
Evading Web Application Firewalls with
Reinforcement Learning

Xianbo Wang
Department of Information Engineering
The Chinese University of Hong Kong

xianbo@ie.cuhk.edu.hk

Han Hu
Department of Information Engineering
The Chinese University of Hong Kong

hh118@ie.cuhk.edu.hk

Abstract

Web Application Firewalls (WAF) are widely deployed to protect web servers from
security threats like SQL injections. WAF products employ various techniques, e.g.,
syntax signature and machine learning, to detect and block suspicious web traffics.
However, no WAF can be absolutely secure, there are always space for advisories
to craft malicious messages that can evade the detection. In the past, most evasion
techniques are developed manually, which requires labour and intelligence. In
this work, we propose to explore the possibility of automating the process of
WAF evasion using reinforcement learning. We created a reinforcement learning
environment (based on OpenAI gym) for WAF evasion tasks and evaluate various
mainstream WAF products with Proximal Policy Optimization (PPO) algorithm.
Our framework successfully discovered numbers of evasion payloads for each
WAF in our experiments and can significantly outperform baseline policy. Finally,
we extract common patterns from the discovered evasion payloads and discuss
weaknesses/flaws of existing WAF products as well as suggested improvements. 1

1 Introduction

Web application attacks are the single most prevalent and devastating security threat facing organi-
zations today. By exploiting common vulnerabilities like SQL injection and Cross Site Scripting
(XSS) in web applications, cybercriminals can steal private data or even gain full control of the server,
which can cause huge financial loss. To mitigate the threats, many organizations deploy the Web
Application Firewalls (WAF) to block suspicious web traffics and protect their web servers.

In general, current WAF products can be divided into two types, namely, rule based and machine
learning based. Rule based WAFs check the HTTP messages with predefined syntax patterns, e.g.,
with regular expressions, while machine learning based WAFs extract various features from the
traffic data and run classifiers to determine whether to block the traffic. For both methods, it is
unrealistic to block all malicious traffics as there are infinitely many variations. Take SQL injection
for example, based an ordinary attack payload admin’ OR 1=1#, which can bypass the password
checking query SELECT * FROM users WHERE name=’x’ pwd=’y’, advisories can craft variations like
shown in Listing 1. While appearing differently, these variations all share the exact same semantic
with the original payload.

1 Original: admin ’ or 1=1#
2 Variant1: admin ’oR(sEleCt 1)=0x1-- -
3 Variant2: admin ’/**/ oR /**/(/*!%53 eLEct */1) >0x0#

Listing 1: Variants of a SQL Injection Payload

1Our 5-minutes video presentation can be accessed at https://bit.ly/3gGwfBa with password: DE@DB33F

As most commercial WAF products do not publish their model or algorithm, for generality, we
assume advisories have no knowledge of the internal states of the WAF. To craft a payload variation
that can evade the detection of an WAF, the advisory needs to send each mutation to the WAF, observe
its reaction, for which we consider two different scenarios:

• Black-box: the advisory can only observe the Boolean result, that is payload either being
detected or not by the WAF.

• Grey-box: apart from the Boolean result, the adversary can also get a scalar score, e.g., a
confidence level, of the classification result in the WAF.

Then, based on the observation, the adversary keeps mutating the payload until it can evade the
WAF’s detection. While this process of payload manipulating and testing is repetitive and painful for
human, it seems suitable for reinforcement learning, simply by mapping payload mutation to agent’s
action and mapping WAF’s reactions as rewards.

In this paper, we designed and implemented the first reinforcement learning framework for general
WAF evasion tasks. The primary contributions of this work can be summarized as follows:

1. We proposed the first general WAF evasion framework with reinforcement learning approach.
2. We create an OpenAI Gym environment for WAF evasion tasks. This can facilitate us and

other researchers to study and explore WAF evasion with reinforcement learning.
3. We conduct experiment with Proximal Policy Optimization (PPO) algorithm and successfully

generate evasion payloads for both WAF-Brain (grey-box) and ModSecurity (black-box).

In the following sections, we first review existing works in Section 2, then we define this problem
under reinforcement learning framework with Section 4. After presenting our environment and data
in Section 5, we show our experiments and results in Section 6.

2 Related Work

2.1 Adversarial Machine Learning for Anti-Malware Evasion

Evasion of anti-malware detection is a very similar topic with our work and also a more explored
area. Recent years, modern anti-malware detection algorithms take advantages of machine learning
to construct either primary detection engines or as supplementary detection heuristics. However, such
machine learning algorithms are vulnerable to intentional attacks. Several researches have proof that
an attacker can bypass these machine learning detection algorithm by adversarial techniques. In 2017,
Hu and Tan [8] introduced MalGAN to generate adversarial examples to attack black-box malware
detection algorithms among the first attempt attacking portable executable malware models. MalGAN
is a modified of GAN with a generator, a black-box detector and a substitute detector. The idea of
the attack is letting the substitute model trained to reproduce outputs observed by probing certain
inputs fed into the black-box detector. Then, the substitute model is used for gradient computation to
produce evasive malware samples. Though this attack is reported 100% efficacy in bypassing the
target detector, it has notable limitations, including requiring the complete knowledge of the feature
space of the target malware detector and only focusing on LSTM variants. Later, Rosenberg et. al [10]
proposed another end-to-end black-box method to generate adversarial examples to attack machine
learning malware detectors, whose target is extended to multi-feature based malware detectors. The
attack first creates a surrogate model using the target detector by Jacobian-based dataset augmentation,
then generates adversarial examples using mimicry attack with white-box access to the surrogate
model and using them against the attacked black-box model, by the transferability property.

2.2 Evading Black-Box Malware Detector with Reinforcement Learning

Apart from heuristic methods mentioned above, some recent works implement black-box attacks on
malware detection algorithms using reinforce learning methods. Anderson et. al [1] pioneer using
deep reinforcement learning to attack the malware detection engines in 2017. They design a series
of actions to interact with the malware functions without prior knowledge of the structure, features
and parameters of static PE malware detector. Their work also implemented the malware evasion
environment as an extensible openAI Gym and performed deep Q-learning with agents utilizing a

2

Boltzmann exploration strategy. Later in 2019, Fang et. al [7] make further improvement on using
deep Q-learning in evading anti-malware engines. Large dataset are used in training the agent, which
is a complicated deep convolutional Q-network, and a 200% performance improvement is observed
comparing to the Gym environment proposed in the pioneer work.

Even though our work shares similar idea with these works, the difference in targets (WAF vs.
anti-malware) introduces totally different challenges. One key challenge is that web attack payloads
are often short strings with strict grammar structures, which have much more limited manipulation
space comparing to binary files.

2.3 WAF Evasion with Machine Learning

On the other hand, WAF evasion is a relatively underexplored topic. Earlier approaches include
automata learning [3] and genetic programming based machine learning [2]. In the case of automata
learning, the authors present SFADIFF, which is a black-box differential testing framework based
on Symbolic Finite Automata (SFA) learning. This framework can be used to find differences
between comparable programs, including but not restricting to WAFs and HTML/JavaScript parsing
differences between several major browsers. The leveraged differences found by SFADIFF can lead
to successful XSS attacks while evading WAFs. For the genetic programming based machine learning
method, the authors typically focused on web application firewalls aiming at preventing SQLi attacks.
Their main contribution is developing a SQLi grammer based on known SQLi attacks to date and
an automated input generation technique. The details of the input generation technique include a
context-free grammar for SQLi attacks, a random generation technique (RAN) which utilizes the
syntax diagram generated from the context-free grammar and perform random selection at branching
points after starting at the entry, and a machine learning based generation method that uses RAN to
generate initial training data to learn a model predicting the likelihood with which tests can bypass the
WAF. With recent trend of machine learning based WAF products, learning-based evasion study also
appeared as Demetrio et. al [6] introduced WAF-A-MoLE, which is a tool for producing adversarial
examples against WAFs by leveraging on a set of predefined syntactical mutations. The attack
idea of WAF-A-MoLE is simple, it first starts with a failing test, that gets repeatedly transformed
through the random application of mutation operators. Then the test will be modified, executed,
compared and ordered. Finally, iterating among these steps until a successful test is found. They also
produced a dataset of both sane and injection queries, which may be helpful to generating tests in
later experiments using other methods evading WAFs.

3 Background Knowledge

In this section, we present necessary background knowledge about reinforce learning algorithm
chosen for training the agent for evasion WAFs, which is the Proximal Policy Optimization Algorithm
(PPO).

PPO is first introduced by Schulman et. al in 2017, aiming to retain the reliable performance of TRPO
algorithms, while only using first-order optimization to reduce the computation complexity [12]. It
is a model-free, on-policy, actor-critic policy-gradient method. For PPO algorithms, π is the policy
network which is optimized with regard to its parameter θ. The policy network takes the state, s, as
input and outputs an action. For discrete action spaces, the policy network will return actions drawn
from samples of a probability distribution. When training the agent, actions are sampled randomly
from the distribution for exploration and the finalized action is given by the mean of the actions
during the training.

We then introduce the details of the PPO algorithms, including policy gradient method, actor-critic
method applied in PPO. Policy gradient methods estimate the policy gradient and then using a
gradient ascent algorithm to the gradient estimation. The gradients are estimated in a Monte Carlo
(MC) scheme by running the policy in the environment to obtain samples of the policy loss J(θ) and

3

its gradient [15]:

J(θ) = Eτ∼πθ(τ)

[∑
t

R(st, at)

]
= Eτ∼πθ(τ)[R(τ)], (1)

∇θJ(θ) = Eτ∼πθ(τ)

[(
T∑
t=1

∇θ log πθ(at|st)

)
R(τ)

]
(2)

where τ represents trajectories in the form (s1, a1, s2, a2, · · · , sT , aT). The gradients are then
backpropagated to update θ.

One central challenge for the policy gradient methods is to reduce the variance of the gradient
estimation for making consistent progress in optimizing to better policy. The actor-critic method
significantly impacts in this by reformulating the rewards in terms of advantage:

Qπ(s, a) =
∑
t

Eπθ [R(st, at)|s, a] (3)

V π(s) =
∑
t

Eπθ [R(st, at)|s] (4)

Aπ(s, a) = Qπ(s, a)− V π(s) (5)

The advantage function (5) measures the level of an action comparing to all other available actions in
the state, for which good actions will get positive rewards and bad actions will get negative rewards.
Thus, the estimation of the average reward is necessary and is done by the critic network, which is a
separate neural network trained in a supervised way to predict the value function from the rewards
in the gathered samples. Improvements like generalized advantage estimate (GAE) [11] are further
employed to reduce variance of the advantage estimates. PPO also utilizes multi-actor scheme for
sample gathering to increase the sample batch size.

PPO maximizes the surrogate objective function

L(θ) = Êt
[
min

(
rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât

)]
, (6)

where Â and Ê are the empirically obtained estimates of the advantage function and expectation,
respectively, and rt(θ) is the probability ratio defined as

rt(θ) =
πθ(at, st)

πθold(at, st)
. (7)

As Vanilla policy gradients requires sample from optimized policy, which are not usable for the im-
proved policy after one optimization step, PPO increases the sampling efficiency by using importance
sampling method to obtain the expectation of samples gathered from an old policy πθold under the
refine-required new policy πθ. As the new policy is refined, the two policies will diverge and then
increases the variance of the estimation, therefore, the old policy is periodically updated to match
the new policy. This approach is valid if the state transition function is similar between two policies,
and the requirement is ensured by clipping the probability ratio (7) between [1− ε, 1 + ε]. This also
gives a first-order approach to trust region optimization as the algorithm is not too greedy in choosing
actions with positive advantages and not too quick to avoid actions with negative advantages from
a small set of samples [5]. The minimum operator in (6) also ensures that the surrogate objective
function remains a lower bound on the unclipped objective, and eliminates the increased preference
for actions with negative advantage. A baseline PPO is stated in algorithm (1).

4 Problem Definition

We formulate the WAF evasion problem into a reinforcement learning problem with Markov Decision
Process (MDP). As an analogy to game playing, in the WAF evasion task, payload mutation is the
game playing strategy, while the WAF represents the internal rule of the game, which tells whether
we pass the game or not. Figure 1 illustrates the WAF evasion problem under the reinforcement
learning framework. To be more specific, we define state, action, and reward as follows.

4

Algorithm 1 PPO, Actor-Critic Style
1: for iteration = 1, 2, · · · do
2: for actor = 1, 2, · · · do
3: Run policy πθold in environment for T timesteps
4: Compute advantage estimates Â1, · · · , ÂT
5: end for
6: Optimize surrogate L wrt. θ
7: θold ← θ
8: end for

attack
payload

Web Application
Firewall (WAF)

agent

environment

reward: score/label

state: tokenized payload

action:
payload mutation

Figure 1: Formulation of the WAF evasion task as an reinforcement learning problem.

4.1 State

We consider the system that the agent learns to interact with any given payload. Further, we define
the states that the agent observes to be feature vectors which comprises of three level of histograms,
including token types, tokens, and characters. Formally, let T denote a finite set of tokens. For
a given original attack payload P , the set of possible program inputs P is then defined by a rule
similar to the Kleene closure but with a finite set of tokens. We then define the states of our model by
extracting the histograms of the token types, tokens, and characters of an input attack payload as Hk,
Ht and Hc and concatenate the three histograms together to form the state S := [Hk Ht Hc]

T . In
the following, p ∈ P denotes a mutated payload of a given original attack payload.

4.2 Action

We define the set of possible actions A of our agent to be a discrete random variables mapping the
payload of the input to probabilistic mutating rules

A := {a : P → (P × P,F , P)|a ∼ π(p)} , (8)

where F = σ(P ×P) denotes the σ-algebra of the sample space (P ×P) and P gives the probability
for a given mutation rule. The mutation rule set is listed as follows.

• space to comments: randomly replace space with comments, or vice versa.
• random case: randomly swap cases for all letters in the payload.
• swap keywords: swap operators with its alternatives, e.g. swap "||" to " OR " or " || ".
• swap integer base: swap the base of the integer in the payload to its alternative, e.g. decimal

to hexadecimal.
• swap space to whitespace alternatives: swap space with whitespace alternatives, e.g. "\t",

"\n", "\f", "\v", "\xa0".
• rewrite comment: rewrite the comments in the payload.
• change tautologies: rewrite a tautology to its alternate interpretation, e.g. 1 = 1 to 2 = 2.
• logical invariant: adds an invariant Boolean condition to the payload, e.g. something OR

False.

5

• reset inline comments: remove randomly chosen multi-line comment content.

4.3 Reward

We first set the maximum rewardRmax = 10 and the minimum rewardRmin = 0. Then by observing
results given by the environment after the agent sending a mutated payload to the environment, we
define rewards independently for two different environments in terms of their available returns:

1. Let fl ∈ {0, 1} be the classification function of a WAF that only return boolean labels, we
define the reward to be Rl = Rmax · fl. We have Rl ∈ {0, 1}.

2. Let fs ∈ [0, 1] be the classification function of a WAF that return scalar confidence scores,
and the score threshold for the WAF to classify a payload as malicious is θ, we define the
reward to be Rs = θRmax

max{fs,θ} . We have Rs ∈ [0, 1].

To encourage evasion with fewer mutation turns. We further update the reward over a mutation period
using the reward function defined as Rt = Rt−1 − nσ where the value for Rt is either given by Rl
or Rs depending the environment used, n is the number of mutation turns within current episode, and
σ is the constant step penalty, which is set to be 0.1 in our environment.

5 Environment and Data

Our WAF evasion framework targets all kinds of WAFs in general. Techniques behind WAFs on the
market fall under two categories: rule-based and ML-based. The former makes decision mainly based
expert-defined rules while the latter use machine learning algorithm to classify benign and malicious
data. Even though some of the WAFs have source code available, we always assume that adversaries
have no access to the source code or the internal model of the target WAF. On the other hand, some
WAFs return additional information like a scalar score apart from the Boolean label. We design our
framework to be able to utilize the score information if available. Table 1 lists five mainstream WAFs
with their categories and settings.

Table 1: Mainstream WAF Products with Various Categories and Settings
ModSecurity[14] WAF-Brain[4] SQLiGoT[9] Cloudflare WAF Tencent WAF

Technique Rule-based ML-based ML-based Unknown Unknown
Result type Label Score Score Label Label
Open-source Yes Yes Yes No No
Deployment Local Local Local Remote Remote

For experiments and evaluation purpose, we mainly consider open-source WAFs. The reason is that
most commercial WAFs are cloud-based and can only be deployed remotely, while open-source
WAFs can be deployed on our local machine, which brings much faster testing and training speed
without network delay. After deploying the WAF locally, our agent program can directly interact with
the WAF’s programming interfaces, or send data to a simulated HTTP endpoint, which is processed
by the WAF under testing. We then define rules to extract indicators of whether our requests are
blocked by the WAF.

In this work, we select ModSecurity (rule-based) and WAF-Brain (ML-based) as our targets for
experiments. These two are both open-source projects and are widely deployed or integrated in real
world systems. ModSecurity uses token based signature for rule matching. WAF-Brain applies RNN
classifier with raw character stream of the payload as the input. ModSecurity only returns a true or
false label while WAF-Brain also returns a confidence score as the additional information. We believe
these two can represent two major categories of WAFs in the market.

To let the agent learn mutation strategies, we need to first provide some original attack vectors. We
assume two types of environment settings. The first setting is that the agent will always learn to mutate
a fixed payload. In our case is the most common SQL injection attack payload 1’ or 1=1 -- a.
Each time the episode is over the environment will reset the payload to this fixed payload. The second
setting is that the agent needs to learn the mutation against a pool of random payloads. We collect a
list of payload from a public SQL injection dataset [13], which contains over 1000 payloads. Each

6

time the episode is over the environment will randomly choice a payload from the list of payloads for
reset.

With above mentioned targets and settings, we mainly use four different environments for experi-
ments in this work. We refer to them as WAF-Brain (single payload), WAF-Brain (1k payloads),
ModSecurity (single payload), ModSecurity (1k payloads)

6 Experiment and Result

Inspired by the gym-malware environment [1], we implement the WAF evasion environment as an
extensible OpenAI Gym and trained it with Proximal Policy Optimization (PPO). Our framework
shows its effectiveness of generating SQL attack payloads that can evade the detection of WAF-Brain
and ModSecurity, one ML-based WAF with scores available and one rule-based WAF with only
Boolean labels, both deployed locally.

6.1 Creating the Gym-WAF Environment

We create gym-waf, an OpenAI gym environment for general WAF evasion tasks. In this environment,
we define uniform state representation, reward, and actions, which are general for different types of
WAFs. For adopting this environment to a new WAF, the only customization required is to define
an interface which tells the agent how to interact with the WAF. We already provided pre-defined
abstract interface for remote/local WAFs with label/score result. Currently, we only implemented
interface for WAF-Brain and ModSecurity, which are both local environments, one with score results
and another with label results. We released gym-waf as an open-source project 2 to facilitate future
research and exploration.

6.2 Training with PPO

We train the WAF evasion task against WAF-Brain and ModSecurity with two different environment
settings. One with single fixed payload and one with random selection from a pool of 1000 payloads.
The environment with a fixed payload is expected to be easier to train, while the latter environment
setting is noisier and more challenging. Since ModSecurity only return labels, which gives very
sparse rewards, its evasion is expected to be far more difficult reinforcement learning task. We set
the learning rate to be 0.01, mini-batch size to be 64, entropy coefficient to be 10−4, clip range
to be 0.3. We run the training for 5 × 105 time steps on a machine with 20 CPU cores (2.4GHz).
We then evaluate the successful evasion rate with 1000 payloads sampled from a pool of 10000
unseen SQL injection payloads. We compare the results with using an agent with random policy
(random mutation) as the baseline. Our trained agent outperforms the baseline 17x (single payload)
and 2x (1000 payloads) in the WAF-Brain evasion tasks. When it outperforms the baseline 44x in
the ModSecurity evasion task with 1000 payloads, both agents fail to find any evasion in the single
payload setting. This happens because the specific fixed payload 1’ or 1=1 -- a is a very typical
SQL injection payload and is well blocked by ModSecurity’s rules. It is possible that evasion does
not exist for this particular payload. Table 2 shows the detail success rate of each environments.

Table 2: Success Rate of Evasion Tasks (PPO v.s. Random Mutation)
WAF-Brain
(single payload)

WAF-Brain
(1k payloads)

ModSecurity
(single payload)

ModSecurity
(1k payloads)

Random agent 2% 10% 0% 0.2%
PPO agent 35% 20% 0% 8.7%

6.3 Tuning of Hyperparameters

We conduct several experiments to find a set of suitable PPO hyperparameters. We use WAF-Brain
with 1000 payloads as our targets for hyperparameter tuning. Since the WAF evasion task we defined
in the gym-waf environment has discrete action space, we start with higher entropy coefficient to

2https://github.com/sanebow/gym-waf

7

prevent single action dominating the policy and set smaller minibatch size. Then we run the training
with a range of different hyperparameter values, each for 500,000 time steps. Figure 2 shows the
training progress with different settings. Based on these experiments, we find that low learning rate in
our task can result in less stable training process, so we choice the learning rate to be 10−2. Minibatch
size does not have significant impact on the performance, but larger size appears to fluctuate the
training. We pick an intermediate minibatch size 64 for marginal performance improvements. For
entropy coefficient, we find that setting it to 10−4 yields a slightly faster learning process.

Figure 2: Training curve with different hyperparameters.

6.4 Comparison: DQN vs PPO

We also conduct some experiments with Deep Q-Network (DQN), which is an off-policy learning
algorithm. In this section we present performance comparison between DQN and PPO on the
WAF-Brain evasion task.

We set up the DQN with three hidden layers of size 1024, 256 and 32. We also add a dropout layer
after input to make the model less sensitive. In our training experiment, max episode length is set to
be 20 and batch size is 16. For PPO, we use the hyperparameters stated in Section 6.3. We trained
both algorithm on the WAF-Brain evasion task for 100 minutes. PPO performs significantly better as
shown in Figure 3.

6.5 Analyzing the Discovered Evasion Payloads

Our trained agent generated thousands of evasion payloads and we witnessed various evasion strategies
it applied. Some of them are quite surprising and inspiring. Table 3 shows a sample of the generated
evasion payloads. By looking at the generated payloads and analyzing the techniques behind, we
identified some interesting phenomenon and spotted several weaknesses in existing WAF products.

• The successful evasion payloads for WAF-Brain contains no obvious common pattern. They
often combine several different mutation strategies.

• The trained WAF-Brain evasion agent has the preference to insert invisible characters like
\x0B and \xA0 into the payload. It turns out there is a bug in WAF-Brain’s code that leads to
classification failure when encountering certain invisible characters.

8

Figure 3: DQN vs PPO on training WAF-Brain with 1000 payloads.

• Trained ModSecurity models stably replace the logical expressions like "1=1" with logical
invariant in the form of "x NOT = y". With some investigation, we found that it is a
specialized syntax for T-SQL and ModSecurity missed it in its rule set.

Different techniques used in two WAFs can actually explain our first finding. More specifically,
ModSecurity relies on hard-coded rule sets while WAF-Brain applies machine learning classifier.
Thus, combining various mutations are more promising way of evasion. On the other hand, a corner
case missed by the rules of rule-based WAF can be the key for its evasion. The operation "NOT =" is a
rarely used operator in T-SQL and is not included in the rule sets of ModSecurity. Besides, silly bugs
in WAF’s code may give backdoors to attackers, and we show that our reinforce learning approach
can potentially help human discover bugs in WAFs more effectively.

Table 3: Examples of Evasion Payloads Discovered by PPO Model
Evasion payload Target WAF Episode lengh
1 or/*5x$!*/6891=6891/*5x$!*/ AND "$" NOT = "$c"– a ModSecurity 12
1 or 1=1 AND "$" NOT = "$c"– a ModSecurity 4
1/*5X$!*/OR/**/1=1 – A WAF-Brain 5
1/*5X$!*/OR 6891=6891 aND "$" nOt LiKe "$C"– WAF-Brain 8

7 Future Work and Conclusion

In this work, we explored the possibility of solving the WAF evasion task with reinforcement learning.
We designed and implemented an extensive WAF evasion environment and applied fine-tuned PPO to
train it. Our trained agent can significantly outperform random mutation baseline for both WAF-Brain
and ModSecurity. The results even display previous-unknown evasion strategies that can help identify
weakness in existing WAF products. One major direction for improvement is to design grammar-
aware state representation and mutation. Current token-histogram based state representation may not
be able to estimate the state accurately, and current predefined mutation strategies limit the action
space. Another direction that worth more exploration is the improvement of training algorithm in
no-score environments like ModSecurity, where rewards are extremely sparse. Finally, we plan to
evaluate our evasion framework against more WAFs, including those cloud-based WAFs with only
remote access.

References
[1] H. S. Anderson, A. Kharkar, B. Filar, and P. Roth. Evading machine learning malware detection. Black

Hat, 2017.

9

[2] D. Appelt, C. D. Nguyen, and L. Briand. Behind an application firewall, are we safe from sql injection
attacks? In 2015 IEEE 8th International Conference on Software Testing, Verification and Validation
(ICST), pages 1–10, 2015.

[3] G. Argyros, I. Stais, S. Jana, A. D. Keromytis, and A. Kiayias. Sfadiff: Automated evasion attacks and
fingerprinting using black-box differential automata learning. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pages 1690–1701, 2016.

[4] BBVA-Labs Security team. Waf-brain, Nov 2019.
[5] E. Bøhn, E. M. Coates, S. Moe, and T. A. Johansen. Deep reinforcement learning attitude control of

fixed-wing uavs using proximal policy optimization. In 2019 International Conference on Unmanned
Aircraft Systems (ICUAS), pages 523–533, 2019.

[6] L. Demetrio, A. Valenza, G. Costa, and G. Lagorio. Waf-a-mole: evading web application firewalls through
adversarial machine learning. In Proceedings of the 35th Annual ACM Symposium on Applied Computing,
pages 1745–1752, 2020.

[7] Z. Fang, J. Wang, B. Li, S. Wu, Y. Zhou, and H. Huang. Evading anti-malware engines with deep
reinforcement learning. IEEE Access, 7:48867–48879, 2019.

[8] W. Hu and Y. Tan. Generating adversarial malware examples for black-box attacks based on gan, 2017.
[9] D. Kar, S. Panigrahi, and S. Sundararajan. Sqligot: Detecting sql injection attacks using graph of tokens

and svm. Computers & Security, 60:206 – 225, 2016.
[10] I. Rosenberg, A. Shabtai, L. Rokach, and Y. Elovici. Generic black-box end-to-end attack against state of

the art api call based malware classifiers. In M. Bailey, T. Holz, M. Stamatogiannakis, and S. Ioannidis,
editors, Research in Attacks, Intrusions, and Defenses, pages 490–510, Cham, 2018. Springer International
Publishing.

[11] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional continuous control using
generalized advantage estimation, 2018.

[12] J. Schulman, F. Wolski, P. Dhariwal, A. R. Radford, and O. Klimov. Proximal policy optimization
algorithms, 2017.

[13] S. S. H. Shah. Sql injection dataset on kaggle, April 2020.
[14] SpiderLabs. Modsecurity, Apr 2018.
[15] R. S. Sutton and A. G. Barto. Policy Gradient Methods, page 321–339. The MIT Press, 2018.

10

	Introduction
	Related Work
	Adversarial Machine Learning for Anti-Malware Evasion
	Evading Black-Box Malware Detector with Reinforcement Learning
	WAF Evasion with Machine Learning

	Background Knowledge
	Problem Definition
	State
	Action
	Reward

	Environment and Data
	Experiment and Result
	Creating the Gym-WAF Environment
	Training with PPO
	Tuning of Hyperparameters
	Comparison: DQN vs PPO
	Analyzing the Discovered Evasion Payloads

	Future Work and Conclusion

