CLIP (Radford et al., 2021), learn rich multi-modal features from
billion-scale image-text pairs. Witnessing its superior open-vocabulary classification ability, prior
works propose to use pre-trained vision-language models for open-vocabulary segmentation (Li
et al., 2022; Xu et al., 2021; Ding et al., 2022; Ghiasi et al., 2021). Among them, two-stage ap-
proaches have shown great potential: they first generate class-agnostic mask proposals and then
leverage pre-trained CLIP to perform open-vocabulary classification (see Figure 1(b)). Their success
relies on two assumptions: (1) the model can generate class-agnostic mask proposals (2) pre-trained
CLIP can transfer its classification performance to masked image proposals.

To examine these two assumptions, we conduct the following analysis. First, we assume an “oracle”
mask generator and an ordinary CLIP classifier. We use ground-truth masks as region proposals,
and feed masked images to a pre-trained CLIP for classification. This model only reaches an mIoU
of 20.1% on the ADE20K-150 dataset. Next, we assume an “oracle” classifier but an ordinary mask
proposal generator – a MaskFormer (Cheng et al. (2021)) pre-trained on the COCO dataset. We first
extract masked region proposals, then compare each region with ground-truth object masks, find the
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Figure 1: (a) CLIP is pre-trained with natural images with little data augmentation. (b) Two-stage
open-vocabulary semantic segmentation approaches first generate class-agnostic mask proposals and
then leverage pre-trained CLIP to do open-vocabulary classification. The input of the CLIP model
is cropped masked images, which have huge domain gap from the natural images. (c) Our analysis
reveals that pre-trained CLIP does not work well on masked images.

object with the highest overlap, and assign the object label to this extracted region. This model,
despite imperfect region proposals, reaches a significantly higher mIoU of 66.5%.

This analysis clearly shows that pre-trained CLIP can not perform satisfactory classification over
masked images, and it is the performance bottleneck of two-stage open-vocabulary segmentation
models. We hypothesize that this is caused by the significant domain gap between masked images
and CLIP’s training images. CLIP is pre-trained on natural images with minimal data augmentation
(Radford et al., 2021). On the other hand, mask proposals are cropped and re-sized from original
images, and are further corrupted by noisy segmentation masks, see examples in Figure 1 (b).

To address this, we propose to adapt CLIP by finetuning it on masked images and corresponding
text labels. One direct solution is to use segmentation labels, e.g., from the COCO-stuff dataset.
However, this leads to bad generalization to unseen classes (Section 4.3.1). Such manually annotated
masks are accurate but classes are limited to a closed set (e.g., 171 classes for COCO-stuff). We
hypothesize that the lack of text diversity causes the finetuned CLIP to lose the generalization ability
to open vocabulary concepts. Instead, we collect training data by mining an existing image-caption
dataset (e.g., COCO Captions). Given an image-caption pair, we first extract nouns in the caption,
and generate class-agnostic masked region proposals using a pre-trained segmentation model. Then,
with a pre-trained CLIP model, we assign the best-matching proposal to each extracted noun. By
learning from this weakly-supervised alignments between masked images and novel categories, the
adapted CLIP better retains its generalization ability for open vocabulary classification.

The next question is how to effectively finetune CLIP? The most notable difference between a
masked image and a natural image is that background pixels in a masked image are masked out,
leading to many blank areas, which will be converted to “zero tokens” when feeding to CLIP trans-
formers. Such tokens not only contain no useful information, but also bring domain distribution
shift to the model (since such tokens don’t exist in natural images) and cause performance degrada-
tion. To mitigate this, we propose mask prompt tuning, á la visual prompt tuning (Jia et al., 2022).
When tokenizing a masked image, we replace the “zero tokens” with learnable prompt tokens. Dur-
ing finetuning, we either train prompts only and freeze CLIP’s weights, or train both of them. We
find that mask prompt tuning alone significantly improves CLIP’s performance on masked images.
This is a crucial property for multi-task scenarios where we cannot change CLIP’s weight since it is
shared with other tasks. When combined with full model finetuning, mask prompt tuning can further
improve the performance by a non-trivial margin (see Section 4.3.2).

In our experiments, we measure the open-vocabulary segmentation performances on holdout seg-
mentation datasets in a “zero-shot” manner – we do not adapt the model for each evaluation dataset.
We train our model using COCO-stuff (Caesar et al., 2018) dataset with captions from Chen et al.
(2015), and test on challenging ADE20K (A-150, A-847 for 150/846 categories) (Zhou et al., 2019),
Pascal Context (PC-59, PC-459 for 59/459 categories) (Mottaghi et al., 2014) and PASCAL VOC
(PAS-20) (Everingham et al., 2010). Our best model achieves 29.6% mIoU on A-150, which is
+8.5% than the state-of-the-art OpenSeg (Ghiasi et al., 2021) under the same setting. On more
challenging A-847 and PC-459, our model sets up a new state-of-the-art of 9.0%, 12.4% mIoU, sur-
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passing the previous best solution by +2.7% and 3.4%. Moreover, for the first time, we show open-
vocabulary generalist models can match the performance of supervised specialist models (Long
et al., 2015; Chen et al., 2017; Zoph et al., 2020) without dataset specific adaptations.

In summary our contributions include: (1) Our analysis reveals the pre-trained CLIP does not per-
form well on mask proposals, making it the performance bottleneck of two-stage approaches. (2)
We collect diverse mask-category pairs from captions to adapt CLIP for masked images and retain
its generalization ability. (3) We propose mask prompt tuning specifically for masked image adap-
tation. This method does not change CLIP’s weight, enabling multi-task weight sharing. (4) For
the first time, we show open-vocabulary generalist models can match the performance of supervised
specialist models without dataset specific adaptations.

2 RELATED WORK

Pre-trained vision-language models (Radford et al., 2021; Jia et al., 2021; Li et al., 2021) connect
the visual concepts with textual description. Pre-trained CLIP (Radford et al., 2021) has strong open-
vocabulary classification ability, i.e., classifying an image with arbitrary categories described by
language. Pre-trained CLIP has empowered many computer vision tasks with the language ability,
such as image manipulation (Patashnik et al., 2021), image generation (Crowson et al., 2022), object
detection (Gu et al., 2021; Zhong et al., 2022) and image segmentation (Li et al., 2022; Xu et al.,
2021; Ding et al., 2022; Ghiasi et al., 2021). Our work is similar with RegionCLIP (Zhong et al.,
2022), which adapts CLIP for object detection by finetuning on region proposals. Our method differs
from RegionCLIP since (1) we adapt CLIP to process masked images wile RegionCLIP process
complete region crops; (2) We leverage blank areas in masked images and propose mask prompt
tuning, which adapts CLIP without changing its weights. This enables sharing CLIP’s weight with
other tasks in multi-task scenarios. This is not supported by RegionCLIP.

Open-vocabulary segmentation aims to understand an image with arbitrary categories described
by texts. Pioneering work ZS3Net (Bucher et al., 2019) uses generative models to synthesize pixel-
level features by word embeddings of unseen class. SPNet (Xian et al., 2019) utilizes the word
embeddings, e.g., word2vec (Mikolov et al., 2013), to align the semantic meaning with visual fea-
tures. More recently, researchers propose to leverage the pre-trained CLIP (Radford et al., 2021) for
open-vocabulary semantic segmentation. LSeg (Li et al., 2022) aligns pixel embeddings to the text
embedding of the corresponding semantic class, which is generated by CLIP’s text encoder. Unlike
pixel-level LSeg, OpenSeg (Ghiasi et al., 2021) proposes to align the segment-level visual features
with text embedding via region-word grounding. Our approach falls into the category of two-stage
approaches, such as ZSSeg (Xu et al., 2021) and ZegFormer (Ding et al., 2022): they first generate
class-agnostic mask proposals and then utilize pre-trained CLIP to perform open-vocabulary clas-
sification. Unlike ZSSeg and ZegFormer which directly use the original CLIP for masked image
classification, we propose to adapt CLIP to achieve better results.

Prompt tuning is a strategy to adapt large-scale pre-trained models to new tasks. The idea originated
from natural language processing (Liu et al., 2021a; Li & Liang, 2021; Lester et al., 2021), and
recent work extends prompt tuning to computer vision. CoOp (Zhou et al., 2022) pre-appends
the category words with learnable vectors to adapt CLIP for many recognition tasks. The textual
prompt tuning is also widely used in open-vocabulary object detection (Du et al., 2022) and semantic
segmentation Xu et al. (2021). Our mask prompt tuning is more relevant to prompt tuning in the
visual domain (Bahng et al., 2022; Jia et al., 2022) where learnable vectors are applied to the image
domain. Unlike visual prompt tuning (Jia et al., 2022) that inserts additional tokens before the
actual image tokens, we replace masked tokens with learnable prompts. Furthermore, mask prompt
tuning brings additional improvement over a fully finetuned model (Section 4.3.2). Such additional
improvements have not been reported by prior work.

3 METHOD

In this section, we first revisit the two-stage open-vocabulary segmentation methods (Xu et al., 2021;
Ding et al., 2022). Then we discuss how to obtain a dataset of mask-category pairs to finetune CLIP.
Last, we discuss the proposed mask prompt tuning technique to adapt CLIP for masked images.
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Figure 2: Two-stage approaches consist of one segmentation model, e.g., MaskFormer, and one
CLIP model. We first train the modified MaskFormer as the open-vocabulary segmentation baseline
(Section 3.1). Then we collect diverse mask-category pairs from image captions (Section 3.2) and
adapt CLIP for masked images (Section 3.3).

3.1 TWO-STAGE MODELS FOR OPEN-VOCABULARY SEMANTIC SEGMENTATION

Our two-stage open-vocabulary semantic segmentation model is shown in Figure 2. It consists of a
segmentation model that generates mask proposals, and an open vocabulary classification model.

Following Xu et al. (2021); Ding et al. (2022), we choose MaskFormer (Cheng et al., 2021) as
the segmentation model. Unlike per-pixel segmentation models (Long et al., 2015; Chen et al.,
2017), MaskFormer predicts a set of N mask proposals and corresponding class predictions. Each
proposal is represented by an H ×W binary mask, indicating the location of the target object. The
class prediction is a C-dimensional distribution, where C is the number of classes in the training
set. Following (Xu et al., 2021), we modify MaskFormer such that for each mask, it generates a
C-dimensional proposal embedding, where C is the embedding dimension of a CLIP model (512
for ViT-B/16 and 768 for ViT-L/14). This change allows MaskFormer to perform open-vocabulary
segmentation. Specifically, suppose we would like to classify the mask to K categories, we can
first use a CLIP model’s text encoder to generate K text embeddings for each class as {tk|tk ∈
RC}k=1,··· ,K . Next, we compare each mask embedding vi with the text embedding, and predict
the class-k probability as pi,k = exp(σ(vi, tk)/τ)/

∑
k(exp(σ(vi, tk)/τ)). Here σ(·, ·) denotes

the cosine similarity between two embedding vectors, and τ is the temperature coefficient (Radford
et al., 2021). We train the modified MaskFormer on the COCO-Stuff dataset (Caesar et al., 2018)
with 171 classes. We use CLIP’s text encoder to process class names to generate text embeddings.
We also append a learnable embedding ∅ to represent the category of “no object”. For other training
settings, we follow the original MaskFormer (Cheng et al., 2021).

Note that the mask proposal generator trained this way is not strictly “class-agnostic”, as the defini-
tion of an object is determined by the class definitions in the training set. For example, if the training
set only contains ”person” as a class, it is not likely the model will automatically segment a person
into “face”, “hand”, “body”, or finer body parts. How to train a general and class agnostic model to
generate mask proposals is an important topic but is beyond the scope of this paper.

In addition to MaskFormer’s prediction, following (Ding et al., 2022; Xu et al., 2021), we
add a parallel prediction branch using CLIP. MaskFormer generates mask proposals {Mi|Mi ∈
{0, 1}H×W }i=1,··· ,N where 1 and 0 denotes foreground and background. For each mask, we select
a tight bounding box that includes all foreground pixels, crop the image, mask out backgrounds, and
re-size to CLIP’s resolution. We feed mask proposal-i to CLIP and compute class-k probability as
p̂i,k. We ensemble both predictions to compute final prediction as p

(1−λ)
i,k ∗ p̂λi,k where λ ∈ [0, 1].

We fuse mask-wise predictions to semantic segmentation using MaskFormer’s fusion module.

As discussed in Section 1 and Figure 1 (c), our analysis show that CLIP does not work well on
such masked images. Specifically, CLIP is trained on natural images with little data augmentation
(Radford et al., 2021). However, masked images as shown in Figure 1 (b) contain a lot of “blank
regions”. Such a significant domain gap makes it difficult for CLIP to transfer its classification per-
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formance. We also tried cropping the proposals without masking out background pixels. However,
we observe worse performance (see Appendix A.1). We conjecture that keeping background pixels
makes it more confusing for CLIP to correctly classify the foreground.

3.2 COLLECTING DIVERSE MASK-CATEGORY PAIRS FROM CAPTIONS

To adapt CLIP to better process masked images, we propose to finetune CLIP on a dataset consists
of masked image and text pairs. One direct solution is to leverage manually annotated segmentation
labels, e.g., from COCO-Stuff. Such labels are accurate, but have a closed set of categories. We try
this solution and collect 965K mask-category pairs spanning 171 classes (e.g., banana, orange) from
COCO-Stuff. Then we finetune the CLIP’s image encoder, while freezing the text encoder, following
Zhong et al. (2022). However, we observe that this naive approach limits the generalization ability of
CLIP, as the performance drops if there are more unseen classes (see Section 4.3.1). We hypothesize
that due to the limited text vocabulary, the finetuned CLIP over-fits to the 171 classes, losing the
ability to generalize to unseen categories.
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Figure 3: For the given image-cation pair, only
"apple" and "orange" are categories in
COCO. By extracting nouns from captions, we
can also get a novel "teapot" category.

Compared with segmentation labels, image cap-
tions contain much richer information about
images and involve a much larger vocabulary.
For example, in Figure 3, the image caption
is "There are apple and orange and
teapot.". Though "apple" and "orange"
are valid classes in COCO-Stuff, other concepts
are not valid classes and are ignored.

Based on this observation, we designed a self-
labeling strategy (Ghiasi et al., 2021; Zhong et al.,
2022) to extract mask-category pairs. As in Fig-
ure 3, given an image, we first use a pre-trained
MaskFormer to extract masked proposals. Mean-
while, from the corresponding image caption, we
extract all nouns using an off-the-shelf language
parser (Bird et al., 2009), and treat them as po-
tential classes. Then, we use CLIP to pair the
most matching mask proposal to each class. From
COCO-Captions Chen et al. (2015), we collect
1.3M mask-category pairs with 27K unique nouns using 5 captions per image, or 440K pairs with
12K nouns using 1 caption per image. Experiments show this noisy but diverse mask-category
dataset leads to significantly better performance than manual segmentation labels (see Section 4.3.1).

3.3 MASK PROMPT TUNING

After collecting the dataset, a natural question is how to finetune CLIP effectively? The most notable
difference between a masked image and a natural image is that background pixels in a masked
images are set to zeros, leading to many “blank areas”. When feeding masked images to CLIP,
images will be divided into non-overlapping patches and subsequently tokenized. Those blank areas
will then become zero tokens. Such tokens not only contain no useful information, but also bring
domain distribution shift to the model (since such tokens don’t exist in natural images) and cause
performance degradation. To mitigate this, we propose a technique called mask prompt tuning, à
la visual prompt tuning (Jia et al., 2022). Specifically, when feeding into CLIP, a masked image
will be tokenized to a tensor T ∈ RNp×E , where Np is the number of patches, and E is the
token dimension. The masked image also comes with a condensed binary mask Mp ∈ {0, 1}Np ,
where each element indicating whether a given patch is kept of masked out. We allocate a learnable
tensor representing prompt tokens as P ∈ RNp×E . Finally, the final input to the transformer is
computed as T ⊗Mp + P ⊗ (1 −Mp), where ⊗ denotes element-wise multiplication. Following
the “deep prompts” setting in Jia et al. (2022), we can add such prompt tokens to deeper layers of
the transformer. This is also illustrated in Figure 4.

Compared with fully finetuning the entire model (Zhong et al., 2022), mask prompt tuning has
several advantages. First, it is specifically designed for segmentation tasks, where parts of input
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Figure 4: The proposed mask prompt tuning can adapt CLIP to masked images without changing its
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images are masked. Next, compared with full model finetuning, the amount of trainable parameters
in mask prompt tuning is orders of magnitude smaller, leading to much better training efficiency.
Moreover, as a foundational model, CLIP may be simultaneously used for many tasks, and we may
not be allowed to tune CLIP’s weights. Mask prompt tuning does not require changing weights of
CLIP, thus is suitable for such multi-task scenarios. Lastly, our experiments show that mask prompt
tuning alone leads to significant improvement. And if applied together with full model finetuning, it
can further improve the open-vocabulary segmentation performance (Section 4.3.2).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training Dataset We train our model on the COCO dataset (Lin et al., 2014). We first train the
modified MaskFormer using the segmentation labels from COCO-Stuff (Caesar et al., 2018). Next,
we finetune CLIP on the mask-category dataset that we obtained from COCO Captions (Chen et al.,
2015). There are 118k training images labeled with 171 valid categories in the dataset, ranging from
things (e.g., orange, car) to stuffs (e.g., sky, road). If not specified otherwise, we use all the 171
categories data during training.

Evaluation Dataset Our open-vocabulary model is able to perform zero-shot segmentation on
arbitrary datasets without dataset-specific adaption. Thus, we test our model on challenging
ADE20K (Zhou et al., 2019), Pascal VOC (Everingham et al., 2010) and Pascal Context (Mottaghi
et al., 2014) datasets. ADE20K is a densely pixel-wise annotated dataset for scene understanding,
which spans diverse annotations of indoor and outdoor scenes. There are 2K images in its validation
set. We choose two versions of categories, one with 150 frequently used categories (A-150) and
one with more diverse 847 categories (A-847). Pascal VOC is a classical dataset for segmentation.
We evaluate on the 1.5K validation images with 20 categories (PAS-20). Pascal Context is a set of
additional annotations for PASCAL VOC 2010. It goes beyond the original PASCAL semantic seg-
mentation task by providing annotations for the whole scene. There are 5K images in its validation
set. We also choose two versions of categories, one with 59 frequently used categories (PC-59) and
one with the whole 459 categories (PC-459).

Implementation Details As indicated before, our model consists of two part: one segmentation
model based on MaskFormer (Cheng et al., 2021) and one mask-adapted CLIP model (Radford
et al., 2021). For the segmentation model, we have two backbone choices, ResNet-101c (Chen
et al., 2017) and Swin-Base (Liu et al., 2021b). For the CLIP model, we have two choices: ViT-
B/16 and ViT-L/14 (Dosovitskiy et al., 2020). We detail our largest model setting here, while the
training recipe of the R101c model can be found in Appendix A.2. For Swin-Base segmentation
model, the backbone weights are initialized from an ImageNet-21K pre-trained model. We use
AdamW (Loshchilov & Hutter, 2017) optimizer with the poly learning rate schedule (Chen et al.,
2017). The initial learning rate and weight decay are set to 6 · 10−5 and 10−2, respectively. We
use a crop size of 640 × 640, a batch size of 32 and train the model for 120K iterations. For data
augmentations and other hyper-parameters, we mainly following the setting of Cheng et al. (2021).

For adapting CLIP ViT-L/14 model, we utilize the OpenCLIP (Ilharco et al., 2021) implementation.
After collecting 440K mask-category pairs from captions (see Section 3.2), we propose three ways
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Table 1: The mIoU results of our model and previous open-vocabulary generalist models and super-
vised specialist models. Results for SPNet and ZS3Net on PAS-20 are reported from Li et al. (2022).
Results for ZegFormer on PAS-20 are recalculated by us. Under the R101c model scale, our model
significantly outperforms other open-vocabulary models. Our large Swin-Base model can match the
performance of some supervised specialist models.

method backbone training dataset A-847 PC-459 A-150 PC-59 PAS-20

Open-vocabulary generalist models.
SPNet (Xian et al., 2019) R-101 PASCAL-15 - - - 24.3 18.3
ZS3Net (Bucher et al., 2019) R-101 PASCAL-15 - - - 19.4 38.3
LSeg (Li et al., 2022) R-101 PASCAL-15 - - - - 47.4
LSeg+ (Ghiasi et al., 2021) R-101 COCO Panoptic 2.5 5.2 13.0 36.0 59.0
SimBaseline (Xu et al., 2021) R-101c COCO-Stuff-156 - - 15.3 - 74.5
ZegFormer (Ding et al., 2022) R-50 COCO-Stuff-156 - - 16.4 - 80.7
OpenSeg (Ghiasi et al., 2021) R-101 COCO Panoptic 4.0 6.5 15.3 36.9 60.0
OVSeg (Ours) R-101c COCO-Stuff-171 7.1 11.0 24.8 53.3 92.6

LSeg+ (Ghiasi et al., 2021) Eff-B7 COCO Panoptic 3.8 7.8 18.0 46.5 -
OpenSeg (Ghiasi et al., 2021) Eff-B7 COCO Panoptic 6.3 9.0 21.1 42.1 -
OVSeg (Ours) Swin-B COCO-Stuff-171 9.0 12.4 29.6 55.7 94.5

Supervised specialist models.
FCN (Long et al., 2015) FCN-8s Same as test - - 29.4 37.8 -
Deeplab (Chen et al., 2017) R-101 Same as test - - - 45.7 77.7
SelfTrain (Zoph et al., 2020) Eff-L2 Same as test - - - - 90.0

to adapt CLIP: mask prompt tuning (MPT) only, full model fine-tuning (FT) only and joint MPT
+ FT. For MPT only, we initialize the CLIP model with official OpenAI weights (Radford et al.,
2021) and the learnable tokens are randomly initialized. We also use the deep prompts as proposed
in Jia et al. (2022). The prompt depth is set to 3 if not specified otherwise. The training optimizer
is AdamW with initial learning rate 2 · 10−2 and weight decay 0. The cosine annealing scheduler
is adopted to adjust the learning rate. The model is trained with input size of 224 × 224, a batch
size of 256 for 5 epochs. For FT only, we keep similar training procedure but with a much lower
learning rate 5 · 10−6 and larger weight decay 0.2. For MPT + FT, we first initialize the CLIP with
fully finetuned model and then apply the mask prompt tuning over it, which we fined more stable
and effective (see Appendix A.3). All other hyper-parameters are the same with MPT only. The text
encoder of CLIP is frozen in all our experiments.

4.2 MAIN RESULTS ON OPEN VOCABULARY SEMANTIC SEGMENTATION

OVSeg achieves best performance among open-vocabulary models. We conduct the comparison
with other open-vocabulary generalist models using the common ResNet-101 (R-101) model scale
in Table 1. If not specified otherwise, our best performance is achieved using joint mask prompt
tuning and fine-tuning (see Section 4.3.2). First of all, compared with per-pixel approaches (SP-
Net (Xian et al., 2019), ZS3Net (Bucher et al., 2019), LSeg (Li et al., 2022) and LSeg+ (Ghiasi
et al., 2021)), proposal-based approaches (OpenSeg (Ghiasi et al., 2021), SimBaseline (Xu et al.,
2021) and ZegFormer (Ding et al., 2022)) show better performance. Our OVSeg also falls into the
proposal-based category. Compared with other proposal-based approaches, our model shows signif-
icant improvements across all five benchmarks. In particular, our R101c model achieves 7.1% and
11.0% mIoU on challenging A-847 and PC-459, which even performs better than the EfficientNet-
B7 based OpenSeg model. All proposal-based approaches are using the same COCO images, i.e.,
the 2017 splits with 118K images, but with different annotations. Our experiments show different
annotations result in relatively small performance differences: we only observe a ∼1% performance
drop on A-150 when changing COCO-Stuff-171 to COCO-Stuff-156.

Largest OVSeg model sets up new SOTA results on zero-shot benchmarks. When we scale up
the model, our method can further achieve better results. With Swin-Base (Swin-B) backbone and
CLIP ViT-L/14, our model can achieve 29.6% and 55.5% mIoU on A-150 and Pascal PC-59, which
is +8.5% and +13.6% higher than the SOTA zero-shot results. On the challenging A-847 and PC-
459, our model sets up a new zero-shot state-of-the-art 9.0% and 12.4% mIoU. We further detail the
class-wise IoU of A-150 categories in Appendix A.4.
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Table 2: Ablation on mask-category pairs. The baseline is MaskFormer Swin-Base with original
CLIP ViT-L/14. The masks come from ground-truth (GT) or generated proposals. The category
nouns come from ground-truth (GT) classes or captions. We also calculate the statistics (number of
pairs and unique nouns) of collected pairs.

Case Source Statistics A-847 A-150 PC-59
Mask Category Pairs Unique nouns

Baseline - - - - 7.3 21.8 51.4
(1) GT GT 965K 171 5.3 (-2.0) 23.0 (+1.2) 57.3 (+5.9)
(2) GT 1 caption 440K 12K 7.9 (+0.6) 24.2 (+2.4) 53.2 (+1.8)
(3) proposals 1 caption 440K 12K 8.8 (+1.5) 28.8 (+7.0) 55.7 (+4.3)
(4) proposals 5 captions 1.3M 27K 8.8 (+1.5) 28.6 (+6.8) 55.5 (+4.1)

Table 3: Ablation on mask prompt tuning. The baseline is MaskFormer Swin-Base with CLIP ViT-
L/14. We report the zero-shot mIoU on representative ADE-847, ADE-150 and PC-59 datasets. All
the improvements are measured upon the baseline model.

case Finetuning method A-847 A-150 PC-59
mask prompt full model

Baseline 7.3 21.8 51.4
(a) ✓ 8.4 (+1.1) 26.5 (+4.7) 55.4 (+4.0)
(b) ✓ 8.8 (+1.5) 28.8 (+7.0) 55.7 (+4.3)
(c) ✓ ✓ 9.0 (+1.7) 29.6 (+7.8) 55.7 (+4.3)

Open-vocabulary generalist models can match supervised specialist models. We show our gen-
eralist model can achieve competitive performance without the need for any dataset specific training.
On the challenging A-150, our model achieves similar performance with fully supervised FCN-
8s (Long et al., 2015). On the PAS-20, our model achieves 94.5% mIoU, which is even +4.5% than
the SOTA specialist model (Zoph et al., 2020). We note our generalist model still underperforms the
state-of-the-art specialist models, such as Wang et al. (2022); Chen et al. (2022).

4.3 ABLATION STUDY

4.3.1 COLLECTING MASK-CATEGORY PAIRS

We discuss the impact of finetuning data in Table 2. The baseline model is MaskFormer Swin-Base
with the original CLIP ViT-L/14. Our initial trial (case (1)) is collecting ground-truth (GT) masks
with supervised GT classes. We can collecting 965K mask-category pairs with 171 unique nouns
(the number of classes defined in COCO-stuff). Then we finetune the CLIP model with the collected
pairs. We observe a -2.0% performance drop on the A-847 dataset. This is because the adapted CLIP
is over-fitting to the 171 GT classes. Although the model achieves good results on PC-59 (whose
categories are highly overlapped with COCO-Stuff), it perform badly for more diverse concepts in
A-847. As detailed in Section 3.2, we propose to utilize captions (Chen et al., 2015) to collect diverse
mask-category pairs. After parsing the nouns in the caption, we match the nouns with GT masks
(case (2)) or proposals (case (3)) generated by the baseline model. By replacing the GT masks with
proposals, the A-150 mIoU is significantly improved (from 24.2% to 28.8%) We conjecture that
many regions are not labeled as GT masks (see examples in Figure 3), and are therefore ignored. In
contrast, the generated proposals (usually 100) can cover most of regions-of-interest in the image,
leading to better performance. If all the 5 captions per image are used (case (4)), we observe a mild
-0.2% degradation on A-150 and PC-59 We hypothesis that 12K nouns are adequate for the CLIP to
retain its open-vocabulary ability. Thus, we use 1 caption per image as our default setting.

4.3.2 MASK PROMPT TUNING

We ablate the effect of mask prompt tuning in Table 3. The baseline model is MaskFormer Swin-
Base with CLIP ViT-L/14. If we only use mask prompt tuning (case (a)), our model outperforms
the baseline by a large +4.7% and +4.0% mIoU improvement on ADE-150 and PC-59, respectively.
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Query: saturn V, blossom Query: golden gate, yachtQuery: Oculus, Ukulele

Figure 5: Open-vocabulary segmentation with user-defined queries. Our model accurately segments
unseen categories, such as the Saturn V rocket, Oculus headset, and Golden gate bridge.

Case (b) shows the result of full model fine-tuning. Although it achieves the best accuracy, the
trainable parameters are orders of magnitude higher. In contrast, the proposed mask prompt tuning
only modifies the input without changing CLIP’s weight. Furthermore, mask prompt tuning can
further improve over a fully finetuned model, as shown in case (c). Case (c) achieves 29.6% mIoU
ADE-150, which further improves the fully finetuned model by a considerable margin of +0.8%.

4.4 DISCUSSIONS

4.4.1 SEGMENTATION WITH USER-DEFINED QUERIES.

Our method allows users to define arbitrary queries and search the query in the image, see Figure 5.
Without training our models to learn specific concepts, our model can locate and segment Saturn
V as the lego rocket, Oculus as the VR headset, and golden gate as the bridge in corresponding
images. This demonstrates the strong potentials of open vocabulary semantic segmentation.

4.4.2 AMBIGUITY OF OPEN VOCABULARY SEGMENTATION EVALUATION

GT: building Pred: skycraper GT: rail Pred: road

Figure 6: Ambiguity of the class definition.

We show some “failure” predictions from the
A-150 dataset in Figure 6. For the left fig-
ure, the ground-truth category is “building”
while our model predicts “skyscrapers”. The
“skyscrapers” is a reasonable description, but
the standard A-150 evaluation protocol will
treat it as a wrong prediction. A similar case
happens in the right figure, the ground-truth
“rail” is recognized as “road”. This is caused
by the fact that language defined categories are
ambiguous and can overlap with each other.
Designing a better evaluation metric for open-
vocabulary segmentation models is an impor-
tant topic for our future research. Note that due
to IP constraints, we use our own images, in-
stead of ADE20K images in Figure 6. But this phenomenon widely exists on ADE20K images.

5 CONCLUSION

This paper studies open-vocabulary semantic segmentation where the model segments an image by
arbitrary categories described by texts. We identify the performance bottleneck of current two-stage
methods to be the pre-trained CLIP, since it doesn’t perform well on masked images. We propose
to adapt CLIP for masked images. To retain CLIP’s open-vocabulary classification ability, we adapt
CLIP with diverse mask-category pairs mined from image-caption dataset. We further propose
mask prompt tuning, a method can adapt CLIP without changing its original weights. The proposed
model is general and can do zero-shot segmentation on arbitrary datasets without dataset-specific
adaption. For the first time, we showopen-vocabulary generalist models can match the performance
of supervised specialist models.
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ETHICS STATEMENT

We only use the public computer vision datasets (COCO, ADE20K, Pascal) and leverage the open-
sourced vision-language models (CLIP) for our experiments. To the best of our knowledge, we do
not foresee our approach as being inherently subject to concerns of discrimination / bias / fairness,
inappropriate potential applications, impact, privacy and security issues, research integrity or re-
search practice issues. However, the public datasets and pre-trained models may be subject to bias
that may be inherited by models trained with our approach.

REPRODUCIBILITY STATEMENT

Our code is reproducible and can be implemented based on the method description in Section 3 as
well as training details in Section 4.1.
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A APPENDIX

A.1 CROP WITH OR WITHOUT MASK

Crop w/ mask Crop w/o mask
Figure 7: Crop without mask will intro-
duce background pixels, making the predic-
tion more difficult.

In the paper, we use the default crop with mask (see
the left of Figure 7). We also try the direct crop
without mask (see the right of Figure 7). Follow-
ing the bottleneck analysis in Figure 1, we feed the
unmasked crops a pre-trained CLIP for classifica-
tion. This experiment gives a 13.8% mIoU, which
is -6.3% worse than using the masked crops. We hy-
pothesize that the crop with mask introduces many
background pixels, making the prediction more dif-
ficult. For the example in the right of Figure 7, the
“orange” will also be an appropriate category for the
unmasked crop.

We note in ZegFormer (Ding et al., 2022) has also
done a ablation study about different strategies to obtain final crop. We have the similar conclusions.

A.2 TRAINING HYPERPARAMS OF R101C MODEL

Our small model is MaskFormer R101c with CLIP ViT-B/16. For MaskFormer training, the back-
bone weights are initialized from an ImageNet-1K pre-trained model. We use AdamW optimizer
with the poly learning rate schedule. The initial learning rate and weight decay are set to 2 · 10−4

and 10−4, respectively. We also use a learning rate multiplier 0.1 on the backbone. We use a crop
size of 512×512, a batch size of 32 and train the model for 120K iterations. For data augmentations
and other hyper-parameters, we majorly following the setting of Cheng et al. (2021). For adapting
CLIP ViT-B/16 model, we basically follow the hyperparameters of finetuning ViT-L/16 except we
use a larger batch size 1024.

A.3 MORE ABLATION STUDIES ON MASK PROMPT TUNING

Table 4: Ablation on combining mask prompt tun-
ing (MPT) and fine-tuning (FT). FT ->MPT indi-
cates first FT and then MPT, and vice versa. FT
+ MPT sim. means optimizing prompts and CLIP
simultaneously.

combination A-847 A-150

FT ->MPT (default) 9.0 29.6
MPT ->FT 8.5 (-0.5) 28.1 (-1.5)
FT + MPT sim. 8.8 (-0.2) 29.0 (-0.6)

Table 5: Ablation on prompt depth. We test
with and without fully fine-tuned (FT) model.

prompt depth A-150

w/o FT w/ FT

1 25.7 29.3
3 (default) 26.5 29.6
6 26.8 29.4
12 26.8 29.3

We explore two other ways to combine mask prompt tuning (MPT) and fine-tuning (FT) as in Ta-
ble 4. Our default setting (FT ->MPT) is first doing FT and then applying MPT to the already
fine-tuned model. We don’t change the weights of fine-tuned CLIP. The other option is first doing
MPT and then doing FT with fixed mask prompts (MPT ->FT). This combination produces poor
results (-1.5% drop on A-150). We conjecture the mask prompts learned with original CLIP provide
a bad prior when we fune-tune the entire CLIP model. We also explore learning mask prompts and
fine-tune CLIP weight simultaneously (FT + MPT sim.). This doesn’t bring favorable results.

We further ablate the effects of prompt depth in Table 5. The depth can be selected from {1, 3, 6, 12}.
We use two different scenarios: without fine-tuning (w/o FT) for mask prompt tuning only, with fine-
tuning (w/ FT) for applying mask prompt tuning over a already fine-tuned model. For w/o FT case,
one layer prompt can bring significant improvement, e.g., from baseline’s 21.8% to 25.7%. Deeper
prompts result in better performance, because more parameters are introduced with more prompts.
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Interestingly, deeper prompts (going from 3 to 12) don’t bring further improvement for w/ FT case.
We choose prompt depth as 3 for default setting.

A.4 CLASS-WISE IOU OVER SEEN AND UNSEEN CATEGORIES.

We detail the class IoU on all 150 categories in ADE20K-150 (model trained on COCO) in Figure 8,
and we annotated seen vs. unseen classes and their IoUs. Seen categories mean there are similar
categories in COCO-stuff training set. Unseen categories denotes the novel categories in ADE20K.
The average IoU of seen and unseen categories are 37.6% and 21.9%, respectively, showing that our
model performs better on seen categories. This is also observed in other open vocabulary segmenta-
tion work, such as (Ding et al., 2022).
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Figure 8: Class IoU on all 150 categories in ADE20K (model trained on COCO). It is expected the
model performs better on seen categories in training set.
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