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Abstract

The recently proposed FixMatch achieved state-of-the-art results on most semi-1

supervised learning (SSL) benchmarks. However, like other modern SSL algo-2

rithms, FixMatch uses a pre-defined constant threshold for all classes to select3

unlabeled data that contribute to the training, thus failing to consider different4

learning status and learning difficulties of different classes. To address this issue,5

we propose Curriculum Pseudo Labeling (CPL), a curriculum learning approach6

to leverage unlabeled data according to the model’s learning status. The core of7

CPL is to flexibly adjust thresholds for different classes at each time step to let8

pass informative unlabeled data and their pseudo labels. CPL does not introduce9

additional parameters or computations (forward or backward propagation). We10

apply CPL to FixMatch and call our improved algorithm FlexMatch. FlexMatch11

achieves state-of-the-art performance on a variety of SSL benchmarks, with espe-12

cially strong performances when the labeled data are extremely limited or when the13

task is challenging. For example, FlexMatch outperforms FixMatch by 14.32% and14

24.55% on CIFAR-100 and STL-10 datasets respectively, when there are only 4 la-15

bels per class. CPL also significantly boosts the convergence speed, e.g., FlexMatch16

can use only 1/5 training time of FixMatch to achieve even better performance.17

Furthermore, we show that CPL can be easily adapted to other SSL algorithms and18

remarkably improve their performances. We also build a unified PyTorch-based19

library, named TorchSSL for convenient and fair study of SSL algorithms.20

1 Introduction21

Semi-supervised learning (SSL) has attracted increasing attention in recent years due to its superiority22

in leveraging a large amount of unlabeled data. This is particularly advantageous when the labeled23

data are limited in quantity or laborious to obtain. Consistency regularization [1, 2, 3] and pseudo24

labeling [4, 5, 6, 7, 8] are two powerful techniques for utilizing unlabeled data and have been widely25

used in modern SSL algorithms [9, 10, 11, 12, 13]. The recently proposed FixMatch [14] achieves26

competitive results by combining these techniques with weak and strong data augmentations and27

using cross-entropy loss as the consistency regularization criterion.28

However, a drawback of FixMatch and other popular SSL algorithms such as Pseudo-Labeling [4]29

and Unsupervised Data Augmentation (UDA) [11] is that they rely on a fixed threshold to compute30

the unsupervised loss, using only unlabeled data whose prediction confidence is above the threshold.31

While this strategy can make sure that only high-quality unlabeled data contribute to the model32

training, it ignores a considerable amount of other unlabeled data, especially at the early stage of33

the training process, where only a few unlabeled data have their prediction confidence above the34

threshold. Moreover, modern SSL algorithms handle all classes equally without considering their35

different learning difficulties.36
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To address these issues, we propose Curriculum Pseudo Labeling (CPL), a curriculum learning [15]37

strategy to take into account the learning status of each class for semi-supervised learning. CPL38

substitutes the pre-defined thresholds with flexible thresholds that are dynamically adjusted for39

each class according to the current learning status. Notably, this process does not introduce any40

additional parameter (hyperparameter or trainable parameter) or extra computation (forward or back41

propagation). We apply this curriculum learning strategy directly to FixMatch and call the improved42

algorithm FlexMatch.43

While the training speed remains as efficient as that of FixMatch, FlexMatch converges significantly44

faster and achieves state-of-the-art performances on most SSL image classification benchmarks. The45

benefit of introducing CPL is particularly remarkable when the labels are scarce or when the task46

is challenging. For instance, on the CIFAR-100 dataset, FlexMatch surpasses the performance of47

FixMatch by 14.32%, 4.30%, and 2.55% when the label amount is 400, 2500, and 10000 respectively.48

Moreover, CPL further shows its superiority by boosting the convergence speed – with CPL, Flex-49

Match takes less than 1/5 training time of FixMatch to reach its final accuracy. Adapting CPL to50

other modern SSL algorithms also leads to improvements in accuracy and convergence speed.51

To sum up, this paper makes the following three contributions:52

• We propose Curriculum Pseudo Labeling (CPL), a curriculum learning approach of dynami-53

cally leveraging unlabeled data for SSL. It is almost cost-free and can be easily integrated to54

other SSL methods.55

• CPL significantly boosts the accuracy and convergence performance of several popular SSL56

algorithms on common benchmarks. Specifically, FlexMatch, the integration of FixMatch57

and CPL, achieves state-of-the-art results.58

• We build TorchSSL, a unified PyTorch-based semi-supervised learning codebase for the fair59

study of SSL algorithms. TorchSSL includes implementations of popular SSL algorithms60

and their corresponding training strategies, and is easy to use and customize.61

2 Background62

Consistency regularization follows the continuity assumption of SSL [1, 2]. The most basic consis-63

tency loss in SSL, such as in Π Model [9], Mean Teacher [10] and MixMatch [12], is the `-2 loss:64

65
µB∑
b=1

||pm(y|ω(ub))− pm(y|ω(ub))||22, (1)

where B is the batch size of labeled data, µ is the ratio of unlabeled data to labeled data, ω is a66

stochastic data augmentation function (thus the two terms in Eq.(1) are different), ub denotes a piece of67

unlabeled data, and pm represents the output probability of the model. With the introduction of pseudo68

labeling techniques [5, 7], the consistency regularization is converted to an entropy minimization69

process [16], which is more suitable for the classification task. The improved consistency loss with70

pseudo labeling can be represented as:71

1

µB

µB∑
b=1

1(max(pm(y|ω(ub))) > τ)H(p̂m(y|ω(ub)), pm(y|ω(ub))), (2)

where H is cross-entropy, τ is the pre-defined threshold and p̂m(y|ω(ub)) is the pseudo label that72

can either be a ‘hard’ one-hot label [4, 14] or a sharpened ‘soft’ one [11]. The intention of using a73

threshold is to mask out noisy unlabeled data that have low prediction confidence.74

FixMatch utilizes such consistency regularization with strong augmentation to achieve competitive75

performance. For unlabeled data, FixMatch first uses weak augmentation to generate artificial labels.76

These labels are then used as the target of strongly-augmented data. The unsupervised loss term in77

FixMatch thereby has the form:78

1

µB

µB∑
b=1

1(max(pm(y|ω(ub))) > τ)H(p̂m(y|ω(ub)), pm(y|Ω(ub))), (3)

where Ω is a strong augmentation function instead of weak augmentation ω.79
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Figure 1: Illustration of Curriculum Pseudo Label (CPL). The estimated learning effects of each
class are decided by the number of unlabeled data samples falling into this class and above the fixed
threshold. They are then used to adjust the flexible thresholds to let pass the optimal unlabeled data.
Note that the estimated learning effects do not always grow – they may also decrease if the predictions
of the unlabeled data fall into other classes in later iterations.

Of the aforementioned works, the pre-defined threshold (τ ) is constant. We believe this can be80

improved because the data of some classes may be inherently more difficult to learn than others.81

Curriculum learning [15] is a learning strategy where learning samples are gradually introduced82

according to the model’s learning process. In such a way, the model is always optimally challenged.83

This technique is widely employed in deep learning research [17, 18, 19, 20, 21].84

3 FlexMatch85

3.1 Curriculum Pseudo Labeling86

While current SSL algorithms render pseudo labels of only high-confidence unlabeled data cut off by87

a pre-defined threshold, CPL renders the pseudo labels to different classes and at different time steps.88

Such a process is realized by adjusting the thresholds according to the model’s learning status of each89

class.90

However, it is non-trivial to dynamically determine the thresholds according to the learning status.91

The most ideal approach would be calculating evaluation accuracies for each class and use them to92

scale the threshold, as:93

Tt(c) = at(c) · τ, (4)
where Tt(c) is the flexible threshold for class c at time step t and at(c) is the corresponding evaluation94

accuracy. In this way, lower accuracy that indicates a less satisfactory learning status of the class will95

lead to a lower threshold that encourages more samples of this class to be learned. Since we cannot96

use the evaluation set in the model learning process, one may have to separate an extra validation set97

from the training set for such accuracy evaluations. However, this practice show two fatal problems:98

First, such a labeled validation set separated from the training set is expensive under SSL scenario99

as the labeled data are already scarce. Second, to dynamically adjust the thresholds in the training100

process, accuracy evaluations must be done continually at each time step t, which will considerably101

slow down the training speed.102

In this work, we propose Curriculum Pseudo Labeling (CPL) for semi-supervised learning. Our103

CPL uses an alternative way to estimate the learning status, which does not introduce additional104

inference processes, nor needs an extra validation set. As believed in [14], a high threshold that filters105

out noisy pseudo labels and leaves only high-quality ones can considerably reduce the confirmation106

bias [22]. Therefore, our key assumption is that when the threshold is high, the learning effect of107

a class can be reflected by the number of samples whose predictions fall into this class and above108

the threshold. Namely, the class with fewer samples having their prediction confidence reach the109

threshold is considered to have a greater learning difficulty or a worse learning status, formulated as:110

σt(c) =

N∑
n=1

1(max(pm,t(y|un)) > τ) · 1(arg max(pm,t(y|un) = c). (5)

where σt(c) reflects the learning effect of class c at time step t. pm,t(y|un) is the model’s prediction111

for unlabeled data un at time step t, and N is the total number of unlabeled data. When the unlabeled112

3



dataset is balanced (i.e., the number of unlabeled data belonging to different classes are equal or close),113

larger σt(c) indicates a better estimated learning effect. By applying the following normalization to114

σt(c) to make its range between 0 to 1, it can then be used to scale the fixed threshold τ :115

βt(c) =
σt(c)

maxσt(c)
, (6)

116

Tt(c) = βt(c) · τ. (7)

One characteristic of such a normalization approach is that the best-learned class has its βt(c) equal117

to 1, causing its flexible threshold equal to τ . This is desirable. For classes that are hard to learn, the118

thresholds are lowered down, encouraging more training samples in these classes to be learned. This119

also improves the data utilization ratio. As learning proceeds, the threshold of a well-learned class is120

raised higher to selectively pick up higher-quality samples. Eventually, when all classes have reached121

reliable accuracies, the thresholds will all approach τ . Note that the thresholds do not always grow, it122

may also decrease if the unlabeled data is classified into a different class in later iterations. This new123

threshold is used for calculating the unsupervised loss in FlexMatch, which can be formulated as:124

Lu,t =
1

µB

µB∑
b=1

1(max(qb) > Tt(arg max(qb)))H(q̂b, pm(y|Ω(ub))), (8)

where qb = pm(y|ω(ub)). The flexible thresholds are updated at each iteration. Finally, we can125

formulate the loss in FlexMatch as the weighted combination (by λ) of supervised and unsupervised126

loss:127

Lt = Ls + λLu,t, (9)
where Ls is the supervised loss on labeled data:128

Ls =
1

B

B∑
b=1

H(yb, pm(y|ω(xb))). (10)

Note that the cost of introducing CPL is almost free. Practically, every time the prediction confidence129

of an unlabeled data un is above the fixed threshold τ , the data, and its predicted class are marked and130

will be used for calculating βt(c) at the next time step. Such marking actions are bonus actions each131

time the consistency loss is computed. Therefore, FlexMatch does not introduce additional forward132

propagation processes for evaluating the model’s learning status, nor new parameters.133

3.2 Threshold warm-up134

We noticed in our experiments that at the early stage of the training, the model may blindly predict135

most unlabeled samples into a certain class depending on the parameter initialization(i.e., more likely136

to have confirmation bias). Hence, the estimated learning status may not be reliable at this stage.137

Therefore, we introduce a warm-up process by rewriting the denominator in Eq. (6) as:138

βt(c) =
σt(c)

max

{
maxσt(c), N −

C∑
c=1

σt(c)

} , (11)

where the term N −
∑C
c=1 σt(c) can be regarded as the number of unlabeled data that have not been139

used. This ensures that at the beginning of the training, all estimated learning effects gradually rise140

from 0 until the number of unused unlabeled data is no longer predominant. The duration of such a141

period depends on the unlabeled data amount (ref. N in Eq. (11)) and the learning difficulty (ref. the142

growing speed of σt(c) in Eq. (11)) of the dataset. In practice, such a warm-up process is very easy143

to implement as we can add an extra class to denote the unused unlabeled data. Thus calculating the144

denominator of Eq. (11) is simply converted to finding the maximum among c+ 1 classes.145

3.3 Non-linear mapping function146

The flexible threshold in Eq. (7) is determined by the normalized estimated learning effects via a147

linear mapping. However, it may not be the most suitable mapping in the real training process, where148
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Algorithm 1 FlexMatch algorithm.
1: Input: X = {(xm, ym) : m ∈ (1, . . . ,M)}, U = {un : n ∈ (1, . . . , N)} {M labeled data and

N unlabeled data.}
2: ûn = −1 : n ∈ (1, . . . , N) {Initialize predictions of all unlabeled data as -1 indicating unused.}
3: while not reach the maximum iteration do
4: for c = 1 to C do
5: σ(c) =

∑N
n=1 1(ûn = c) {Compute estimated learning effect.}

6: if maxσ(c) <
∑N
n=1 1(ûn = −1) then

7: Calculate β(c) using Eq. (11) {Threshold warms up when unused data dominate.}
8: else
9: Calculate β(c) using Eq. (6) {Compute normalized estimated learning effect.}

10: end if
11: Calculate T (c) using Eq. (7) {Determine the flexible threshold for class c.}
12: end for
13: for b = 1 to µB do
14: if pm(y|ω(ub)) > τ then
15: ûb = arg max qb {Update the prediction of unlabeled data ub.}
16: end if
17: end for
18: Compute the loss via Eq. (8), (10) and (9).
19: end while
20: Return: Model parameters.

the increase or decrease of βt(c) may make big jumps in the early phase where the predictions of149

the model are still unstable; and only make small fluctuations after the class is well-learned in the150

mid and late training stage. Therefore, it is preferable if the flexible thresholds can be more sensitive151

when βt(c) is large and vice versa.152

We propose a non-linear mapping function to enable the thresholds to have a non-linear increasing153

curve when βt(c) ranges uniformly from 0 to 1, as formulated below:154

Tt(c) =M(βt(c)) · τ, (12)
whereM(·) is a non-linear mapping function. It is clear that Eq. (7) can be seen as a special case by155

settingM to the identity function. The mapping functionM should be monotonically increasing156

and have a maximum no larger than 1/τ (otherwise the flexible threshold can be larger than 1 and157

filter out all samples). To avoid introducing additional hyperparameters (e.g. lower limits of the158

flexible thresholds), we consider the mapping function to have a range from 0 to 1 so that the flexible159

thresholds range from 0 to τ .160

A monotone increasing convex function lets the thresholds grow slowly when βt(c) is small, and161

become more sensitive as βt(c) gets larger. Hence, we intuitively choose a convex function with the162

above-mentioned propertiesM(x) = x
2−x for our experiments. We also conduct an ablation study163

to compare among mapping functions with different convexity and concavity in Sec. 4.4. The full164

algorithm of FlexMatch is shown in Algorithm 1.165

4 Experiments166

We evaluate FlexMatch and other CPL-enabled algorithms on common SSL datasets: CIFAR-167

10/100 [23], SVHN [24], STL-10 [25] and ImageNet [26], and extensively investigate the performance168

under various labeled data amounts. We mainly compare our method with Pseudo-Labeling [4],169

UDA [11] and FixMatch [14], since they all involve a pre-defined threshold. The results of other170

popular SSL algorithms are in the appendix. We also add a fully-supervised result for each dataset to171

better understand the results of SSL algorithms. Our fully-supervised experiments use only weak172

data augmentations for labeled data according to Eq. (10). Following SSL evaluation standards [27],173

we re-implement all baselines using our PyTorch [28] codebase: TorchSSL, which will be introduced174

in the next section and made publicly available.175

For a fair comparison, we use the same hyperparameters following FixMatch [14]. Concretely, the176

optimizer for all experiments is standard stochastic gradient descent (SGD) with a momentum of 0.9177
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Table 1: Error rates on CIFAR-10/100, SVHN, and STL-10 datasets. The ‘Flex’ prefix denotes
applying CPL to the algorithm, and ‘PL’ is an abbreviation of Pseudo-Labeling. STL-10 dataset does
not have label information for unlabeled data, thus its fully-supervised result is unavailable.

Dataset CIFAR-10 CIFAR-100 STL-10 SVHN

Label Amount 40 250 4000 400 2500 10000 40 250 1000 40 1000

PL 69.51±4.55 41.02±3.56 13.15±1.84 86.10±1.50 58.00±0.38 36.48±0.13 74.48±1.48 55.63±5.38 31.80±0.29 60.32±2.46 9.56±0.25

Flex-PL 65.41±1.35 36.37±1.57 10.82±0.04 74.85±1.53 44.15±0.19 29.13±0.26 69.26±0.60 41.28±0.46 24.63±0.14 36.90±1.19 8.64±0.08

UDA 7.33±2.03 5.11±0.07 4.20±0.12 44.99±2.28 27.59±0.24 22.09±0.19 37.31±3.03 12.07±1.50 6.65±0.25 4.40±2.31 1.93±0.01

Flex-UDA 5.33±0.13 5.05±0.02 4.07±0.06 33.64±0.92 24.34±0.20 20.07±0.13 12.84±2.60 8.05±0.21 5.77±0.08 3.78±1.67 1.97±0.06

FixMatch 6.78±0.50 4.95±0.07 4.09±0.02 46.76±0.79 28.15±0.81 22.47±0.66 35.42±6.43 10.49±1.03 6.20±0.20 4.36±2.16 1.97±0.03

FlexMatch 4.99±0.16 4.80±0.06 3.95±0.03 32.44±1.99 23.85±0.23 19.92±0.06 10.87±1.15 7.71±0.14 5.56±0.22 5.36±2.38 2.86±0.91

Fully-Supervised 4.45± 0.12 19.07± 0.18 - 2.14± 0.02

[29, 30, 31]. For all datasets, we use an initial learning rate of 0.03 with a cosine learning rate decay178

schedule [32] as η = η0 cos( 7πk
16K ), where η0 is the initial learning rate, k is the current training step179

and K is the total training step that is set to 220. We also perform an exponential moving average180

with the momentum of 0.999. The batch size of labeled data is 64 except for ImageNet, which uses a181

batch size of 32. µ is set to be 1 for Pseudo-Label and 7 for UDA, FixMatch, and FlexMatch. τ is182

set to 0.8 for UDA and 0.95 for Pseudo Label, FixMatch, and FlexMatch. These setups follow the183

original papers. The strong augmentation function used in our experiments is RandAugment [33].184

Detailed hyperparameters are listed in the appendix.185

We adopt two evaluation metrics: (1) the median error rate of the last 20 checkpoints following [12,186

14], and (2) the best error rate in all checkpoints. We argue that the median approach is not suitable187

when the convergence speeds of the algorithms show significant differences – the large number of188

redundant iterations may result in over-fitting for the fast-converge algorithms. Therefore, we report189

the best error rates for all algorithms, while the results of the median approach are also provided in190

the appendix, showing that our FlexMatch still achieves the best performance. We run each task three191

times using distinct random seeds to obtain the error bars.192

4.1 Main results193

The classification error rates on CIFAR-10/100, STL-10 and SVHN datasets are in Table 1, and the194

results on ImageNet are in Sec. 4.2. Note that the SVHN dataset used in our experiment also includes195

the extra set that contains 531,131 additional samples. Results demonstrate that FlexMatch achieves196

the best performance under all label conditions on all datasets except for SVHN where Flex-UDA197

(i.e., UDA with CPL) and UDA have the lowest error rate on the 40-label split and 1000-label split,198

respectively. We also provide the detailed precision, recall, F1, and AUC results in the appendix. Our199

CPL (FlexMatch) has the following advantages:200

CPL achieves better performance on tasks with extremely limited labeled data. Our Flex-201

Match significantly outperforms other methods When the amount of labels is extremely small. For202

instance, on the CIFAR-100 dataset with 400 labels (i.e., only 4 label samples per class), FlexMatch203

achieves an average error rate of 32.44%, which significantly outperforms FixMatch by 14.32%.204

Pseudo-Label UDA FixMatch
Method

0.0

0.1

0.2

0.3

Ti
m

e

w/o CPL w/ CPL

Figure 2: Average running
time of one iteration on a sin-
gle GeForce RTX 3090 GPU.

CPL improves the performance of existing SSL algorithms.205

Other than FixMatch, the error rate of Pseudo-Labeling and UDA are206

also dramatically reduced by employing CPL. For instance, the error207

rate is reduced by 24.53% for Pseudo-Labeling on SVHN (40 la-208

bels), and by 24.47% for UDA on STL-10 (40 labels). These results209

further prove the effectiveness of CPL in better leveraging unlabeled210

data. Figure 2 shows the average running time of a single iteration211

with or without adding our CPL, it is clear that while improving the212

performance of existing SSL algorithms, our CPL does not introduce213

additional computational burden.214

CPL achieves better performance on complicated tasks. The215

STL-10 dataset contains unlabeled data from a similar but broader216

distribution of images than its labeled set. The existence of new types217

of objects in the unlabeled dataset makes STL-10 a more challenging218
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Figure 3: Convergence analysis of FixMatch and FlexMatch. (a) and (b) depict the loss and top-
1-accuracy on CIFAR-100 with 400 labels. Evaluations are done every 5K iterations. (c) and (d)
demonstrate the class-wise accuracy within the first 200K iterations on CIFAR-10 dataset. The
numbers in legend correspond to the ten classes in the dataset.

and realistic task. Our FlexMatch achieves even greater performance improvement under such a219

challenging situation. To the best of our knowledge, we are the first to use only 40 labeled data for220

STL-10, and obtain a noteworthy error rate of 10.87%, which is substantially better than FixMatch221

(35.42%). Similar strong improvements are also observed on CIFAR-100 dataset, which has as many222

as one hundred classes.223

We also analyze the reason why FlexMatch fails to surpass FixMatch on SVHN. This is probably224

because the data of each class in SVHN are highly unbalanced. This leads to the classes with fewer225

samples never have their estimated learning effects close to 1 according to Eq. (6), even if they226

are already well-learned. These low upper thresholds allow noisy data to be used even in the late227

stage of training. We conclude this as a limitation of our approach of estimating the learning effects.228

Nevertheless, CPL still improves Pseudo-Labeling under both label conditions and UDA under the229

40-label condition despite the above issue. The reason behind this is worth studying in future work.230

4.2 Results on ImageNet231

Table 2: Results on ImageNet.
Method Top-1 Top-5

FixMatch 43.08 19.55
FlexMatch 35.21 13.96

We test FlexMatch on ImageNet-1K dataset and compare it with232

FixMatch. We randomly choose the same 100K labeled data (i.e.,233

100 labels per class). This label amount is less than 6% of the234

total labels. As shown in Table 2, the top-1 and top-5 error rate of235

FlexMatch are 35.21% and 13.96%, which are significantly lower236

than FixMatch (43.08% and 19.55%).237

4.3 Convergence speed analysis238

Another strong advantage of FlexMatch is its superior convergence speed. Figure 3(a) and 3(b)239

shows the comparison between FlexMatch and FixMatch with respect to the loss and top-1-accuracy240

on CIFAR-100 400-label split. The loss of FlexMatch decreases much faster and smoother than241

FixMatch, demonstrating its superior convergence speed. The major fluctuations of the loss in242

FixMatch may due to the pre-defined threshold that lets pass most unlabeled data belonging to certain243

classes, whereas with CPL a larger batch of unlabeled data containing samples from various classes244

enables the gradient to more directly head toward the global optimum. As a result, with only 50K245

iterations, FlexMatch has already surpassed the final results of FixMatch. After 800K iterations,246

however, we observe a further decrease in loss and accuracy. This is likely due to over-fitting, which247

also occurs in FixMatch after 900K iterations. Thus, we believe it is not fair to use the median results248

of the last few checkpoints for evaluating algorithms with different convergence speeds.249

We further compare the class-wise accuracy of FixMatch and FlexMatch on CIFAR-10 in their early250

training stages. As shown in Figure 3(c) and 3(d), at iteration 200K, FixMatch only hits an overall251

accuracy of 56.35% as half of the classes are still learned unsatisfactorily, whereas FlexMatch has252

already achieved an overall accuracy of 94.29% which is even higher than the final accuracy reached253

by FixMatch after 1M iterations. It is manifest that the introduction of CPL successfully encourages254

the model to proactively learn those difficult classes thereby improving the overall learning effect.255
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Figure 4: Ablation study of FlexMatch.

4.4 Ablation study256

We conduct experiments to evaluate three components of FlexMatch: the upper limit of thresholds τ ,257

mapping functionsM(x), and threshold warm-up.258

Threshold upper bound. We investigate 5 different τ values and 3 different mapping functions on259

CIFAR-10 dataset with 40 labels. As shown in Figure 4(a), the optimal choice of τ is around 0.95,260

either increasing or decreasing this value results in a performance decay. Note that in FlexMatch,261

tuning τ does not only affect the upper limit of the threshold but also the estimated learning effects262

because they are determined by the number of samples that fall above τ .263

Mapping function. We explore three different mapping functions in Figure 4(b): (1) concave:264

M(x) = ln(x+ 1)/ ln 2, (2) linear:M(x) = x, and (3) convex:M(x) = x/(2− x) . We see that265

the convex function shows the best performance and the concave function shows the worst. Although266

tweaking the degree of convexity may probably lead to further improvement, we do not make further267

investigation in this paper. It is noteworthy that all these functions have their outputs grow from 0 to268

1 when the inputs go from 0 to 1. One may also design a function with a different range, for instance,269

from 0.5 to 1. In this case, it is equivalent to setting a lower limit to the flexible threshold so that even270

at the beginning of the training, only samples with prediction confidence higher than this limit will271

contribute to the unsupervised loss. We do not include such a lower limit in FlexMatch since it will272

introduce a new hyperparameter. However, we did find that setting a lower limit at 0.5 can slightly273

improve the performance. A possible reason is that the lower threshold prevents noisy training caused274

by incorrect pseudo labels at the early stage [34].275

Threshold warm-up. We analyze the performance of threshold warm-up on both CIFAR-10 (40276

labels) and CIFAR-100 (400 labels) datasets. As shown in Figure 4(c), the effect of threshold warm-up277

is mediocre on CIFAR-10 but is measurable on CIFAR-100. This is reasonable since CIFAR-100 is a278

more complicated dataset with more classes compared to CIFAR-10. At the beginning of the training279

without the threshold warm-up, the flexible thresholds may go through heavy fluctuations because the280

denominator in Eq.(6) is small. In the meantime, there will always be some classes whose flexible281

thresholds reach or approach τ , thereby filtering out most unlabeled data in the batch. The threshold282

warm-up solves this issue by gradually raising the thresholds of all classes from zero – it creates a283

learning boom at the early training stage where most of the unlabeled data can be utilized.284

5 TorchSSL: A PyTorch-based SSL Codebase285

The PyTorch [28] framework has gained increasing attention in the deep learning research community.286

However, the main existing SSL codebase [35] is based on TensorFlow. For the convenience and287

customizability, we re-implement and open source a PyTorch-based SSL toolbox, named TorchSSL as288

shown in Figure 5. TorchSSL contains eight popular semi-supervised learning methods: Π-Model [9],289

Pseudo-Labeling [4], VAT [36], Mean Teacher [10], MixMatch [12], ReMixMatch [13], UDA [11],290

and FixMatch [14], along with our proposed method FlexMatch. Most of our implementation details291

are based on [35]. More importantly, in addition to the basic SSL methods and components, we292

implement several techniques to make the results stable under PyTorch framework. For instance,293

we add synchronized batch normalization [37] to avoid the performance degradation caused by294

multi-GPU training with small batch size, and a batch norm controller to prevent performance crashes295
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Data libraries

Datasets:

-CIFAR-10/100

-SVHN

-STL-10

-ImageNet

Data Preprocess:

-Image Preprocess

-Labeled and Unlabeled Data Split

Data Augmentation:

-Weak Augmentation

-Strong Augmentation:

-RandAugment (RA)

-CTAugment (CTA)

Model libraries

Neural Networks:

-ResNet

-WideResNet

-WideResNet Varient

SSL Algorithms:

-Π-model

-Pseudo-Labeling

-VAT

-MeanTeacher

-MixMatch

Training Components:

-Synchronized Batch Normalization

-Batch Normalization Controller

-Exponential Moving Average

-Gradient Clipping

-Cosine Scheduler

-ReMixMatch

-UDA

-FixMatch

-FlexMatch

Main libraries

Configuration:

-Config Generator

-Config Parser

Main Entrance:

-Distributed Data Parallel Training

-Automatic Mixed Precision

Convenient Scripts:

-Virtual Environment Creation

-Batch Experiment Submission

-Results Summarization

TorchSSL: A PyTorch-based Semi-supervised learning library

Figure 5: Components of TorchSSL.

for some algorithms, which is not officially supported in PyTorch. Detailed information of TorchSSL296

is presented in the appendix.297

6 Related Work298

Pseudo-Labeling [4] is a pioneer SSL method that uses hard artificial labels converted from model299

predictions. A confidence-based strategy was used in [6] along with pseudo labeling so that the300

unlabeled data are used only when the predictions are sufficiently confident. Such confidence-based301

thresholding also presents in recently proposed UDA [11] and FixMatch [14] with the difference302

being that UDA used sharpened ‘soft’ pseudo labels with a temperature whereas Fixmatch adopted303

one-hot ‘hard’ labels. The success of UDA and FixMatch, however, relies heavily on the usage304

of strong data augmentations to improve the consistency regularization. ReMixMatch [13] also305

leveraged such strong augmentations.306

The combination of curriculum learning and semi-supervised learning is popular in recent years [38,307

39, 40]. For multi-model image classification task, [38] optimized the learning process of unlabeled308

images by judging their reliability and discriminability. In [39], the easy image-level properties are309

learned first and then used to facilitate segmentation via constrained CNNs. Curriculum learning310

is also used to alleviate out-of-distribution problems by picking up in-distribution samples from311

unlabeled data according to the out-of-distribution scores [40].312

Several researches have investigated on dynamic threshold in related fields such as sentiment anal-313

ysis [41] and semantic segmentation [42]. In [41], the threshold was gradually reduced to make314

high-quality data selected into labeled data set in the early stage and large-quantity in the later stage.315

An extra classifier is added to automate the threshold to deal with domain inconsistency in [42].316

7 Conclusion and Future Work317

In this paper, we introduce Curriculum Pseudo Labeling (CPL), a curriculum learning approach of318

leveraging unlabeled data for SSL. CPL dramatically improves the performance and convergence319

speed of SSL algorithms that involve thresholds while being extremely simple and almost cost-free.320

FlexMatch, our improved algorithm of FixMatch, achieves state-of-the-art performance on a variety321

of SSL benchmarks. We hope that CPL can attract more future attention to explore the effectiveness322

of utilizing unlabeled data according to the model’s learning status. In future work, we would like to323

improve our method under the long-tail scenario where the unlabeled data belonging to each class are324

extremely unbalanced.325
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